Способ и система передачи информационного наполнения в системе передачи широковещательных услуг
Иллюстрации
Показать всеИзобретение относится к области связи и может быть использовано в системе проводной или беспроводной связи. Внешний декодер и внутренний декодер кодируют блок информации, подлежащей передаче, для улучшения защиты, посредством добавления избыточности. Избыточность обеспечивает возможность декодировать информацию из менее чем законченного закодированного блока информации. Повторное выравнивание по времени двух передач одного и того же информационного наполнения от двух базовых станций может смягчать проблему дублированных кадров. Пользователь абонентской станции может воспринимать бесшовное обслуживание без повторения информационного наполнения, даже при передаче обслуживания в новую ячейку во время приема буфера широковещательного информационного наполнения. Технический результат - снижение потребляемой мощности абонентской станции, а также облегчение использования общего широковещательного канала. 8 н. и 24 з.п. ф-лы, 9 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение касается широковещательных передач, иначе известных как многоточечные передачи, в системе проводной или беспроводной связи. Более конкретно, настоящее изобретение касается системы и способа использования внешнего декодера в такой системе широковещательной передачи.
Уровень техники
Системы связи были разработаны для обеспечения возможности передачи информационных сигналов от станции отправителя к физически отдельной станции назначения. При передаче информационного сигнала от станции отправителя по каналу связи, информационный сигнал сначала преобразуется в форму, подходящую для эффективной передачи по каналу связи. Преобразование, или модуляция, информационного сигнала включает в себя изменение параметра несущей в соответствии с информационным сигналом таким образом, что спектр результирующей модулированной несущей ограничен пределами ширины полосы канала связи. На станции назначения исходный информационный сигнал копируется с волны модулированной несущей, принятой по каналу связи. Такое копирование в общем получают, используя инверсию модуляционного процесса, применяемого станцией отправителя.
Модуляция также облегчает множественный доступ, то есть одновременную передачу и/или прием, нескольких сигналов по общему каналу связи. Системы связи с множественным доступом часто включают в себя множество абонентских модулей, для которых требуется скорее работа с перерывами сравнительно короткой продолжительности, чем непрерывный доступ к общему каналу связи. В технике известны несколько методик множественного доступа, типа множественного доступа с временным разделением каналов (МДВР, TDMA), множественного доступа с частотным разделением каналов (МДЧ, FDMA) и множественного доступа с амплитудной модуляцией (МДАМ, AM). Другой тип методики множественного доступа представляет собой систему с расширенным спектром множественного доступа с кодовым разделением каналов (МДКР, CDMA), которая соответствует "Стандарту совместимости подвижной станции с базовой станцией для двухрежимной широкополосной сотовой системы связи с расширенным спектром TIA/EIA/IS-95 (Ассоциация изготовителей средств связи/Ассоциация изготовителей электронного оборудования/международный стандарт)", в дальнейшем упоминаемому как стандарт IS-95. Использование методик МДКР в системе связи множественного доступа раскрыто в патенте США № 4901307 под названием "Система связи множественного доступа с расширенным спектром, использующая спутниковые или наземные ретрансляторы" и в патенте США № 5103459 под названием "Система и способ генерирования форм сигналов в системе сотовой телефонной связи МДКР", оба переуступлены правопреемнику настоящего изобретения.
Системой связи множественного доступа может быть беспроводная или проводная линия связи, и она может переносить речевой сигнал и/или данные. Примером системы связи, передающей и речевой сигнал, и данные, является система, соответствующая стандарту IS-95, который определяет передачу речевого сигнала и данных по каналу связи. Способ передачи данных в кодированных канальных кадрах фиксированного размера подробно описан в патенте США № 5504773 под названием "Способ и устройство форматирования данных для передачи", переуступленном правопреемнику настоящего изобретения. В соответствии со стандартом IS-95, данные или речевой сигнал разбиваются на кодированные канальные кадры, которые имеют ширину 20 миллисекунд, со скоростями передачи данных, достигающими как 14,4 кбит/с. Дополнительные примеры систем связи, передающих и речевой сигнал, и данные, содержат системы связи, соответствующие "Проекту партнерства третьего поколения" (3GPP), воплощенному в наборе документов, включающих в себя Документ №№ 3G TS 25.211, 3G TS 25.212, 3G TS 25.213 и 3G TS 25.214 (стандарт ШМДКР (широкополосного множественного доступа с кодовым разделением)), или "Стандарт физического уровня для систем с расширенным спектром cdma2000 TR-45.5" (стандарт IS-2000).
Примером системы связи только для данных является система связи высокоскоростной передачи данных (ВПД, HDR), которая соответствует промышленному стандарту TIA/EIA/IS-856, в дальнейшем упоминаемому, как стандарт IS-856. Эта система ВПД основана на системе связи, раскрытой в одновременно рассматриваемой заявке с порядковым номером 08/963386 под названием "Способ и устройство высокоскоростной передачи пакетированных данных", зарегистрированной 3 ноября 1997 г. и переуступленной правопреемнику настоящего изобретения. Система связи ВПД определяет набор скоростей передачи данных, находящийся в пределах от 38,4 кбит/с до 2,4 Мбит/с, в котором точка доступа (ТД) может посылать данные в абонентскую станцию (терминал доступа, ТРД). Поскольку ТД аналогична базовой станции, терминология относительно ячеек и секторов такая же, как относительно систем для речевых сигналов.
В системе связи множественного доступа, связь между пользователями проводится через одну или более базовые станции. Первый пользователь в одной абонентской станции осуществляет связь со вторым пользователем во второй абонентской станции, передавая данные по обратной линии связи к базовой станции. Базовая станция принимает данные и может направлять данные к другой базовой станции. Данные передаются по прямой линии связи той же самой базовой станции или другой базовой станции, во вторую абонентскую станцию. Прямая линия связи относится к передаче от базовой станции в абонентскую станцию, а обратная линия связи относится к передаче от абонентской станции в базовую станцию. Аналогично, связь может проводиться между первым пользователем в одной абонентской станции и вторым пользователем на станции наземной линии связи. Базовая станция принимает данные от пользователя по обратной линии связи и направляет данные через коммутируемую телефонную сеть общего пользования (КТСОП, PSTN) второму пользователю. Во многих системах связи, например, IS-95, ШМДКР (W-CDMA), IS-2000, прямой линии связи и обратной линии связи выделены раздельные частоты.
Описанное выше обслуживание беспроводной связи представляет собой пример обслуживания прямой связи. Напротив, широковещательное обслуживание обеспечивают обслуживание многоточечной связи. Основная модель широковещательной системы состоит из широковещательной сети пользователей, обслуживаемой одной или более центральными станциями, которые передают информацию пользователям с некоторым информационным наполнением, например, новостями, кинофильмами, спортивными событиями и т.п. Абонентская станция каждого широковещательного сетевого пользователя отслеживает общий широковещательный сигнал прямой линии связи. Поскольку центральная станция фиксированно определяет информационное наполнение, пользователи вообще не осуществляют обратную связь. Примерами общего использования систем связи широковещательного обслуживания являются телевизионное вещание, радиовещательные передачи и т.п. Такие системы связи в общем являются высокоспециализированными системами связи специального назначения. С недавним прогрессом в беспроводных системах телефонов для сотовой связи возник интерес к использованию существующей инфраструктуры - главным образом, сотовых систем прямой телефонной связи, для широковещательного обслуживания (Термин "сотовые" системы, как он используется здесь, охватывает системы связи, использующие и частоты сотовой связи, и частоты PCS (системы персональной связи)).
Информационный сигнал, подлежащий обмену между терминалами в системе связи, часто упорядочивают в множество пакетов. Для целей этого описания пакет представляет собой группу байтов, включая данные (полезная нагрузка) и управляющие элементы, скомпонованные в определенный формат. Управляющие элементы содержат, например, начальную часть и показатель качества. Показатель качества содержит, например, контроль циклическим избыточным кодом (КЦИК), бит (биты) контроля четности и другие типы показателя, известные специалистам в данной области техники. Пакеты обычно форматируются в сообщение в соответствии со структурой канала связи. Сообщение, соответствующим образом модулированное, перемещающееся между терминалом отправителя и терминалом назначения, подвергается воздействию характеристикам канала связи, например, отношению сигнал-шум, замиранию, временной дисперсии и другим таким характеристикам. Такие характеристики воздействуют на модулированный сигнал по-разному в различных каналах связи. Следовательно, передача модулированного сигнала по каналу беспроводной связи требует иных соображений, чем передача модулированного сигнала по каналу связи, подобному проводному, например, по коаксиальному кабелю или оптическому кабелю. В дополнение к выбору модуляции, соответствующей конкретному каналу связи, были изобретены другие способы для защиты информационного сигнала. Такие способы содержат, например, кодирование, повторение символов, перемежение и другие способы, известные специалистам в данной области техники. Однако эти способы увеличивают непроизводительные затраты. Поэтому должен быть сделан технический компромисс между надежностью доставки сообщений и количеством дополнительных битов. Даже с обсуждавшейся выше защитой информации, состояние канала связи может ухудшаться до такой степени, когда станция назначения, возможно, не сможет декодировать некоторые из пакетов, содержащие сообщение (стирание). В системах связи только для данных, восстановление заключается в повторной передаче не декодированных пакетов, используя запрос автоматического повторения (ЗАП), посылаемый станцией назначения на станцию отправителя. Однако, как обсуждалось выше, абоненты не обеспечивают обратную связь с базовой станцией. Кроме того, даже если абонентам обеспечивать возможность сообщать ЗАП, эта связь может перегружать систему связи. Следовательно, требуется другой способ защиты информации.
На основании вышеизложенного, в технике имеется потребность в способе и системе использования внешнего декодера в такой системе широковещательной связи.
Сущность изобретения
Раскрытые здесь варианты осуществления направлены на заявленные выше потребности, обеспечивая способ и систему, выполняющую способ использования внешнего декодера. Использование внешнего декодера дополнительно облегчает снижение потребляемой мощности абонентской станции посредством определения количества кадров, которые должны быть приняты правильно; и завершения приема кадров, когда упомянутое определенное количество кадров принято правильно.
В другом аспекте изобретения использование внешнего декодера дополнительно облегчает улучшенный способ жесткой передачи обслуживания в общем широковещательном канале посредством приема в абонентской станции кадров, передаваемых по общему широковещательному каналу из первого сектора; определения на абонентской станции необходимости в передаче обслуживания; идентифицирования в абонентской станции по меньшей мере одного сектора, принадлежащего группе мягкой передачи обслуживания, отличающейся от группы мягкой передачи обслуживания, включающей первый сектор; определения количества кадров из текущего буфера, которые должны быть приняты правильно; завершения приема кадров, когда упомянутое определенное количество кадров принято правильно; и начала приема кадров из идентифицированного по меньшей мере одного сектора.
В другом аспекте изобретения использование внешнего декодера дополнительно облегчает улучшенный способ для межчастотной жесткой передачи обслуживания посредством приема в абонентской станции услуги на канале от сектора в системе отправителя; определения в абонентской станции необходимости в передаче обслуживания; идентифицирования в абонентской станции системы назначения; определения количества кадров из текущего буфера, которые должны быть приняты правильно; завершения приема кадров, когда упомянутое определенное количество кадров принято правильно; настройки на частоту системы назначения; и приема обслуживания на канале по меньшей мере из одного сектора, если по меньшей мере один сектор системы назначения получен в абонентской станции.
В другом аспекте изобретения использование внешнего декодера дополнительно облегчает использование общего широковещательного канала для передачи сигналов посредством замещения части информационного наполнения участка контроля по четности буфера передаваемых данных сигнальной информацией; и передачи информационного наполнения буфера передаваемых данных в определенное время по общему широковещательному каналу.
Краткое описание чертежей
Фиг.1 иллюстрирует концептуальную блок-схему системы связи высокоскоростного широковещательного обслуживания (ВСШО, HSBS);
фиг.2 иллюстрирует концепцию физических и логических каналов для ВСШО;
фиг.3 иллюстрирует кодирование известного уровня техники;
фиг.4 иллюстрирует обработку на физическом уровне в соответствии с одним вариантом осуществления изобретения;
фиг.5 иллюстрирует буфер передаваемых данных;
фиг.6 иллюстрирует концепцию групп мягкой передачи обслуживания в системе широковещательной связи;
фиг.7 иллюстрирует временную диаграмму для жесткой передачи обслуживания;
фиг.8 иллюстрирует временную диаграмму для передачи обслуживания в то время, как абонентская станция принимает широковещательное информационное наполнение из двух ячеек; и
фиг.9 иллюстрирует приемный буфер абонентской станции.
Подробное описание
Определения
Слово "примерный" используется здесь, чтобы обозначать "служит в качестве примера, образца или иллюстрации". Любой вариант осуществления, описанный здесь, как "примерный", не обязательно должен рассматриваться, как предпочтительный или выгодный по сравнению с другими вариантами осуществления.
Термин "прямая связь" используется здесь для обозначения связи между двумя абонентскими станциями по выделенному каналу связи.
Термины "широковещательная связь" или "многоточечная связь" используются здесь для обозначения связи, в которой множество абонентских пунктов принимают передачу от одного источника.
Термин "пакет" используется здесь для обозначения группы битов, включающих в себя данные (полезную нагрузку) и управляющие элементы, размещаемые в определенном формате. Управляющие элементы содержат, например, начальную часть, показатель качества и другие элементы, известные специалистам в данной области техники. Показатель качества содержит, например, контроль циклическим избыточным кодом (КЦИК, CRC), бит контроля четности и другие, известные специалистам в данной области техники.
Термин "сеть доступа" используется здесь для обозначения совокупности базовых станций (БС, BS) и одного или более контроллеров базовых станций. Сеть доступа перемещает пакеты данных между множеством абонентских станций. Сеть доступа помимо этого может быть связана с дополнительными сетями вне сети доступа, типа корпоративной интрасети или Интернета, и может перемещать пакеты данных между каждым терминалом доступа и такими внешними сетями.
Термин "базовая станция" используется здесь для обозначения оборудования, с которым осуществляют связь абонентские станции. "Ячейка" относится к оборудованию или географической зоне обслуживания, в зависимости от контекста, в котором используется этот термин. "Сектор" представляет собой участок ячейки. Поскольку сектор имеет атрибуты ячейки, положения, описанные на примере ячеек, с готовностью распространяется на сектора.
Термин "абонентская станция" используется здесь для обозначения оборудования, с которым осуществляет связь сеть доступа. Абонентская станция может быть подвижной или стационарной. Абонентской станцией может быть любое устройство для данных, которое осуществляет связь через беспроводный канал или через проводной канал, например, используя волоконно-оптические или коаксиальные кабели. Кроме того, абонентской станцией может быть любое устройство из некоторого количества типов устройств, включая, но не ограничиваясь этим, РС-карту, компактную флэш-память, внешний или внутренний модем или телефон беспроводной или проводной линии связи. Абонентская станция, которая находится в процессе установления активного соединения канала информационного обмена с базовой станцией, как считают, находится в состоянии установки соединения. Абонентская станция, которая установила активное соединение канала информационного обмена с базовой станцией, называется активной абонентской станцией и, как считают, находится в состоянии трафика (информационного обмена).
Термин "физический канал" используется здесь для обозначения маршрутизации связи, через которую распространяется сигнал, описываемый в терминах модуляционных характеристик и кодирования.
Термин "логический канал" используется здесь для обозначения маршрутизации связи в пределах уровней протокола либо базовой станции, либо абонентской станции.
Термин "канал связи/линия связи" используется здесь для обозначения физического канала или логического канала в соответствии с контекстом.
Термин "обратный канал/линия связи" используется здесь для обозначения канала связи/линии связи, по которой абонентская станция посылает сигналы в базовую станцию.
"Прямой канал/линия связи" используется здесь для обозначения канала/линии связи, по которой базовая станция посылает сигналы в абонентскую станцию.
Термин "мягкая передача обслуживания" используется здесь для обозначения связи между абонентской станцией и двумя или более секторами, где каждый сектор принадлежит другой ячейке. Связь по обратной линии связи принимается обоими секторами, а связь по прямой линии связи одновременно продолжается по прямым линиям связи двух или более секторов.
Термин "более мягкая передача обслуживания" используется здесь для обозначения связи между абонентской станцией и двумя или более секторами, где каждый сектор принадлежит той же ячейке. Связь по обратной линии связи принимается обоими секторами, а связь по прямой линии связи одновременно продолжается по одной из двух или более прямым линиям связи секторов.
Термин "стирание" используется здесь для обозначения отказа при распознавании сообщения.
Термин "выделенный канал" используется здесь для обозначения канала, модулируемого информацией, определенной для индивидуальной абонентской станции.
Термин "общий канал" используется здесь для обозначения канала, модулируемого информацией, общей для всех абонентских станций.
Описание
Как обсуждалось выше, базовая модель широковещательной системы содержит широковещательную сеть пользователей, обслуживаемых одной или более центральными станциями, которые передают пользователям информацию с некоторым информационным наполнением, например, новостями, кинофильмами, спортивными событиями и т.п. Каждая абонентская станция пользователя широковещательной сети отслеживает общий сигнал широковещательной прямой линии связи. Фиг.1 иллюстрирует концептуальную блок-схему системы 100 связи, способную выполнять высокоскоростное широковещательное обслуживание (ВСШО) в соответствии с вариантами осуществления настоящего изобретения.
Информационное наполнение широковещательной рассылки берет начало в сервере информационного наполнения (СИН) 102. Сервер информационного наполнения может быть размещен в пределах коммуникационной сети (не показанной) или внешнего Интернета (IP) 104. Информационное наполнение поставляется в форме пакетов в узел обслуживания широковещательной передачи пакетированных данных (УОШПД, BPDSN) 106. Здесь используется термин " УОШПД", потому что хотя УОШПД может быть физически совмещен или быть идентичным обыкновенному УОПД (узел обслуживания передачи пакетированных данных) (не показанному), УОШПД может логически отличаться от обыкновенного УОПД. УОШПД 106 поставляет пакеты в соответствии с местом назначения пакетов в функциональный блок управления пакетами (ФУП) 108. ФУП представляет собой управляющую функцию объекта управления базовых станций 110 для ВСШО, поскольку контроллер базовых станций предназначен для обыкновенного обслуживания речевых сигналов и данных. Для иллюстрирования соединения концепции высокого уровня ВСШО с физической сетью доступа, фиг.1 изображает ФУП, физически совмещенный или даже идентичный, но логически отличающийся от контроллера базовых станций (КБС). Специалистам в данной области техники должно быть понятно, что это сделано только для педагогических целей. КБС/ФУП 108 обеспечивают пакеты для базовых станций 114.
Система 100 связи обеспечивает возможность высокоскоростного широковещательного обслуживания (ВСШО) посредством введения широковещательного совместно используемого канала прямой связи (П-ШСИК) 112, способного осуществлять высокоскоростные передачи данных, которые могут приниматься большим количеством абонентских станций 114. Термин "широковещательный совместно используемый канал прямой связи" используется здесь для обозначения единственного физического канала прямой линии связи, по которому осуществляется широковещательный информационный обмен. Единственный П-ШСИК может нести один или более каналов ВСШО, мультиплексированных способом МРВ (мультиплексирования с разделением времени), в пределах единственного П-ШСИК. Термин "канал ВСШО" используется здесь для обозначения единственного логического широковещательного сеанса ВСШО, определенного информационным наполнением широковещательного сеанса. Каждый сеанс определен информационным наполнением широковещательной передачи, которое может изменяться со временем; например, 7 часов утра - новости, 8 часов утра - погода, 9 часов утра - кинофильм и т.д. Фиг.2 иллюстрирует обсуждаемую концепцию физических и логических каналов для ВСШО.
Как иллюстрируется на фиг.2, ВСШО обеспечено на двух каналах П-ШСИК 202, каждый из которых передается на отдельной частоте fx, fy. Таким образом, например, в вышеупомянутой системе связи cdma2000 такой физический канал может содержать, например, дополнительный канал прямой связи (П-ДК), широковещательный канал управления прямой связи (П-ШКУ), общий канал управления прямой связи (П-ОКУ), другие общие и выделенные каналы и комбинацию каналов. Использование общих и выделенных каналов для информационной широковещательной передачи раскрыто в предварительной заявке на патент США с порядковым номером 60/279970 под названием "Способ и устройство для групповых вызовов, использующие выделенные и общие каналы в беспроводных сетях", зарегистрированной 28 марта 2001 г. и переуступленной правопреемнику настоящего изобретения. Специалистам в данной области техники должно быть понятно, что другие системы связи используют каналы, осуществляющие подобную функцию, поэтому идея является подходящей и для других систем связи. Каналы П-ШСИК 202 несут широковещательный поток обмена информацией, который может содержать один или более широковещательных сеансов. Каналы П-ШСИК 202b несут один канал 204c ВСШО; два канала 204a, 204b ВСШО мультиплексированы в П-ШКУ 202a. Информационное наполнение канала ВСШО отформатировано в пакеты, содержащие полезную нагрузку 206 и заголовок 208.
Специалистам в данной области техники должно быть понятно, что использование широковещательного обслуживания ВСШО, как иллюстрируется на фиг.2, предназначено только для педагогических целей. Поэтому в данном секторе широковещательное обслуживание ВСШО может быть использовано несколькими способами в соответствии с особенностями, поддерживаемыми воплощением конкретной системы связи. Особенности воплощения включают в себя, например, количество поддерживаемых сеансов ВСШО, количество распределенных частот, количество поддерживаемых широковещательных физических каналов и другие особенности воплощения, известные специалистам в данной области техники. Таким образом, например, в секторе могут быть использованы больше чем две частоты и канала П-ШСИК. Кроме того, в один П-ШСИК могут быть мультиплексированы больше чем два канала ВСШО. Кроме того, единственный канал ВСШО может быть мультиплексирован в больше чем один широковещательный канал внутри сектора, на различных частотах, чтобы обслуживать абонентов, постоянно находящихся на этих частотах.
Как обсуждалось выше, системы связи часто передают информацию в кадрах или блоках, которые защищены кодированием против неблагоприятных условий, воздействующих на канал связи. Примеры таких систем содержат cdma2000, ШМДКР, УСМЭ (универсальную систему мобильной электросвязи). Как иллюстрируется на фиг.3, битовый поток информации, подлежащей передаче 302, берущий начало на более высоких уровнях, подается на (внутренний) кодер 304 на физическом уровне. Кодер принимает блок битов длиной S. Этот блок из S битов обычно включает в себя некоторые служебные биты, например биты хвоста для внутреннего кодера, контроль циклическим избыточным кодом (КЦИК), для подсказки внутреннему декодеру на стороне приема, обнаруживая успех или неудачу декодирования, подсказку внутреннему декодеру, и другую служебную информацию, известную специалистам в данной области техники. Тогда кодер кодирует S битов с помощью выбранного кода, приводя к закодированному блоку длиной P = S + R, где R обозначает количество избыточных битов. Специалистам в данной области техники должно быть понятно, что хотя варианты осуществления поясняются в терминах модели иерархического представления, это выполнено для педагогических целей, и различные иллюстративные логические блоки, модули, схемы и этапы алгоритма, описанные в связи с физическим уровнем, воплощают в виде электронного оборудования, программного обеспечения или комбинаций и того, и другого. Таким образом, например, внутренний кодер 304 может быть воплощен или выполнен с помощью процессора общего назначения, процессора цифровых сигналов (ПЦС), интегральной схемы прикладной ориентации (ИСПО), программируемой пользователем вентильной матрицы (ППВМ) или другого программируемого логического устройства, дискретного логического элемента или транзисторных логических схем, дискретных аппаратных компонентов или любой их комбинации, предназначенной для выполнения описанных здесь функций. Процессором общего назначения может быть микропроцессор, но в качестве альтернативы, процессором может быть любой обычный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть воплощен в виде комбинации вычислительных устройств, например, комбинации ПЦС и микропроцессора, множества микропроцессоров, одного или более микропроцессоров вместе с оперативной памятью ПЦС, или любой другой такой конфигурации.
В соответствии с одним вариантом осуществления настоящего изобретения, как иллюстрируется на фиг.4, битовый поток информации, подлежащей передаче 402, сначала кодируется внешним кодером 406, и затем кодированный поток подается во внутренний кодер (не показанный), постоянно находящийся на физическом уровне 408. Битовый поток информации, подлежащей передаче 402, который берет начало на более высоких уровнях, подается в буфер 404 передаваемых данных. Буфер передаваемых данных показан более подробно на фиг.5. На фиг.5, биты заполняют систематический участок 504 буфера 404 передаваемых данных (фиг.4) строка за строкой слева направо. Систематический участок 504 содержит k строк 508 длиной L. В одном варианте осуществления, как показано на фиг.5, длина L буфера совпадает с длиной кадра радиосвязи без служебных битов (например, КЦИК, для подсказки внутреннему декодеру, и битов хвоста для внутреннего кодера). Обращаясь опять к фиг.4, отметим, что как только систематический участок 504 (фиг.5) заполнен, внешний блочный кодер 406 активизируется для выполнения постолбцового кодирования битов в систематическом участке 504 (фиг.5), чтобы генерировать (n-k) дополнительных строк 510 (фиг.5) битов контроля четности. Эта постолбцовая операция выполняется столбец за столбцом для двоичного внешнего кода, то есть m = 1. Для недвоичного кода, то есть m > 1, каждые m смежных столбцов в строке обрабатываются, как m-битовый символ, m-битовые символы по верхним k строкам считываются внешним кодером, чтобы произвести n-k m-битовых символов, которые заполняют соответствующие нижние n-k строки этих столбцов.
В другом варианте осуществления длина L буфера равна количеству битов, которые несут кодированные внутренним кодом кадры, деленному на m, размер кода внешнего кодера. В этом варианте осуществления, первые m строк буфера передаваемых данных посылаются в первом кодированном внутренним кодом кадре, вторые m строк битов посылаются во втором кодированном внутренним кодом кадре до тех пор, пока не будет передан весь буфер. Обратимся вновь к фиг.4, на которой как только заполняется систематический участок 504 (фиг.5), внешний блочный кодер 406 активизируется для выполнения постолбцового кодирования битов в систематическом участке 504 (фиг.5), чтобы генерировать m(n-k) дополнительных строк 510 (фиг.5) битов контроля четности. Эта постолбцовая операция выполняется столбец за столбцом для двоичного внешнего кода, то есть m = 1. Для недвоичного кода, то есть m > 1, каждые m строк столбца формируют m-битовый символ. Символы k из верхних k m строк в столбце считываются внешним кодером, чтобы произвести (n-k) m-битовых символов, которые заполняют соответствующие нижние m(n-k) строк этого столбца.
В одном варианте осуществления внешний кодер содержит систематический код Рида-Соломона (Р-С). Затем информационное наполнение буфера 404 передаваемых данных подается на физический уровень 408. На физическом уровне 408 индивидуальные кадры кодируются внутренним кодером (не показан), в результате чего получают закодированные кадры. Структурой внутреннего декодера может быть, например, структура фиг.3. Систематические строки и строки контроля по четности буфера во время передачи могут чередоваться, чтобы снизить шанс стирания большого количества систематических строк, когда общая величина стирания внутреннего кода превышает возможность исправления внешнего кода. Кадры дополнительно обрабатываются в соответствии с выбранной схемой модуляции. В одном варианте осуществления обработка выполняется в соответствии со стандартом IS-2000. Обработанные кадры затем передаются по каналу 410 связи.
Передаваемые кадры принимаются на станции назначения и подаются на физический уровень 412. На физическом уровне 412 индивидуальные кадры демодулируются и подаются на внутренний декодер (не показан). В одном варианте осуществления внутренний декодер декодирует каждый кадр, и если декодирование успешно, выводит правильно декодированный кадр; или если декодирование неудачно, объявляет стирание. Успех или отказ при декодировании следует определять с высокой точностью. В одном варианте осуществления этого достигают включением длинного (например, 16-разрядного) контроля циклическим избыточным кодом (КЦИК) в кадре после внешнего кодирования и перед внутренним кодированием. Однако специалистам в данной области техники должно быть понятно, что можно использовать другие механизмы для индикации качества кадра. Включенный КЦИК, полученный из декодированного кадра, сравнивается с КЦИК, вычисленным на основании битов декодированного кадра, и если эти два КЦИК идентичны, декодирование объявляется успешным. Далее обработка на физическом уровне продолжается в соответствии с результатом решения внутреннего декодера.
Правильно декодированные кадры подаются в соответствующие строки приемного буфера 414. Если все систематические кадры k правильно декодированы внутренним декодером, систематические кадры из систематического участка 414(1) приемного буфера 414 переходят на верхний уровень (не показан) для дальнейшей обработки без декодирования внешним кодом.
Если внутренний декодер не может декодировать кадр, декодер объявляет стирание, и обеспечивает внешний блочный декодер 416 индикацией, что кадр отсутствует. Процесс продолжается до тех пор, пока не появится столько кадров контроля по четности, принятых правильно и проходящих в участок 414(2) контроля по четности приемного буфера 414, сколько имеется стертых систематических кадров. Приемное устройство останавливает прием любых остающихся кадров, и внешний декодер (не показанный) активизируется для восстановления стертых систематических кадров. Восстановленные систематические кадры проходят на верхний уровень.
Если общее количество правильно принятых кадров в приемном буфере 414 меньше, чем k, в соответствии с одним вариантом осуществления внешний декодер не активизируется, поскольку нет гарантии, что декодирование было успешным. Правильно принятые систематические кадры вместе с идентифицированием пропущенных битов проходят на более высокие уровни. В другом варианте осуществления приемное устройство использует декодированные биты из внутреннего декодера (которые являются ненадежными, как показано неудачными проверками КЦИК), чтобы восстановить биты для систематических битов. В соответствии с одним вариантом осуществления приемное устройство декодирует ненадежные биты из внутреннего декодера и находит наиболее вероятное ключевое слово. В другом варианте осуществления приемное устройство использует измерение качества сигнала стертых кадров в буфере, чтобы выбрать достаточно ошибочно принятых кадров с самым высоким соотношением сигнал/шум, для формирования подбуфера с k строками. Приемное устройство затем выполняет побитовую обработку (изменяя значение бита 0 на значение бита 1 и наоборот, одновременно в одном столбце) и проверяет, привела ли побитовая обработка к ключевому слову. В одном варианте осуществления побитовая обработка сначала выполняется на наименее достоверных битах и продолжается с битами в порядке увеличения надежности битов. Надежность бита может быть определена в соответствии с показателями декодирования внутренним кодом, например соотношением сигнал/шум и избирательностью по гармоникам промежуточной частоты в течение кадра, подобно показателю Ямамото (Yamamoto), частоте повторения ошибок повторно закодированных символов, повторно закодированного энергетического показателя, и другим показателям, известным специалистам в данной области техники, или комбинациям показателей. Если ключевое слово не найдено, побитовую обработку продолжают по всем оставшимся столбцам для всех ненадежных строк. Если ключевое слово не найдено, побитовую обработку продолжают с увеличенным количеством обрабатываемых битов (то есть изменяя 2 бита одновременно, затем 3 бита, до максимального количества битов), пока либо не будет найдено ключевое слово, либо все комбинации не будут исчерпаны. В другом варианте осуществления, чтобы проверить полный успех декодирования в этой ситуации, используется КЦИК из ненадежных строк. Кадры переходят на более высокие уровни, только если КЦИК всех строк совпадают; иначе, на более высокие уровни переходят только биты из достоверных строк.
Для улучшения надежности декодирования, в другом варианте осуществления, демодуляция и декодирование внутренним кодом выполняются больше чем для k правильно принятых кадров в буфере. В соответствии с еще одним вариантом осуществления демодуляция и декодирование внутренним кодом выполняются для всех кадров в буфере. В обоих вариантах осуществления декодирование внешним кодом выполняется на k (или km) строках с самым высоким качеством. Качество может быть определено в соответствии с показателями декодирования внутренним кодом, например соотношением сигнал/шум и избирательностью по гармоникам промежуточной частоты в течение кадра, подобно показателю Ямамото, частоте повторения ошибок повторно закодированных символов, повторно закодированного энергетического показателя и другим показателям, известным специалистам в данной области техники, или комбинациям показателей. Использование показателей качества для оценки качества подробно раскрыто в патенте США № 5751725 под названием "Способ и устройство для определения скорости принимаемых данных в системе