Способ, устройство и система для оптической связи

Иллюстрации

Показать все

Изобретение относится к технике связи и может использоваться для мультиплексирования/демультиплексирования субскоростных потоков. Технический результат состоит в мультиплексировании низкоскоростных сигналов с классом скорости, подходящим для передачи. Для этого система оптической связи включает в себя оптический передающий блок и оптический приемный блок, соединенные посредством оптических волокон, при этом оптический передающий блок используется, чтобы введенные электрические сигналы преобразовывать в оптические сигналы и передавать оптические сигналы на оптический приемный блок по оптическому волокну, и оптический приемный блок используется, чтобы принятые оптические сигналы преобразовывать в электрические сигналы и выводить электрические сигналы. В оптических сигналах, переносимых оптическим волокном, скорость передачи данных, по меньшей мере, одной длины волны составляет приблизительно 5 Гбит/с. В состав могут быть включены также один или несколько оптических усилителей между оптическим передающим блоком и оптическим приемным блоком. 4 н. и 27 з.п. ф-лы, 14 ил.

Реферат

Изобретение относится к технологиям оптической связи, более конкретно к способу передачи данных, устройству мультиплексирования/демультиплексирования и системе оптической связи, использующей устройство, применимые для городской вычислительной сети (Metropolitan Area Network, MAN).

УРОВЕНЬ ТЕХНИКИ

Синхронная Цифровая Иерархия (Synchronous Digital Hierarchy, стандарт SDH) является иерархией цифровой связи в системах волоконно-оптической связи и международным стандартом, официально рекомендованным Сектором Стандартизации Электросвязи Международного Союза Электросвязи (International Telecommunication Union Telecommunication Standardization Sector, ITU-T) в 1988 г. SDH является и принципом организации сети, и способом мультиплексирования. На основании SDH может быть создана гибкая, надежная, дистанционно-управляемая национальная и даже всемирная сеть передачи данных. Эта сеть может упрощать предоставление новых коммуникаций, пока создается совместимое друг с другом оборудование, производимое различными изготовителями.

Для предшествующих систем оптической связи не имелось унифицированного международного стандарта, и, соответственно, различные страны разработали различные системы, которые называются Плезиосинхронной Цифровой Иерархической Системой (Plesiochronous Digital Hierarchy, PDH). В результате скорость передачи сигналов, тип линейных кодов, стандарты и архитектуры интерфейса, принятые различными странами, являются различными. И является невозможным обеспечить совместимость устройств, произведенных различными изготовителями, или непосредственное объединение их в сеть на оптических линиях, что приводит к появлению технических проблем и повышенной стоимости.

Стандарт SDH появляется, чтобы преодолеть недостатки PDH с тем, чтобы было возможным лучшим образом конфигурировать системы и устройства, необходимые для будущих сетей связи. SDH имеет следующие основные признаки:

1. SDH унифицирует скорость передачи сигналов для различных уровней во всемирной иерархии. Скоростью, определяемой согласно SDH, является N*l55,520 Мбит/с, причем Мбит/с представляет мегабиты, передаваемые в секунду, бит является мерой информации, и N=1, 4, 16, 64.... Наиболее общие форматы передачи включают в себя STM-1 STM-4, STM-16, и STM-64, соответствующие классам скорости передачи 155 Мбит/с, 622 Мбит/с, 2,5 Гбит/с, и 10 Гбит/с, соответственно, причем Гбит/с представляет гигабиты, передаваемые в секунду.

2. SDH упрощает способы мультиплексирования и демультиплексирования. SDH способна непосредственно мультиплексировать сигнал со скоростью передачи 2 Мбит/с в сигнал со скоростью передачи 140 Мбит/с или непосредственно демультиплексировать сигнал со скоростью передачи 140 Мбит/с без демультиплексирования от класса к классу. Таким образом, методика мультиплексирования и демультиплексирования упрощается, что упрощает загрузку или разгрузку сигналов с различными скоростями на линии передачи, повышает приспособляемость и надежность сети связи.

3. SDH определяет глобальный универсальный стандарт оптического интерфейса, так что устройства, произведенные различными изготовителями, могут осуществлять межсетевое взаимодействие друг с другом в соответствии с унифицированным стандартом интерфейса, что снижает стоимость сети.

4. В предназначенном для передачи формате кадра резервируется больше избыточных битов для администрирования и управления сетью, что значительно расширяет возможность сети в обнаружении отказов и мониторинге характеристик передачи.

SDH зачастую используется в волоконно-оптических сетях передачи данных и для того, чтобы экономить ресурсы оптического волокна и снижать стоимости, SDH обычно используется в комбинации с системой мультиплексирования с разделением по длине волны (Wavelength Division Multiplexing, WDM). Другими словами, множество одночастотных оптических сигналов, обеспечивающих связь, объединяются посредством системы WDM для передачи по одному оптическому волокну.

Как показано на Фиг.1, в типичной системе WDM множество сигналов принимают через множество блоков оптических транспондеров (Optical Transponder Unit, OTU). Каждый сигнал посредством OTU преобразовывается в одночастотную оптическую волну и пересылается в формате SDH или другом формате; одночастотная оптическая волна после преобразования входит от каждого OTU в волновой мультиплексор/демультиплексор для объединения волн и передается через оптическое волокно на волновой мультиплексор/демультиплексор в узле назначения; волновой мультиплексор/демультиплексор узла назначения выполняет разделение волн для принятого многочастотного оптического сигнала и получает множество одночастотных оптических сигналов; каждый полученный одночастотный оптический сигнал затем преобразовывается посредством OTU в электрический сигнал формата SDH или другого формата передачи и после обработки выводится на устройство на клиентской стороне. Оптические усилители (Optical Amplifiers, OA) могут быть включены в конфигурацию на линии передачи, чтобы усиливать оптический сигнал.

Посредством такого способа мультиплексирования одночастотных оптических сигналов на одно оптическое волокно для передачи система WDM осуществляет передачу данных с большой пропускной способностью. Именно поэтому методика WDM часто принимается в создании сетевых магистралей глобальных или городских сетей. В некоторых больших городах дальность передачи городской сети будет доходить до 300 километров или около этого. В настоящее время в магистрали WDM для городской сети классом скорости передачи для оптического сигнала отдельной длины волны является обычно 2,5 Гбит/с или 10 Гбит/с.

В практических применениях, однако, в настоящее время общепринятая скорость передачи одночастотного оптического сигнала, то есть класс скорости передачи 2,5 Гбит/с или 10 Гбит/с, не является оптимальным выбором для скорости передачи в городской сети связи.

Основные причины, приводящие к этой ситуации, включают в себя: с одной стороны, хотя допустимая величина хроматической дисперсии для оптического сигнала с классом скорости передачи 2,5 Мбит/с является большой, требование к отношению оптический сигнал/шум (Optical Signal Noise Ratio, OSNR) для него является низким, а дальность передачи для него является протяженной, все же имеются недостатки низкой скорости передачи и низкой эффективности использования длины волны; с другой стороны, хотя эффективность использования длины волны оптического сигнала с классом скорости передачи 10 Мбит/с является высокой, допустимая величина хроматической дисперсии для него является слишком низкая, а его требования к OSNR являются жесткими.

Например, когда используется оптическое волокно стандарта G.652, в случае использования сигнала с классом скорости передачи 2,5 Гбит/с, требованием приемника к OSNR является приблизительно 20 дБ, и дальность передачи, ограничиваемой хроматической дисперсией, является приблизительно 960 километров. В случае использования связи с классом скорости передачи 10 Гбит/с требованием приемника к ONSR является приблизительно 26 дБ, и ограничиваемой дисперсией дальность передачи является приблизительно 60 километров. Таким образом, видно, что система оптической связи, передающая сигналы на этих двух скоростях, не подходит для узлов городской сети, для которой дальность передачи меньше 300 километров.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение предназначено обеспечить способ передачи оптического сигнала, применимый для городских вычислительных сетей (Metropolitan Area Networks, MAN), и устройство для мультиплексирования/демультиплексирования множества коммуникационных сигналов в сети оптической связи с тем, чтобы мультиплексировать множество относительно низкоскоростных сигналов в сигналы с классом скорости, подходящим для передачи в MAN, чтобы удовлетворять требованию передачи данных в MAN.

Кроме того, настоящее изобретение предназначено, чтобы обеспечить систему оптической связи, которая способна использовать существующие волоконно-оптические сети, чтобы удовлетворять требованиям передачи данных в MAN.

Способ передачи данных содержит: при передаче данных - мультиплексирование и преобразование нескольких низкоскоростных коммуникационных сигналов в оптический сигнал со скоростью передачи приблизительно 5 Гбит/с и передачу оптического сигнала на узел назначения; при приеме данных - преобразование принятого оптического сигнала со скоростью передачи приблизительно 5 Гбит/с в электрический сигнал и демультиплексирование электрического сигнала, чтобы получить несколько низкоскоростных коммуникационных сигналов.

Мультиплексирование включает в себя мультиплексирование с перемежением битов, и демультиплексирование содержит демультиплексирование с перемежением битов; в качестве альтернативы мультиплексирование содержит мультиплексирование с перемежением байтов, и демультиплексирование содержит демультиплексирование с перемежением байтов.

Низкоскоростными коммуникационными сигналами являются четыре GE-сигнала или два SDH-сигнала скоростью 2,5 Гбит/с. Низкоскоростными коммуникационными сигналами являются GE-сигналы;

до начала мультиплексирования способ дополнительно включает в себя: преобразование нескольких низкоскоростных коммуникационных сигналов в несколько низкоскоростных SDH кадров;

мультиплексирование относится к мультиплексированию полученных нескольких низкоскоростных SDH кадров в сигнал со скоростью передачи приблизительно 5 Гбит/с;

демультиплексирование относится к демультиплексированию сигнала со скоростью передачи 5 Гбит/с в несколько низкоскоростных SDH кадров; и

после демультиплексирования способ дополнительно включает в себя обратное преобразование полученных нескольких низкоскоростных SDH кадров в несколько низкоскоростных коммуникационных сигналов.

Преобразование включает в себя операции инкапсуляции, распределения и формирования кадров; обратное преобразование включает в себя операции поиска кадра, обратного распределения и обратной инкапсуляции.

Операции инкапсуляции и обратной инкапсуляции ведутся с использованием протокола Обобщенной Процедуры Формирования Кадров (General Framing Procedure, GFP), протокола высокоуровневого управления каналом передачи данных (High-Level Data Link Control, HDLC) или протокола SDH-процедуры доступа к каналу связи (Link Access Procedure-SDH, LAPS).

Создать различные идентификаторы для каждого передающего конца и приемного конца для указания соответствующей взаимосвязи между каждым передающим концом и приемным концом;

до начала мультиплексирования способ дополнительно включает в себя добавление к каждому низкоскоростному коммуникационному сигналу идентификатор передающего конца для него;

после демультиплексирования способ дополнительно включает в себя этапы:

a1) дополнительного принятия решения в соответствии с идентификатором, установленным передающим концом, соответствует ли приемный конец, принимающий текущий сигнал низкоскоростной коммуникационный сигнал, передающему концу этого сигнала, и если соответствует, текущий приемный конец принимает сигнал; иначе выполняется этап a2;

a2) переключения порядка каждой группы низкоскоростных коммуникационных сигналов, и текущего приемного конца, принимающего переключенный сигнал.

Идентификатор указывается посредством байта J0 или другими множественными резервными байтами SDH.

После мультиплексирования дополнительно включает в себя: ведение Упреждающей Коррекции Ошибок (Forward Error Correction, FEC) кодирования для переданного сигнала со скоростью приблизительно 5 Гбит/с; и после преобразования сигнала в электрический сигнал дополнительно включает в себя: ведение FEC декодирования для принятого сигнала со скоростью передачи приблизительно 5 Гбит/с.

Настоящее изобретение предусматривает устройство мультиплексирования, включающее в себя:

блок преобразования данных шины и перемежения;

блок мультиплексирования; и

оптический передающий блок, при этом

блок преобразования данных шины и перемежения используется для преобразовывания нескольких групп параллельных электрических сигналов в одну группу параллельных электрических сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с и вывода электрических сигналов на блок мультиплексирования;

блок мультиплексирования используется для преобразовывания введенной группы параллельных электрических сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с в последовательный электрический сигнал со скоростью передачи приблизительно 5 Гбит/с и вывода последовательного электрического сигнала со скоростью передачи приблизительно 5 Гбит/с на оптический передающий блок;

оптический передающий блок используется для преобразовывания последовательного электрического сигнала со скоростью передачи приблизительно 5 Гбит/с от блока мультиплексирования в оптический сигнал с той же скоростью передачи и вывода оптического сигнала на передающее оптическое волокно.

Низкоскоростной параллельный сигнал включает в себя SDH-сигнал со скоростью передачи 2,5 Гбит/с или GE-сигнал.

Блок преобразования данных шины и перемежения относится к блоку преобразования данных шины и перемежения битов или блоку преобразования данных шины и перемежения байтов.

Устройство дополнительно включает в себя два блока передачи данных со скоростью 2,5 Гбит/с для приема группы низкоскоростных параллельных электрических сигналов и вывода группы параллельных электрических сигналов с совокупной скоростью передачи 2,5 Гбит/с на блок преобразования данных шины и перемежения, соответственно.

Блок передачи данных возможностью 2,5 Гбит/с включает в себя: два оптических приемопередающих блока GE-сигналов, два блока GE-интерфейса физического уровня и один блок инкапсуляции, распределения и формирования кадров трафика;

Оптический приемопередатчик используется для преобразования введенного извне GE коммуникационного оптического сигнала в последовательный электрический GE-сигнал физического уровня и вывода последовательного электрического сигнала на блок GE-интерфейса физического уровня;

Блок GE-интерфейса физического уровня используется для преобразовывания электрического сигнала от оптического приемопередающего блока GE-сигнала в электрический GE-сигнал физического уровня, соответствующий техническим условиям гигабитного, независимого от среды передачи интерфейса, и вывода сигнал на блок инкапсуляции, распределения и формирования кадров трафика;

Блок инкапсуляции, распределения и формирования кадров трафика используется для инкапсуляции и распределения двух электрических GE-сигналов физического уровня от блока GE-интерфейса физического уровня, преобразования сигналов в параллельный сигнал с совокупной скоростью передачи 2,5 Гбит/с и вывода преобразованного сигнала на блок преобразования данных шины и перемежения;

Блок передачи данных возможностью 2,5 Гбит/с содержит оптический приемный блок STM-16 и блок STM-16 обработки сигналов;

Оптический приемный блок STM-16 используется для преобразовывания введенного внешне оптического сигнала формата STM-16 в служебный электрический сигнал и передачи сигнала на блок STM-16 обработки сигналов;

Блок STM-16 обработки сигналов используется для ведения синхронизации кадров и обработки служебных данных для электрического сигнала, принятого от оптического приемного блока STM-16, генерирования группы параллельных сигналов с совокупной скоростью передачи 2,5 Гбит/с, вывода сигналов на блок преобразования данных шины и перемежения.

Устройство дополнительно включает в себя устройство кодирования FEC;

Устройство FEC кодирования используется, чтобы FEC кодировать последовательный сигнал, выводимый из блока мультиплексирования, и после FEC кодирования выводить последовательный сигнал на оптический передающий блок.

Настоящее изобретение предусматривает также устройство демультиплексирования, устройство включает в себя:

оптический приемный блок;

блок синхронизации восстановления данных и демультиплексирования (Clock and Data Recovery + De-multiplexing, CDR+DEMUX); и

блок преобразования данных шины и перемежения, при этом

оптический приемный блок используется для преобразовывания введенного внешне оптического сигнала со скоростью передачи приблизительно 5 Гбит/с в электрический сигнал и вывода электрического сигнала на блок CDR+DEMUX;

блок CDR+DEMUX используется для введения синхроимпульсов, восстановления данных, демультиплексирования сигнала и последовательного/параллельного преобразования электрического сигнала от оптического приемного блока, генерирования группы параллельных сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с и вывода параллельных сигналов на блок преобразования данных шины и перемежения;

блок преобразования данных шины и перемежения используется для преобразовывания группы параллельных сигналов со скоростью передачи приблизительно 5 Гбит/с, выводимых из блока CDR+DEMUX, в несколько групп низкоскоростных параллельных сигналов, и вывода низкоскоростных сигналов.

Низкоскоростной параллельный сигнал содержит SDH-сигналы с общей скоростью передачи 2,5 Гбит/с или GE-сигналы.

Блок преобразования данных шины и перемежения относится к блоку преобразования данных шины и перемежения битов или блоку преобразования данных шины и перемежения байтов.

Блок преобразования данных шины и перемежения включает в себя блок перекрестного переключения 2x2 для осуществления операции переключения между двумя группами параллельных сигналов, каждая с совокупной скоростью передачи 2,5 Гбит/с, после преобразования и для вывода переключенных сигналов.

Блок преобразования данных шины и перемежения байтов, поддерживающий режим перемежения байтов, дополнительно содержит в направлении приема:

блок разделения сигналов, для приема двух групп параллельных сигналов с совокупной скоростью передачи 2,5 Гбит/с каждая, выводимых из блока CDR+DEMUX, поиска байтов синхронизации кадров для двух групп параллельных сигналов, соответственно, разделения двух групп параллельных сигналов со скоростью передачи 2,5 Гбит/с и вывода параллельных сигналов на блок перекрестного переключения 2x2.

Устройство дополнительно включает в себя: два блока передачи данных возможностью 2,5 Гбит/с, чтобы группу низкоскоростных параллельных сигналов, выводимых из блока преобразования данных шины и перемежения, преобразовывать в низкоскоростные коммуникационные сигналы и выводить коммуникационные сигналы.

Блок передачи данных возможностью 2,5 Гбит/с включает в себя: один блок инкапсуляции, распределения и формирования кадров трафика, два блока GE-интерфейса физического уровня и два оптических приемопередающих блока GE-сигнала;

блок инкапсуляции, распределения и формирования кадров трафика используется для поиска кадров, обратного распределения и обратной инкапсуляции группы низкоскоростных параллельных сигналов от блока преобразования данных шины и перемежения и для вывода двух групп сигналов, соответственно, на два блока GE-интерфейса физического уровня;

блок GE-интерфейса физического уровня используется для преобразовывания параллельных GE-сигналов физического уровня от блока инкапсуляции, распределения и формирования кадров трафика в последовательный GE-сигнал физического уровня и вывода последовательного сигнала на оптический GE-приемопередатчик;

оптический GE-приемопередатчик используется для преобразования последовательного сигнала от блока GE-интерфейса физического уровня в оптический сигнал той же скорости и вывода оптического сигнала.

Блок передачи данных возможностью 2,5 Гбит/с включает в себя блок STM-16 обработки сигналов и оптический передающий блок STM-16;

блок обработки сигналов STM-16 используется для ведения операций синхронизации кадров, обработки служебных данных и мониторинга характеристик операций для группы низкоскоростных параллельных сигналов, выводимых из блока преобразования данных шины и перемежения, и вывода сигналов на оптический передающий блок STM-16;

оптический передающий блок STM-16 используется для преобразования электрического сигнала, принятого от блока STM-16 обработки сигналов, в оптический сигнал той же скорости и вывода оптического сигнала.

Устройство дополнительно включает в себя устройство FEC декодирования; устройство FEC декодирования используется, чтобы FEC декодировать для последовательного сигнала, выводимого из оптического приемного блока, и после FEC декодирования выводить последовательный сигнал на блок CDR+DEMUX.

Настоящее изобретение обеспечивает систему оптической связи, содержащую оптические передающие компоненты и оптические приемные компоненты, соединенные посредством оптического волокна;

оптический передающий компонент содержит по меньшей мере одно устройство мультиплексирования субскоростных потоков; оптический приемный компонент содержит по меньшей мере одно устройство демультиплексирования субскоростных потоков;

устройство мультиплексирования субскоростных потоков используется для мультиплексирования нескольких низкоскоростных коммуникационных оптических сигналов в один оптический сигнал со скоростью передачи приблизительно 5 Гбит/с;

устройство демультиплексирования субскоростных потоков используется для демультиплексирования одного оптического сигнала со скоростью передачи приблизительно 5 Гбит/с на несколько оптических низкоскоростных коммуникационных сигналов.

Устройство мультиплексирования субскоростных потоков включает в себя:

блок передачи низкоскоростных сигналов;

блок преобразования данных шины и перемежения;

блок мультиплексирования; и

оптический передающий блок; при этом

блок передачи низкоскоростных сигналов используется, чтобы преобразовывать несколько введенных низкоскоростных оптических сигналов в низкоскоростные параллельные сигналы и выводить параллельные сигналы на блок преобразования данных шины и перемежения;

блок преобразования данных шины и перемежения используется, чтобы преобразовывать параллельные сигналы, выводимые из блока передачи низкоскоростных сигналов, в одну группу параллельных сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с, и выводить сигнал на блок мультиплексирования;

блок мультиплексирования используется для преобразовывания введенной группы параллельных сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с в последовательный электрический сигнал со скоростью передачи приблизительно 5 Гбит/с и вывода последовательного электрического сигнала со скоростью передачи приблизительно 5 Гбит/с на оптический передающий блок;

оптический передающий блок используется для преобразовывания последовательного электрического сигнала со скоростью передачи приблизительно 5 Гбит/с от блока мультиплексирования в оптический сигнал той же скорости и вывода оптического сигнала на внешнее оптическое волокно;

устройство демультиплексирования субскоростных потоков содержит:

оптический приемный блок;

блок синхронизации, восстановления данных и демультиплексирования (CDR+DEMUX);

блок преобразования данных шины и перемежения; и

блок передачи низкоскоростных сигналов, при этом

оптический приемный блок используется для преобразовывания введенного внешне оптического сигнала со скоростью передачи приблизительно 5 Гбит/с в электрический сигнал, вывода электрического сигнала на блок CDR+DEMUX;

блок CDR+DEMUX используется для введения синхроимпульсов, восстановления данных, демультиплексирования сигнала и последовательно/параллельно преобразования электрического сигнала от оптического приемного блока, генерирования группы параллельных сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с и вывода параллельных сигналов на блок преобразования данных шины и перемежения;

блок преобразования данных шины и перемежения используется для преобразования группы параллельных сигналов с совокупной скоростью передачи приблизительно 5 Гбит/с, выводимых из блока CDR+DEMUX, в несколько низкоскоростных параллельных сигналов и вывода низкоскоростных сигналов на блок передачи низкоскоростных сигналов;

блок передачи низкоскоростных сигналов используется, чтобы несколько низкоскоростных параллельных сигналов, выводимых из блока преобразования данных шины и перемежения, преобразовывать в несколько низкоскоростных оптических сигналов и выводить оптические сигналы.

Блок преобразования данных шины и перемежения включает в себя блок преобразования данных шины и перемежения битов или блок преобразования данных шины и перемежения байтов.

Оптический приемный блок низкоскоростных сигналов включает в себя: четыре оптических приемных блока GE-сигнала, четыре блока GE-интерфейса физического уровня и блок инкапсуляции, распределения и формирования кадров трафика; при этом

оптический приемный блок GE-сигнала используется для преобразования введенного внешне оптического сигнала GE-услуги в электрический сигнал и вывода электрического сигнала на блок GE-интерфейса физического уровня;

блок GE-интерфейса физического уровня используется для преобразования электрического сигнала от оптического приемного блока GE-сигнала в электрический GE-сигнал физического уровня и вывода преобразованного сигнала на блок инкапсуляции, распределения и формирования кадров трафика;

блок инкапсуляции, распределения и формирования кадров трафика используется для инкапсуляции и отображения электрических GE-сигналов физического уровня от четырех блоков GE-интерфейса физического уровня, преобразования сигналов в несколько низкоскоростных параллельных сигналов и вывода сигналов на блок преобразования данных шины и перемежения;

оптический передающий блок для низкоскоростных сигналов включает в себя: блок инкапсуляции, распределения и формирования кадров трафика, четыре блока GE-интерфейса физического уровня и четыре оптических передающих блока GE-сигнала;

при этом блок инкапсуляции, распределения и формирования кадров трафика используется для поиска кадров, обратного распределения и обратной инкапсуляции низкоскоростных параллельных сигналов от блока преобразования данных шины и перемежения и для вывода четырех электрических GE-сигналов физического уровня, соответственно, на четыре блока GE-интерфейса физического уровня;

блок GE-интерфейса физического уровня используется для преобразовывания электрического GE-сигнала физического уровня от блока инкапсуляции, распределения и формирования кадров трафика в последовательный электрический GE-сигнал физического уровня и вывода последовательного сигнала на оптический передающий блок GE-сигнала;

оптический передающий блок GE-сигнала используется для преобразовывания последовательного электрического сигнала от блока GE-интерфейса физического уровня в оптический сигнал той же скорости и вывода оптического сигнала.

Система оптической связи дополнительно включает в себя блок FEC кодирования и блок FEC декодирования;

блок FEC кодирования используется для ведения FEC кодирования для электрического сигнала от блока мультиплексирования и передачи кодированного сигнала на оптический передающий блок;

блок FEC декодирования используется для приема электрического сигнала, выводимого из оптического приемного блока, ведения FEC декодирования для принятого сигнала и вывода декодированного сигнала на блок CDR+DEMUX.

Как может быть видно из вышеизложенного, нижеследующие преимущества, возможно, будут следствием применения способа передачи данных, устройства мультиплексирования/демультиплексирования и системы оптической связи в соответствии с настоящим изобретением:

Поскольку система оптической связи в соответствии с настоящим изобретением передает одночастотный сигнал с использованием класса скорости 5 Гбит/с, то множество низкоскоростных сигналов может быть мультиплексировано в сигналы, имеющие скорость передачи каждый приблизительно 5 Гбит/с, посредством устройства мультиплексирования /демультиплексирования и способа передачи данных в соответствии с настоящим изобретением. Поскольку требованием OSNR для сигнала со скоростью передачи 5 Гбит/с является приблизительно 23 дБ, тогда как ограниченная дисперсией дальность передачи является относительно протяженной, то есть приблизительно 240 километров, что может охватывать MAN полностью, таким образом, решение в соответствии с настоящим изобретением позволяет решить проблему низкой эффективности использования длины волны, вызываемую при использовании оптических сигналов скоростью 2,5 Гбит/с, и удваивает исходный коэффициент использования длины волны, тогда как стоимость резко не увеличивается; с другой стороны, ограниченная дисперсией дальность передачи в 240 километров может в основном удовлетворять требованию MAN к дальности передачи, что решает проблему меньшей зоны охвата, вызываемую при использовании оптических сигналов скоростью 10 Гбит/с.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - схематическое изображение, иллюстрирующее структуру типичной системы WDM;

Фиг.2 - схема, иллюстрирующая структуру устройства мультиплексирования/демультиплексирования субскоростных потоков, поддерживающего перемежение битов, в соответствии с одним предпочтительным вариантом осуществления настоящего изобретения;

Фиг.3 - схематическое изображение, иллюстрирующее принцип передачи для блока преобразования данных шины и перемежения битов в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

Фиг.4 - схематическое изображение, иллюстрирующее принцип приема для блока преобразования данных шины и перемежения битов в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

Фиг.5 - блок-схема, иллюстрирующая установку и управление сигналом в соответствии с вариантом осуществления настоящего изобретения;

Фиг.6 - схема, иллюстрирующая структуру устройства мультиплексирования/демультиплексирования субскоростных потоков, поддерживающего перемежение байтов в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

Фиг.7 - схематическое изображение, иллюстрирующее сигнал кадрового импульса в соответствии с настоящим изобретением;

Фиг.8 - схематическое изображение, иллюстрирующее принцип передачи для блока преобразования данных шины и перемежения байтов в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

Фиг.9 - схематическое изображение, иллюстрирующее принцип приема для блока преобразования данных шины и перемежения байтов в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

Фиг.10 - схематическое изображение, иллюстрирующее принцип передачи для блока преобразования данных шины и перемежения битов в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

Фиг.11 - схематическое изображение, иллюстрирующее принцип приема для блока преобразования данных шины и перемежения битов в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

Фиг.12 - схематическое изображение, иллюстрирующее принцип передачи для блока преобразования данных шины и перемежения байтов в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

Фиг.13 - схематическое изображение, иллюстрирующее принцип приема для блока преобразования данных шины и перемежения байтов в соответствии с другим предпочтительным вариантом осуществления настоящего изобретения;

Фиг.14 - схема, иллюстрирующая структуру устройства мультиплексирования/демультиплексирования субскоростных потоков в соответствии со следующим предпочтительным вариантом осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Ниже дается дополнительное подробное описание настоящего изобретения со ссылкой на варианты осуществления и сопроводительные чертежи с тем, чтобы более очевидно представить цели, техническое решение и достоинства настоящего изобретения.

В соответствии с настоящим изобретением система оптической связи со скоростью передачи одночастотного сигнала, соответствующей 5 Гбит/с, является наиболее подходящей для создания MAN. Чтобы осуществить систему оптической связи со скоростью передачи одночастотного сигнала 5 Гбит/с, настоящее изобретение предлагает способ мультиплексирования, который мультиплексирует множество низкоскоростных сигналов в один сигнал, имеющий скорость передачи 5 Гбит/с, а также способ демультиплексирования, который демультиплексирует один сигнал со скоростью передачи 5 Гбит/с на множество низкоскоростных сигналов. Низкоскоростные сигналы, ранее упоминаемые, могут включать в себя SDH-сигналы со скоростью передачи 2,5 Гбит/с или ниже, Ethernet сигналы, сигналы соединения с системой масштаба предприятия, сигналы соединения с оптическим волокном, сигналы волоконно-оптического канала и т.д.

Следует отметить, что в соответствии со способом по настоящему изобретению вышеупомянутый одночастотный сигнал со скоростью передачи 5 Гбит/с может быть осуществлен многими способами. В предпочтительном варианте осуществления настоящего изобретения четыре Gigabit Ethernet (GE) сигнала мультиплексированы в один сигнал со скоростью 5 Гбит/с; в другом предпочтительном варианте осуществления два SDH-сигнала со скоростью 2,5 Гбит/с мультиплексированы в один сигнал со скоростью передачи 5 Гбит/с, с точной скоростью передачи 2,48832 Гбит/с·2=4,97664 Гбит/с; и в следующем предпочтительном варианте осуществления настоящего изобретения, когда два SDH-сигнала со скоростью 2,5 Гбит/с мультиплексированы в один сигнал со скоростью 5 Гбит/с, в состав включается упреждающей коррекции ошибок (Forward Error Correction, FEC) кодирование по рекомендуемому стандарту (255,239) с точной скоростью передачи 5,332114 Гбит/с. Таким образом, представляемая в документе скорость передачи 5 Гбит/с предпочтительнее охватывает диапазон скоростей около 5 Гбит/с, чем относится к точной скорости передачи 5 Гбит/с. Когда связь осуществляется по оптическому волокну G.652 со скоростью передачи 5 Гбит/с, требованием OSNR для переносимого сигнала является приблизительно 23 дБ, и ограниченной дисперсией дальностью передачи является приблизительно 240 километров, что может очень хорошо удовлетворять требованию MAN к скорости передачи и масштабу.

Ниже будет дано подробное описание способа передачи данных в соответствии с настоящим изобретением.

В предпочтительном варианте осуществления настоящего изобретения способ передачи данных в соответствии с настоящим изобретением включает в себя:

при передаче данных мультиплексирование и преобразование нескольких низкоскоростных коммуникационных сигналов в оптический сигнал со скоростью передачи 5 Гбит/с и передачу оптического сигнала на узел назначения;

при приеме данных преобразование принятого оптического сигнала со скоростью передачи 5 Гбит/с в электрический сигнал и демультиплексирование сигнала, чтобы получить несколько низкоскоростных коммуникационных сигналов.

В вышеприведенном предпочтительном варианте осуществления низкоскоростные коммуникационные сигналы могут включать в себя четыре GE-сигнала или два SDH-сигнала со скоростью передачи 2,5 Гбит/с. Посредством вышеупомянутого способа четыре GE-сигнала или два SDH-сигнала со скоростью передачи 2,5 Гбит/с могут быть непосредственно мультиплексированы в один сигнал со скоростью передачи 5 Гбит/с.

Кроме того, операция мультиплексирования на вышеупомянутом этапе может проводиться с использованием мультиплексирования с однобитовым перемежением, мультиплексирования с двухбитовым перемежением, или мультиплексирования с перемежением байтов. Следует отметить, что настоящий вариант осуществления не ограничивает режим мультиплексирования с перемежением.

В другом предпочтительном варианте осуществления настоящего изобретения два GE-сигнала сначала сводят в один SDH-сигнал со скоростью передачи 2,5 Гбит/с, который затем мультиплексируют в один сигнал скоростью 5 Гбит/с.

Способ в соответствии с этим вариантом осуществления при передаче данных включает в себя этапы, на которых:

A) преобразовывают несколько низкоскорос