Двухкомпонентное встраивание сообщений в изображение

Иллюстрации

Показать все

Изобретение относится к области цифровой стеганографии или встраивания в цифровое изображение произвольных водяных знаков, и, конкретнее, к области прямого, без спектральных преобразований, обратимого встраивания произвольных водяных знаков посредством квантования и модификации амплитудных значений сигнала в условиях, когда оригинальное изображение (контейнер) не доступно, а передаваемое сообщение не известно на приемном конце - технология слепого встраивания. Технический результат заключается в повышении эффективности сокрытия сообщений. Предложен способ встраивания произвольного бинарного сообщения в цифровое изображение посредством изменения яркости пикселей изображения, содержащий этапы итеративного разделения шкалы яркости всего изображения на последовательные диапазоны, причем для каждого из диапазонов, полученных на одной из промежуточных итераций, определяют не изменяющуюся и варьируемую при встраивании сообщения компоненты изображения, и встраивания битов сообщения в пиксели варьируемой компоненты изображения посредством либо принятия значения яркости пикселя изображения в качестве пикселя, содержащего встраиваемое сообщение, либо зеркального отражения значения его яркости относительно центрального значения яркости для упомянутого диапазона. 3 н. и 7 з.п. ф-лы, 14 ил.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к области цифровой стеганографии или встраивания в цифровое изображение произвольных водяных знаков. Более конкретно, изобретение относится к области прямого, без спектральных преобразований, обратимого встраивания произвольных водяных знаков посредством квантования и модификации амплитудных значений сигнала в условиях, когда оригинальное изображение (контейнер) не доступно, а передаваемое сообщение не известно на приемном конце - технология слепого встраивания.

Терминология, используемая в данном документе

Установленный и неустановленный бит - альтернативные значения бита, описываемые вне зависимости от конкретной интерпретации; обычно 0 и 1, в изобретении - ±1 или 0 и 2 и пр.

Пиксель ("точка") - элемент изображения.

Отсчет яркости (отсчет, яркость) - значение яркости пикселя.

Преобразование изображения - получение нового изображения посредством изменения значений яркости его пикселей.

Представление изображения - результат преобразования изображения.

Контейнер - исходный цифровой сигнал, изображение, предназначенное для встраивания.

Контекст контейнера - наблюдаемая информация контейнера, формально представляемая некоторым множеством визуально воспринимаемых пикселей. Контекст контейнера (предметная область рассматриваемых изображений) не ограничивается.

Сообщение, водяной знак - встраиваемые данные, упорядоченная в виде бинарной матрицы последовательность произвольных кодов, предназначенная для передачи вместе с контекстом контейнера. Представляют собой бинарные коды (биты), содержащие встраиваемую информацию, которая кодируется в пикселях с варьируемой яркостью и дополняет наблюдаемую информацию (контекст контейнера).

Встраивание - внедрение, запоминание сообщения в контейнере. Модификация содержащихся в изображении кодов природной, встроенной шумовой и пр. неявной информации.

Стего-изображение - цифровое изображение, содержащее встроенное сообщение. Изображение с модифицированными кодами природной, встроенной шумовой и пр. неявной информации.

Амплитуда, амплитудное значение - синоним термина "яркость", которым удобно обозначать яркость формально вычисленного представления сигнала при употреблении вместе с термином "яркость", относящемуся к исходному изображению.

Шкала яркости - перечисленные по порядку последовательные неповторяющиеся значения яркости, которые могут встретиться в произвольном изображении или представлении изображения. Для обработки изображения шкала представляется в виде последовательности отождествляемых со значениями яркости (амплитуды) адресов массива ячеек памяти ЭВМ, в которые записываются сопоставляемые различным значениям яркостям величины, например, количество встречающихся пикселей данной яркости при вычислении гистограммы, или значения амплитуды при вычислении представления изображения в виде "гистограммного образа".

Диапазон яркости - некоторый диапазон значений яркости шкалы, ограниченный встречающимися в изображении (представлении изображения) значениями яркости (амплитуды).

Рабочий диапазон - рассматриваемый диапазон яркости изображения, ограниченный встречающимися в изображении минимальным и максимальным значениями яркости.

Вычисляемый (о диапазоне) - вычисляемый по гистограмме изображения посредством итеративного разделения рабочего диапазона на последовательности диапазонов, вложенных один в другой. В предусмотренном числе итераций диапазоны вычисляются одинаковыми для контейнера и стего-изображения независимо от сообщения.

Приближение изображения снизу (сверху) - представление изображения, в котором значения яркости пикселей заменены на минимальные (максимальные) значения яркости вычисляемых диапазонов, которым принадлежат значения яркости этих пикселей. Приближения снизу и сверху непосредственно для каждого пикселя изображения устанавливают граничные яркости диапазонов и сами диапазоны допустимого варьирования значений яркости пикселей или для краткости просто диапазоны допустимого варьирования яркости. При этом независимое друг от друга варьирование значений яркости пикселей изображения внутри установленных диапазонов допустимого варьирования яркости не влияет на результат вычисления приближений снизу и сверху по модифицируемому изображению.

Канал - "коридор" между приближениями изображения снизу и сверху (объединение по координатам диапазонов допустимого варьирования значений яркости пикселей). Более точно - множество изображений, по каждому из которых вычисляется рассматриваемая пара приближений изображения снизу и сверху. В ином, эквивалентном в рамках изобретения определении, канал - множество изображений, порождаемых независимым варьированием значений яркости пикселей внутри диапазонов допустимого варьирования яркости. Канал рассматривается как член иерархической последовательности (иерархии) вложенных друг в друга каналов. При выбранной паре приближений изображения снизу и сверху канал содержит всевозможные стего-изображения, порождаемые встраиванием в данный контейнер различных сообщений (но не исчерпывается этими стего-изображениями). Максимальный канал содержит все остальные каналы и порождается независимым варьированием значений пикселей изображения неграничной яркости внутри рабочего диапазона яркости.

Упаковка по яркости - преобразование изображения, заключающееся в замещении значений яркости пикселей последовательными номерами встречающихся в изображении значений шкалы яркости, например, значения яркости 1, 100, 110 по порядку замещаются своими номерами, например на 0, 1, 2.

Эквидистантная нормировка - линейное преобразование значений яркости пикселей изображения, например, для его визуализации (вывода на дисплей), которое сводится к умножению значений яркости упакованного изображения на коэффициент так, чтобы максимальное встречающееся значение яркости совпало с верхней границей максимального диапазона, который определяется числом бит, предусмотренных в ЭВМ для ввода/вывода изображения. Если при "упаковке" яркости по порядку замещаются своими номерами, например яркости 1, 100, 110 замещаются на 0, 1, 2, то при "эквидистантной нормировке" упакованные яркости умножаются на коэффициент, например, на 127.5 так, чтобы максимальная яркость совпала с максимально возможным яркостным значением 255.

Стандартные преобразования - упаковка, линейное растяжение (посредством умножения значений яркости на коэффициент, превышающий 1), эквидистантная нормировка и др. линейные и нелинейные преобразования яркостных значений пикселей изображения без нарушения их порядка следования.

Инвариантный (по умолчанию) - сохраняющийся при стандартных преобразованиях.

Арифметическое преобразование (амплитудного значения) - деление нечетного значения нацело на два и удвоение четного значения, предварительно поделенного на четыре. Применение именно этого преобразования для инвариантного представления изображения обосновано, например, в М.В. Харинов, В.Л. Горохов Псевдотроичная система счисления и анализ изображений // Известия ВУЗов России. Радиоэлектроника. / Вып. 2, - СПб., 2003. - С. 49-53.

Изоморфное представление изображения, образа - такое представление изображения, при котором между значениями яркости пикселей сохраняются имевшиеся в исходном изображении соотношения "меньше", "равно", "больше". Например, стандартные преобразования порождают изоморфные образы.

Гомоморфное представление изображения, образ - представление изображения, при получении которого допускается переход неравных яркостей в равные. Например, арифметическое преобразование порождает гомоморфные образы.

Уровень техники

Решения, связанные со встраиванием в контейнер некоторого сообщения при передаче по общедоступному каналу связи, условно подразделяются на задачи стеганографии и задачи встраивания в контейнер водяного знака. Под стеганографией понимается скрытное встраивание в контейнер сообщения относительно большого объема, которое может являться частью контейнера, зависимым или независимым образом дополнять контекст контейнера для ограничения несанкционированного доступа к сообщению, дублировать контекст на случай помех, снабжать его сопроводительной информацией и пр. Под встраиванием водяного знака обычно понимается скрытное встраивание заранее известного распределенного или повторяющегося сообщения относительно малого объема для идентификации подлинности контекста контейнера или источника стего-изображения, защиты авторских прав и пр., а также для целей стеганографии, достигаемых в рамках ограниченного объема сообщения.

При ограниченном требуемом объеме сообщения к встраиванию водяных знаков предъявляют наиболее жесткие требования, среди которых выделяют (см. B. Chen and G. W. Wornell, "Digital Watermarking and Information Embedding using Dither Modulation", IEEE Signal Processing Society 1998 Workshop on Multimedia Signal Processing December 7-9, 1998, Los Angeles, California, USA Electronic Proceedings May 1998 [Chen98], и B. Chen and G. W. Wornell, "Quantization index modulation: A class of provably good methods of digital watermarking and information embedding", IEEE Transactions on Information Theory Vol. 47, pp. 1423-1443, May 2001, [Chen01]) следующие три основных:

- максимальная скорость встраивания (и извлечения) сообщения;

- метрическая близость стего-изображения и исходного контейнера, например, по среднеквадратичному отклонению;

- максимальная робастность встраивания сообщения.

Перечисленные постановочные требования справедливо считаются противоречивыми. Для преодоления сопутствующих недостатков необходим анализ целевых установок, который состоит в следующем.

При современном резком возрастании вычислительных ресурсов ЭВМ проблема недостаточной скорости встраивания сообщений возникает из-за недостаточно эффективной организации запоминания данных и многократного повторения вычислений с различными параметрами, из-за прямого перебора вариантов заведомо известных сообщений в процессе корреляционного анализа или перебора способов встраивания ([Chen98,Chen01]), а также прочих причин, которые для настоящего изобретения не являются актуальными.

Требование метрической близости стего-изображения и исходного контейнера является основным источником противоречий, поскольку:

- логически не согласуется с предположением о контейнере, который не доступен на приемном конце;

- ограничивает возможный объем сообщения;

- препятствует встраиванию сообщения одновременно с упрощением стего-изображения за счет сокращения числа градаций яркости (сопутствующее изменение гистограммы влечет большое поточечное среднеквадратичное отклонение);

- ограничивает возможности инвариантного встраивания сообщения независимо от предусмотренных преобразований;

- препятствует робастному встраиванию сообщения с периодическими повторениями по координатам;

где, в отличие от инвариантности (сохранения в точном смысле), под робастностью (устойчивостью к возможным случайным или преднамеренным помехам при передаче) понимается неполное, неточное сохранение сообщения, которое исследуется на примерах заранее известных искажений в виде линейных преобразований, JPEG-компрессии, добавления шумов и пр.

Кажется очевидным, что для эффективного сокрытия сообщений необходимо уметь формально разделять сигнал, в зависимости от контекста, на видимую и незаметную компоненты и затем сохранять видимую компоненту в процессе встраивания сообщения. Тем не менее, в известных решениях необходимость подобного разделения сигнала с последующим сохранением видимой компоненты осознается недостаточно, формализуется недостаточно просто и достигается неполной эвристической реализацией либо того, либо другого.

Для повышения эффективности сокрытия сообщений за счет учета контекста контейнера развивают способы распределения встроенных кодов по текстурным участкам изображения с повышенной концентрацией яркостных перепадов, на которых внедрение информации сообщения оказывается незаметным (трава, волосы, шумовые искажения и пр.).

Тенденция развития способов прямого встраивания сообщения с учетом контекста контейнера иллюстрируется на Фиг.1.

На Фиг.1 крайним слева изображен контейнер в виде стандартного изображения "Лена" (крайнее слева) и схемы a), b), c) встраивания информации, на которых белые поля обозначают варьируемые пиксели, в которых допускается модификация, т.е. в которые встраиваются коды сообщения. Таким образом, решения основаны на покоординатном распределении встроенных кодов сообщения по результатам анализа контейнера: крайний слева - контейнер; рядом - схемы координат встроенных кодов при простейшем LSB-методе (a), поблочном встраивании кодов (b) и при поточечном встраивании кодов по текстурным участкам (c).

В простейшем LSB методе встраивание кодов сообщения выполняют в фиксированное число младших бит независимо от контекста контейнера, причем встраивание прекращают, когда сообщение оказывается исчерпанным (см. В.Г. Грибунин, И.Н. Оков и И.В. Туринцев. Цифровая стеганография. Москва, СОЛОН-Пресс, 2002, 258 с. (аналитический обзор) [Гри02]). В методах (см. Гика С.Н. Анализ эффективности методов сокрытия информации в графических файлах // 32-ая Санкт-Петербургская научно-техническая конференция студентов, аспирантов и молодых ученых. Тезисы докладов. - СПб.: 2000. - 75с. [Ги00], Hioki Hirohisa A data embedding method using BPCS principle with new complexity measures // Proc. Of Pacific Rim Workshop on Digital Steganography 2002, Jan. 2002. P. 30-47 [HiHi02]) встраивание кодов сообщения выполняют по предварительно вычисленным участкам текстур, которые аппроксимируются блоками координат встраивания простой формы.

Перечисленные работы отражают тенденцию современных решений к адаптивному сокрытию сообщений с учетом контекста контейнера. Однако возможности обработки при этом ограничиваются преимущественно геометрически адаптивным встраиванием данных, которое выполняется по текстурным яркостным и цветовым сегментам с повышенной концентрацией перепадов яркостей цветовых компонент.

Если скрытое сообщение при приеме предполагается не известным, то оно обычно сопровождается сопутствующей управляющей информацией о размещении встроенных данных. Управляющая информация не адаптивно размещается по фиксированным координатам предусмотренного фрагмента сигнала независимо от контекста контейнера, как в простейшем "LSB"-методе. Сообщение встраивается в некоторые блоки контейнера для снижения объема управляющей информации, которая задается, например, списком координат блоков. При этом поблочная запись сообщения ограничивает точность учета геометрии рисунка контейнера и снижает эффект сокрытия кодов сообщения по участкам текстур. Если сообщение заведомо известно и обнаруживается при приеме посредством стандартных методов корреляционного анализа, то можно обойтись без управляющей информации, применить поточечное встраивание, и при внедрении сообщения ограничиться выделением текстур (схема (c) на Фиг.1). Однако сама по себе задача эффективного выделения текстур на произвольных изображениях является проблематичной.

Таким образом, для известных способов слепого встраивания водяных знаков адаптивно к контейнеру характерно, что контекст контейнера учитывают только геометрическим размещением кодов сообщения по координатам при фиксированных диапазонах модификации яркости, величина которых устанавливается кратной степени 2. Поскольку результаты вычисления по контейнеру координат встроенных кодов сообщения не воспроизводятся при аналогичной обработке стего-изображения (встроенное сообщение влияет на расчет текстурных сегментов), для успешного извлечения сообщения в контейнер независимо от контекста встраиваются сопутствующие сведения, которые могут также независимо от контейнера задаваться алгоритмически и в общей схеме встраивания и извлечения сообщений, в частности водяных знаков, фигурируют в качестве атрибутивного ключа ([Гри02], V.I. Gorodetsky, V.I. Samoilov "Simulation-Based Exploration of SVD-Based Technique for Hidden Communication by Image Steganography Channel", Proc. of the Second Int. Workshop on Mathematical Methods, Models, and Architectures for ComputerNetwork Security MMM-ACNS, ISSN: 0302-9743, ISBN: 3-540-40797-9, St. Petersburg: Springer-Verlag-Berlin-Heidelberg, pp. 349-359, Sep. 2003 [Гор03]), как иллюстрируется Фиг.2. Пунктиром на данном чертеже показаны данные, которые могут использоваться на входе подсхемы извлечения сообщения, но не всегда обязательны.

Если исключить из схемы все необязательные элементы, она остается перегруженной запрашиваемыми данными на входе и недостаточно конкретной на выходе. Помимо входного ключа, который "навязывает" модификацию контейнера независимо от маскирующего контекста изображения, на выходе общей схемы при извлечении сообщения не формализуют или недостаточно формализуют извлечение информации исходного сигнала (контейнера), которая сохраняется после встраивания кодов сообщения. При этом смешивают понятия неизвестного и недоступного контейнера.

В отсутствие независящего от контейнера ключа недоступность самого контейнера при извлечении сообщения является главным препятствием для точного вычисления координат размещения встроенных кодов, которое преодолевается в RDH-методе (Reversible Data Hiding) обратимого встраивания данных в изображение или аудиосигнал (см. Mehmet U. Celik, Gaurav Sharma, A. Murat Tekalp, Eli Saber. Reversible Data Hiding. IEEE Proceedings of the International Conference on Image Processing (ICIP), New York, 23 September 2002. P. 157-160 [Meh02], Fridrich J., Goljan M., Du R. Lossless data embedding - new paradigm in digital watermarking. EURASIP Journ. Appl. Sig. Proc., vol. 02, Feb 2002. P. 185-196 [Fri02]). В указанном методе встраивание сообщения обеспечивается за счет частичного сжатия видеоданных, содержащихся в младших битах исходного представления сигнала, что поясняется схемой на Фиг.3. При этом в оригинальном RDH-методе сначала извлекается сообщение, а затем восстанавливается контейнер. Однако, если в качестве сообщения встраивать списки координат встраивания кодов, то для извлечения сообщения окажется необходимым предварительное восстановление контейнера.

В схеме RDH-метода под преобразованным контейнером понимается представление исходного сигнала с некоторым количеством младших бит, освобождаемых благодаря упаковке информации младших разрядов. Освободившийся объем используется для встраивания сообщения, что позволяет в процессе передачи без искажений сохранить как контейнер, так и встроенное сообщение.

Однако в силу ограниченного коэффициента сжатия и относительно малого объема встраиваемых кодов (менее 10%) от объема контейнера, а также из-за неустойчивости к искажениям в процессе передачи стего-изображения RDH-метод оказывается недостаточно эффективным при встраивании сообщений относительно большого объема и имеет в задачах стеганографии ограниченное практическое значение.

Сущность изобретения

Настоящее изобретение относится к способу обратимого слепого идемпотентного (за одну итерацию) встраивания стеганографических сообщений или произвольных водяных знаков без использования ключа в пиксели с вычисляемыми диапазонами яркости переменной величины, в том числе - двухкомпонентное встраивание сообщения в инвариантный сегментированный контейнер и добавленный шумовой сигнал.

Согласно настоящему изобретению при двухкомпонентном встраивании сообщение внедряется в пиксели контейнера с нефиксированными значениями яркости, а второе сообщение накладывается на контекст стего-изображения со встроенным первым сообщением.

Решение предназначено для записи и извлечения произвольных кодов информации (видеоданных) и, в зависимости условий применения, трактуется как встраивание стеганографического сообщения или произвольного водяного знака относительно большого объема в контейнер. Вопреки сложившимся стереотипам полагается, что незаметность встраивания, сама по себе, не определяет сущность и особенности алгоритмов, а, скорее, является ограничением на выбор настроечных параметров встраивания в процессе применения в режиме реального времени (on-line). Вне зависимости от условия визуальной незаметности встраивания сообщения базовая задача стеганографии или задача встраивания произвольного сообщения не меняется по существу и включает, прежде всего, обратимое встраивание кодов сообщения адаптивно к контейнеру.

В настоящем изобретении разделяются понятия неизвестного и недоступного контейнера, полагая контейнер при приеме известным, но в огрубленном, упрощенном виде. Для формализации понятия "незаметного встраивания" вместо метрической близости используется предположение, что наблюдаемый после встраивания сообщения контекст контейнера может быть просто вычислен независимо от сообщения и представлен в виде огрубленного нового изображения (образа), получаемого по заранее определенному алгоритму сегментации контейнера или стего-изображения. Поскольку указанный алгоритм сегментации относится к алгоритмам улучшения изображения со снижением числа градаций яркости (см. Прэтт У. Цифровая обработка изображений: В 2х кн. М.: Мир, 1982. 714 с. [Прэтт]), то реальное улучшение визуального восприятия рассматривается вместо принятой в стеганографии формальной оценки ухудшения качества стего-изображения по среднеквадратичному отклонению от контейнера.

Поскольку на передающем конце перед встраиванием сообщения вычисляется тот же самый упрощенный контейнер, что и на принимающем конце, передающая сторона имеет возможность независимо от сообщения заранее оценить степень сохранения контекста контейнера для целей автоматизации обработки. Для управления сокрытием кодов сообщения в режиме реального времени предусматривается, помимо стандартного уменьшения объема сообщения, максимальное распределение встраиваемых кодов по полю изображения.

При исключении требования метрической близости контейнера и стего-изображения из числа существенных требований к встраиванию сообщения с сохранением контекста контейнера имеется возможность разделить нестрогое понятие робастности на точное понятие инвариантности (строгое сохранение) встроенного сообщения при линейных и нелинейных стандартных преобразованиях стего-изображения (упаковки, линейного преобразования, эквидистантной нормировки по яркости и пр.) и обычную устойчивость сообщения относительно случайных или технологических искажений стего-изображения (зашумления, JPEG-преобразования), а также преднамеренных внешних атак. В задачах с ограниченным объемом сообщения достигается устойчивость относительно искажений контейнера при передаче за счет периодического повторения кодов встраиваемого сообщения заранее известного на приемном конце размера в границах изображения при встраивании, а затем суммирования извлеченных соответствующих кодов различных копий при приеме сообщения.

Биты сообщения вставляются, аналогично LSB-методу, по заранее определенному закону (с начала изображения, с конца изображения, с использованием генератора случайных чисел и пр.), однако, с пропусками, зависящими от контекста контейнера.

При встраивании сообщения в стего-изображение с одновременным снижением его числа яркостных градаций по сравнению с исходным контейнером, увеличиваются перепады между яркостями, которыми кодируется сообщение. Благодаря такому кодированию сообщения большими перепадами яркости и, в результате, увеличения амплитуды сигнала сообщения повышается робастность встраивания сообщения.

Инвариантность встраивания сообщения относительно стандартных преобразований стего-изображения обеспечивается тем, что перед внедрением сообщения контейнер независимо от стандартных преобразований преобразуется на передающем конце по определенному алгоритму в некоторое инвариантное представление, а перед извлечением сообщения на приемном конце по тому же алгоритму стего-изображение преобразуется для восстановления сообщения, в случае предусмотренных преобразований при передаче.

Используя инвариантное встраивание сообщения одновременно со снижением числа яркостных градаций, возможно создание дополнительной шумовой компоненты встраивания сообщения за счет обратимого добавления шума к стего-изображению с первоначальным сообщением, закодированным в ограниченном числе градаций яркости, где под обратимым добавлением шума понимается внесение шума с возможностью подавления. Основной целью создания такой дополнительной компоненты встраивания сообщений является повышение суммарного объема встраиваемых кодов. Попутно с увеличением общего объема встраивания кодов пары сообщений достигается эффект маскировки одного сообщения другим.

Таким образом, при прямом встраивании кодов сообщения решается проблема стеганографии (скрытного встраивания сообщения относительно большого объема), которая объединяется с проблемой робастного сокрытия в изображении произвольного водяного знака.

Для управления встраиванием предусматривается автоматизированная настройка параметров в режиме реального времени. В целом оптимальное встраивание достигается в условиях конкретной задачи как разумный компромисс между объемом встроенного сообщения, с одной стороны, и условиями незаметности и робастности встраивания, с другой стороны.

Кодирование пары сообщений в пикселях с одними и теми же координатами или, иными словами, одновременное кодирование независимых сообщений в яркостных значениях одних и тех же обеспечивает повышение объема встроенных кодов сообщения. Для повышения общего объема встраиваемых кодов предлагается способ двухкомпонентного встраивания произвольных водяных знаков по независимым каналу и шумовой компоненте. При этом, помимо робастности встраивания сообщения за счет инвариантности встраивания в сочетании со снижением числа градаций, обеспечивается двухкомпонентное сокрытие независимых сообщений посредством обратимого добавления в сигнал шума, который вносится в изображение с возможностью подавления при приеме.

Общий объем кодов геометрически повторяющегося сообщения (т.е. повторяющегося одного и того же встроенного сообщения в местоположениях изображения с отличающимися координатами) определяется контекстом контейнера, но само сообщение произвольно. Стего-изображение помимо кодов самого сообщения не содержит сведений ни о сообщении, ни об исходном контейнере, как в LSB-методе. Хотя контейнер не требуется для извлечения сообщения на приемном конце, однако, исходный сигнал (или, при инвариантном встраивании, его образ) в сегментированном виде известен при передаче и приеме, поскольку сохраняется в процессе встраивания сообщения. Сообщение на приемном конце считается не известным. При приеме сообщения диапазоны модификации яркостей не фиксируются одинаковыми для различных координат, и не требуется специального указания координат встраивания сообщения, поскольку координаты пикселей с варьируемой яркостью и диапазоны встраивания сообщения вычисляются по полученному стего-сигналу точно так же, как и по исходному контейнеру. Корреляционный анализ не предполагается.

Краткое описание чертежей

Фиг.1 иллюстрирует известные решения при покоординатном распределении встроенных кодов сообщения по результатам анализа контейнера;

Фиг.2 иллюстрирует общую схему встраивания и извлечения сообщений для стеганографии и встраивания водяных знаков;

Фиг.3 иллюстрирует схему обратимого встраивания данных в RDH-методе;

Фиг.4 иллюстрирует схему обратимого встраивания данных согласно изобретению;

Фиг.5 иллюстрирует адаптивное встраивание кодов сообщения по координатам и диапазонам яркости, вычисленным согласно изобретению в результате анализа контейнера;

Фиг.6 иллюстрирует обратимое встраивание сообщения на примере одномерного фрагмента изображения;

Фиг.7 иллюстрирует пример инвариантного изоморфного представления изображения, полученный согласно изобретению;

Фиг.8 иллюстрирует запоминание иерархии разбиений дискретных отрезков;

Фиг.9 иллюстрирует контейнер и его изоморфный гистограммный образ, а также оригинальное и преобразованное сообщение;

Фиг.10 иллюстрирует результат встраивания сообщения в контейнер;

Фиг.11 иллюстрирует инвариантное встраивание сообщения;

Фиг.12 иллюстрирует гистограмму стего-изображения с картой, встроенной в гистограммный образ, и добавленным шумом;

Фиг.13 иллюстрирует встраивание сообщений по двум независимым каналам;

Фиг.14 демонстрирует эффект использования геометрического повторения кодов сообщения для подавления искажений при передаче стего-изображения;

Подробное описание изобретения

Предполагается, что человек, как более совершенная вычислительная система, способен извлечь сохранившуюся информацию контейнера не хуже, чем это может быть смоделировано на ЭВМ. Визуально наблюдаемую компоненту контейнера вычисляют как сигнал контекста, который сохраняется после встраивания сообщения. Маскировка достигается за счет перемежения пикселей, содержащих сообщение, с пикселями наблюдаемой компоненты сигнала и зависит от амплитуды сигнала сообщения, а также от частоты сигнала сообщения, которая может повышаться за счет внесения в сообщение высокочастотной составляющей, например, за счет добавления в сигнал сообщения высокочастотной компоненты или за счет формального введения периодического колебания "нулевого" уровня отсчета сигнала сообщения.

На Фиг.4 в упрощенном виде представлена схема предлагаемого решения.

Вместо применяемой в RDH-методе процедуры сжатия информации используется сегментация изображения. Благодаря сегментации и ослаблению условия полного восстановления информации контейнера удается увеличить объем встраиваемых кодов сообщения.

В результате сегментации контейнер необратимым образом, но без существенного ущерба для зрительного восприятия, преобразуется в упрощенное представление изображения - сегментированный сигнал (контейнер или стего-изображение) с ограниченным числом градаций яркости, который задается вычисляемым множеством значений яркостей пикселей с неизменяемым значением яркости, и такой сигнал сохраняется при встраивании сообщения. Пиксели с не меняющейся при встраивании сообщения яркостью являются экстремальными в определенным образом вычисленных диапазонах яркости и позволяют определить уровень отсчета значений яркости, а также пределы изменения яркости остальных (модифицируемых) пикселей с промежуточными значениями яркости, изменением яркости которых кодируется сообщение. Таким образом, значения яркости пикселей сегментированного контейнера, равно как и сегментированного стего-изображения, позволяют определить уровень отсчета для модификации яркостных значений, используемых для кодирования сообщения. В отличие от RDH-метода, коды сообщения размещаются адаптивно к контейнеру, поскольку записываются в стего-изображении в пикселях с переменной (варьируемой, модифицируемой) яркостью, которые перемежаются с пикселями контейнера, имеющими неизменяемую яркость. Робастность, устойчивость сообщения к возможным искажениям стего-изображения обеспечивается за счет геометрического повторения кодов сообщения в границах контейнера.

Фиг.5 приведена для сравнения предлагаемого решения с известными и иллюстрирует встраивание кодов сообщения в изобретении. Крайним слева на Фиг.5 изображен контейнер, рядом с контейнером - приближение контейнера снизу, следующее - его приближение сверху и крайнее справа - представление емкости контейнера, которое определяется разностью приближений сверху и снизу. На основе сравнения градаций яркости представления емкости друг с другом можно наглядно оценить ширину диапазона допустимого варьирования яркости в сигнале для каждого пикселя. "Допустимое варьирование" означает, что модификация изображения за счет независимого изменения яркостей пикселей строго внутри диапазонов допустимого варьирования яркости на вычисление этих диапазонов не влияет. В отличие от известных решений обеспечивается адаптивное встраивание кодов сообщения не только по координатам, но и по диапазонам яркости без использования неадаптивной управляющей информации или перебора вариантов в процессе корреляционного анализа. Благодаря снятию условия LSB-метода о встраивании кодов сообщения в заранее заданное число битов изображения (т.е., в терминах изобретения, в фиксированные диапазоны яркости по величине кратные степени 2) снижается доступность сообщения для стегоанализа. Маскировка сообщения достигается не за счет ограничения изменений яркости пикселей контейнера, а, главным образом, за счет перемежения на изображении пикселей с встроенными данными сообщения с пикселями с неизмененными данными контейнера и за счет добавления в сообщение высокочастотного несущего сигнала.

Наряду со встраиванием битов сообщения в меняющиеся по координатам диапазоны допустимого варьирования яркости контейнера, предложенное решение не требует неадаптивного (не зависящего от контейнера) указания координат встраиваемых блоков данных и позволяет избежать поблочной записи согласно известному методу, что усиливает преимущества по сравнению с известными решениями.

Управление встраиванием сообщения выполняется в режиме реального времени посредством задания величин вычисляемых диапазонов гистограммы (и, как следствие, диапазонов допустимого варьирования значений яркости пикселей изображения) с помощью чисел Мерсенна в виде уменьшенных на единицу степеней двойки (т.е. 2n-1, например, 1, 3, 7, 15, 31, 63 и т.п.), с одновременным изменением соотношения числа пикселей с сохраняемыми и варьируемыми значениями яркости. С увеличением указанного числа Мерсенна (т.е. увеличением числа диапазонов яркости) уменьшается величина каждого диапазона допустимого варьирования яркости. При этом, чем больше число диапазонов, тем больше будет фиксировано пикселей с граничными значениями яркости. Так как эти пиксели включены в наблюдаемую картину и перемежаются с варьируемыми пикселями, то визуально степень сокрытия сообщения возрастает.

Таким образом, для различных значений чисел Мерсенна вычисляются вариант набора допустимых диапазонов варьирования яркости, и в каждом варианте диапазоны допустимого варьирования яркости при записи сообщения меняются от пикселя к пикселю, так как на изображении рядом встречаются пиксели из различных диапазонов яркости.

Величины диапазонов варьирования яркостей, в общем случае, не совпадают со степенями 2. Например, яркостный диапазон 0-4 содержит 5 целочисленных значений яркости. Два из них являются граничными и, если пиксель имеет яркость, равную одному из этих значений, он является неизменяемым. Три других, а именно значения 1-3, могут использоваться для кодирования сообщения. Однако для кодирования двух битов встраиваемого сообщения необходимо не менее 4 внутренних значений указанного диапазона помимо граничных значений, поэтому при наличии только трех упомянутых неграничных значений в диапазоне 0-4 можно закодировать только один бит встраиваемого сообщения. Следовательно, для кодирования двух битов встраиваемого сообщения число значений яркости вместе с граничными должно быть не менее 6 в пределах одного диапазона варьирования яркости.

Хотя в диапазонах допустимого варьирования яркости с количеством значений яркости, включая граничные, превышающем 5, можно кодировать несколько (т.е. более одного) битов сообщения на пиксель изображения, настоящее изобретение ограничивается встраиванием единственного бита на каждый модифицируемый пиксель во избежание снижения робастности и скремблирования сообщения, которые особенно критичны при переменных диапазонах модификации яркости по полю изображения.

Фиг.6 иллюстрирует исходную идею изобретения. На Фиг.6 сплошной темной линией для изображения (контейнера) показана зависимость яркости u от координаты x.

Суть идеи выполнения обратимого встраивания без использования ключа для нахождения координат встраивания кодов сообщения сводится к построению "коридора" допустимой модификации (на чертеже ограничен пунктирными линиями) исходного изображения, который, с одной стороны, вычисляется по изображению, а, с другой стороны, от варьирования яркостей пикселей изображения в заданных пределах не зависит. Для наглядности изображени