Стальные листы для сверхвысокопрочных магистральных труб и сверхвысокопрочные магистральные трубы, обладающие прекрасной низкотемпературной ударной вязкостью, и способы их изготовления

Иллюстрации

Показать все

Изобретение относится к области металлургии, в частности к производству стального листа для изготовления сверхвысокопрочных магистральных труб, обладающих прекрасной низкотемпературной ударной вязкостью. Техническим результатом изобретения является обеспечение прочности на тангенциальное растяжение не ниже 900 МПа, не увеличивая при этом прочность на осевое растяжение труб, производимых путем шовной сварки краев листов. Для достижения технического результата листы получают из стали, содержащей, мас.%: С от 0,03 до 0,07, Si не более 0,6, Mn от 1,5 до 2,5, Р не более 0,015, S не более 0,003, Ni от 0,1 до 1,5, Мо от 0,15 до 0,60, Nb от 0,01 до 0,10, Ti от 0,005 до 0,030, Al не более 0,06, один или более элементов из группы: В, N, V, Cu, Cr, Ca, РЗМ и Mg в необходимых количествах, остальное железо и неизбежные примеси, лист имеет отношение (Hv-avep)/(Hv-M*): средней твердости Hv-avep по Виккерсу в направлении толщины к твердости мартенсита - Hv-M*, определяемой содержанием углерода, составляющее от 0,8 до 0,9, прочность на растяжение от 880 до 1080 МПа, показатель прокаливаемости Р в пределах от 2,5 до 4,0, при этом Р и Hv-M* определяют из выражений, соответственно: P=2,7C+0,4Si+Mn+0,8Cr+0,45(Ni+Cu)+(1+β)Mo-1+β, где (β=1, когда В≥3 ч/млн, и β=0, когда В<3 ч/млн), Hv-M*=270+1300C, где: С - углерод, мас.%. Способ изготовления листа включает получение сляба, нагрев сляба до 1000-1250°С, черновую прокатку в области температуры рекристаллизации, прокатку в нерекристаллизационной аустенитной области при 900°С или ниже при суммарной степени обжатия прокатки не менее 75% и затем охлаждают из аустенитной области со скоростью от 1 до 10°С/с до получения в центре толщины листа температуры 500°С или ниже. Магистральную трубу получают путем формовки стального листа в трубчатую форму при совпадении направления прокатки стального листа с продольным направлением трубы, а затем производят сварку краев трубы. 10 н. и 25 з.п. ф-лы, 3 табл., 3 ил.

Реферат

Область техники

Настоящее изобретение относится к сверхвысокопрочным магистральным трубам с прекрасной низкотемпературной ударной вязкостью, характеризующихся прочностью на тангенциальное растяжение (TS-C) не ниже 900 МПа, для применения в качестве трубопроводов для транспортировки нефти, природного газа и т.п.

Уровень техники

В последнее время трубопроводы приобрели растущую значимость в качестве средств транспортирования на большие расстояния нефти, природного газа и т.п. До настоящего времени для транспортирующих на большие расстояния магистральных трубопроводов применялись стандарты Американского нефтяного института (API) X80 и т.д. Однако для улучшения эффективности транспортировки путем повышения давления в трубопроводе и повышения эффективности укладки путем уменьшения диаметра и веса трубопровода требуются более высокопрочные магистральные трубы.

В частности, трубы марки X120 с прочностью на растяжение 900 МПа или выше, которые способны выдержать приблизительно удвоенное внутреннее давление по сравнению с маркой Х65, могут транспортировать приблизительно вдвое больше газа по сравнению с такими же трубопроводами более низкого класса. По сравнению со способами, в которых повышение пропускной способности, зависящей от давления трубопровода, осуществляется путем увеличения толщины стенки трубы, применение высокопрочных магистральных труб дает большую экономию затрат на строительстве трубопроводов благодаря экономии затрат на материал, транспортировку и монтажные сварочные работы.

Как уже было раскрыто в японской не прошедшей экспертизу патентной публикации (Kokai) №2000-199036, осуществляется разработка магистральных труб марки X120, у которых микроструктура базового материала состоит главным образом из смеси мартенсит/бейнит (нижний бейнит). Однако производство этой магистральной трубы включает жесткие технологические ограничения, так как требуется чрезвычайно прецизионное и строгое регулирование микроструктуры.

Повышение прочности магистральных труб создает также необходимость в прочности сварочного металла, образующегося в стыках между сваренными в условиях монтажа трубами (далее называемых монтажными швами) при строительстве трубопровода.

Обычно низкотемпературная ударная вязкость сварочного металла в сварных швах ниже низкотемпературной ударной вязкости базового металла и еще более ухудшается с увеличением прочности. Таким образом, повышение прочности магистральных труб требует повышения прочности сварочного металла монтажных швов, что приводит к ухудшению низкотемпературной ударной вязкости.

Если прочность сварочного металла монтажных швов ниже осевой прочности магистральной трубы, при возникновении напряжений в продольном направлении трубопровода в монтажных швах накапливаются напряжения, в результате чего в нагреваемой зоне повышается вероятность разрыва.

В обычных трубопроводах внутреннее давление порождает тангенциальное напряжение, но не вызывает осевого напряжения. Однако в трубопроводах, сооруженных в регионах типа несплошной тундры, где происходит смещение грунта, обусловленное воздействием замерзания и оттаивания, смещение грунта изгибает трубопроводы и создает осевое напряжение.

Иными словами, сварочный металл монтажных швов трубопроводов должен иметь большую прочность, чем прочность в продольном направлении трубы. Однако сварочный металл монтажных швов сверхвысокопрочных магистральных труб, который является предметом изобретения, уже обладает высокой прочностью. Следовательно, дальнейшее упрочнение приводит к резкому снижению ударной вязкости.

В соответствии с этим, указанную проблему можно уменьшить, если прочность в продольном направлении трубы, которая не имеет отношения к прочности сопротивления внутреннему давлению, будет уменьшена при сохранении прочности в тангенциальном направлении трубы.

Труба из высокопрочной стали, предложенная изобретателем в японской не прошедшей экспертизу патентной публикации (Kokai) №2004-052104, отличается по микроструктуре от трубы согласно настоящему изобретению. Это структурное различие обусловлено различиями в объеме обработки в незакристаллизованной области и в условиях производства.

Раскрытие изобретения

Настоящее изобретение предлагает сверхвысокопрочные магистральные трубы, которые пригодны для трубопроводов, сооруженных в регионах типа несплошной тундры, где грунт совершает сезонное перемещение, и которые способны сделать низкотемпературную ударную вязкость монтажных швов совместимой со стойкостью труб к продольному деформированию.

Если говорить более конкретно, настоящее изобретение предлагает сверхвысокопрочные магистральные трубы, характеризующиеся прочностью на тангенциальное растяжение (TS-C) не ниже 900 МПа (эквивалентно API Х120) благодаря уменьшению прочности на растяжение только в продольном направлении труб, и способы изготовления таких магистральных труб. Настоящее изобретение предлагает также стальные листы для производства сверхвысокопрочных магистральных труб и способы изготовления таких стальных листов.

Для того чтобы получить сверхвысокопрочные магистральные трубы с прочностью на тангенциальное растяжение не ниже 900 МПа, не увеличивая их прочность на осевое растяжение, изобретатель исследовал требования, которым должны удовлетворять стальные листы.

Исследование привело к изобретению стальных листов для производства сверхвысокопрочных магистральных труб, обладающих прекрасной способностью выдерживать давление, низкотемпературной ударной вязкостью и стойкостью к продольному деформированию, и к способам изготовления таких стальных листов и, кроме того, к изобретению магистральных труб, сделанных из таких стальных плит, и к способам производства таких магистральных труб.

Суть изобретения сводится к следующему:

(1) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, состоящий из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
В: менее 3 ч/млн
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и который имеет значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, и

отношение (Hv-avep)/(Hv-M) между средней твердостью по Виккерсу Hv-avep в направлении толщины и мартенситной твердостью Hv-M, определяемой содержанием углерода, составляет от 0,8 до 0,9, а прочность на поперечное растяжение TS-Tp составляет от 880 до 1080 МПа, где

Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+Мо-1,

Hv-M=270+1300С,

где символы элементов обозначают мас.%. отдельных элементов.

(2) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, состоящий из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%
В: от 3 ч/млн до 0,0025 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
N: от 0,001 до 0,006 мас.%
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и который имеет значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, и

отношение (Hv-avep)/(Hv-M) между средней твердостью по Виккерсу Hv-avep в направлении толщины и мартенситной твердостью Hv-M, определяемой содержанием углерода, составляет от 0,8 до 0,9, а прочность на поперечное растяжение TS-Tp составляет от 880 до 1080 МПа,

Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+2Мо,

Hv-M=270+1300С,

где символы элементов обозначают мас.% отдельных элементов.

(3) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, описанный в (1) или (2), содержащий:

N: от 0,001 до 0,006 мас.%

(4) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, описанный в (3), для которого выполняется соотношение: Ti-3,4N>0 (где символы элементов обозначают мас.% отдельных элементов).

(5) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, описанный в любом из пунктов (1)-(4), у которого ударная вязкость с V-образным надрезом по Шарпи при -20°С составляет не ниже 200 Дж.

(6) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, описанный в любом из пунктов (1)-(4), у которого прочность на осевое растяжение TS-Lp составляет не более 0,95 от прочности на поперечное растяжение TS-Tp.

(7) Стальной лист для сверхвысокопрочной магистральной трубы, обладающий прекрасной низкотемпературной ударной вязкостью, описанный в любом из пунктов (1)-(6), для которого отношение предела текучести к пределу прочности в направлении прокатки (YS-Lp)/(TS-Lp), которое является отношением 0,2%-ного условного предела текучести YS-Lp в направлении прокатки к пределу прочности на растяжение TS-Lp в направлении прокатки, составляет не более 0,8.

(8) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, получаемая шовной сваркой стального листа, состоящего из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Ni: от 0,1 до 1,5 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,06 мас.%

и одного или более элементов из:

В: не более 0,0025 мас.%
N: от 0,001 до 0,006 мас.%
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и которая имеет значение величины Р, определенной ниже/в пределах от 2,5 до 4,0, и в которой:

отношение (Hv-ave)/(Hv-M) между средней твердостью по Виккерсу Hv-ave в направлении толщины базового металла и мартенситной твердостью Hv-M, определяемой содержанием углерода, составляет от 0,8 до 0,9, а прочность на тангенциальное растяжение TS-C составляет от 900 до 1100 МПа,

Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+(1+β)Мо-1+β,

где β=1, когда В≥3 ч/млн, и β=0, когда В<3 ч/млн,

Hv-M=270+1300С,

где символы элементов обозначают мас.% отдельных элементов.

(9) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, получаемая шовной сваркой стального листа, состоящего из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
В: менее 3 ч/млн
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и которая имеет значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, и в которой: отношение (Hv-ave)/(Hv-M*) между средней твердостью по Виккерсу Hv-ave в направлении толщины базового металла и мартенситной твердостью Hv-M*, определяемой содержанием углерода, составляет от 0,75 до 0,9, а прочность на тангенциальное растяжение TS-C составляет от 900 до 1100 МПа,

Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+Мо-1,

Hv-M*=290+1300С,

где символы элементов обозначают мас.% отдельных элементов.

(10) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, получаемая шовной сваркой стального листа, состоящего из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%
В: от 3 ч/млн до 0,0025 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
N: от 0,001 до 0,006 мас.%
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и которая имеет значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, и в которой: отношение (Hv-ave)/(Hv-M*) между средней твердостью по Виккерсу Hv-ave в направлении толщины базового металла и мартенситной твердостью Hv-M*, определяемой содержанием углерода, составляет от 0,75 до 0,9, а прочность на тангенциальное растяжение TS-C составляет от 900 до 1100 МПа,

Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+2Мо,

Hv-M*=290+1300С,

где символы элементов обозначают мас.% отдельных элементов.

(11) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, описанная в (9) или (10), содержащая:

N: от 0.001 до 0,006 мас.%

(12) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, описанная в (11), для которой выполняется соотношение: Ti-3,4N>0 (где символы элементов обозначают мас.% отдельных элементов).

(13) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, описанная в любом из пунктов (8)-(12), для которой значение ударной вязкости с V-образным надрезом по Шарпи при -20°С составляет не ниже 200 Дж.

(14) Сверхвысокопрочная магистральная труба, обладающая прекрасной низкотемпературной ударной вязкостью, описанная в любом из пунктов (8)-(13), у которой прочность на растяжение в продольном направлении магистральной трубы составляет не более 0,95 от прочности на растяжение в ее тангенциальном направлении.

(15) Способ изготовления стального листа для сверхвысокопрочной магистральной трубы, обладающего прекрасной низкотемпературной ударной вязкостью, включающий стадии:

нагрева слябов, состоящих из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
В: менее 3 ч/млн
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси и имеющих значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, до 1000-1250°С,

где Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+Мо-1,

где символы элементов обозначают мас.% отдельных элементов,

черновой прокатки в рекристаллизованной области,

прокатки в нерекристаллизованной аустенитной области при 900°С или ниже при суммарном обжатии прокатки не менее 75% и затем

применения быстрого охлаждения от аустенитной области, в результате которого центр толщины пластины охлаждается до 500°С или ниже со скоростью от 1 до 10°С/с.

(16) Способ изготовления стального листа для сверхвысокопрочной магистральной трубы, обладающего прекрасной низкотемпературной ударной вязкостью, включающий стадии:

нагрева слябов, состоящих из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,10 мас.%
В: от 3 ч/млн до 0,0025 мас.%

и одного или более элементов из:

Ni: от 0,1 до 1,5 мас.%
N: от 0,001 до 0,006 мас.%
V: не более 0,10 мас.%
Cu: не более 1,0 мас.%
Cr: не более 1,0 мас.%
Са: не более 0,01 мас.%
РЗМ: не более 0,02 мас.%
Mg: не более 0,006 мас.%

остальное железо и неизбежные примеси, имеющих значение величины Р, определенной ниже, в пределах от 2,5 до 4,0, до 1000-1250°С,

где Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+2Мо,

где символы элементов обозначают мас.% отдельных элементов,

черновой прокатки в рекристаллизованной области,

прокатки в нерекристаллизованной аустенитной области при 900°С или ниже при суммарной степени обжатия прокатки не менее 75% и затем

применения быстрого охлаждения от аустенитной области, в результате которого центр толщины пластины охлаждается до 500°С или ниже со скоростью от 1 до 10°С/с.

(17) Способ изготовления стального листа для сверхвысокопрочной магистральной трубы, обладающей прекрасной низкотемпературной ударной вязкостью, описанный в (15) или (16), в котором слябы содержат также

N: от 0,001 до 0,006 мас.%

(18) Способ изготовления стального листа для сверхвысокопрочной магистральной трубы, обладающего прекрасной низкотемпературной ударной вязкостью, описанный в (17), для которого выполняется соотношение: Ti-3,4N>0 (где символы элементов обозначают мас.% отдельных элементов).

(19) Способ производства сверхвысокопрочной магистральной трубы, обладающей прекрасной низкотемпературной ударной вязкостью, включающий стадии:

формовки стального листа, изготовленного с помощью способов изготовления сверхвысокопрочного стального листа, обладающего прекрасной низкотемпературной ударной вязкостью, описанных в любом из пунктов (15)-(18), в форму трубы таким образом, что направление прокатки стального листа совпадает с продольным направлением производимой трубы, и

формование трубы с помощью шовной сварки ее краев.

(20) Способ производства сверхвысокопрочной магистральной трубы, обладающей прекрасной низкотемпературной ударной вязкостью, включающий стадии:

формовки стального листа, изготовленного с помощью способов изготовления сверхвысокопрочного стального листа, обладающего прекрасной низкотемпературной ударной вязкостью, описанных в любом из пунктов (15)-(18), в форму трубы с помощью UO-процесса таким образом, что направление прокатки стального листа совпадает с продольным направлением производимой трубы, и

формования трубы путем соединения ее краев с использованием дуговой сварки под флюсом с внутренней и внешней сторон и

расширения сваренной трубы.

(21) Способ производства сверхвысокопрочной магистральной трубы, обладающей прекрасной низкотемпературной ударной вязкостью, включающий стадии:

нагрева слябов, состоящих из:

С: от 0,03 до 0,07 мас.%
Si: не более 0,6 мас.%
Mn: от 1,5 до 2,5 мас.%
Р: не более 0,015 мас.%
S: не более 0,003 мас.%
Ni: от 0,1 до 1,5 мас.%
Мо: от 0,15 до 0,60 мас.%
Nb: от 0,01 до 0,10 мас.%
Ti: от 0,005 до 0,030 мас.%
Al: не более 0,06 мас.%

и одного или более элементов из:

В:не более 0,0025 мас.%
N:от 0,001 до 0,006 мас.%
V:не более 0,10 мас.%
Cu:не более 1,0 мас.%
Cr:не более 1,0 мас.%
Са:не более 0,01 мас.%
РЗМ:не более 0,02 мас.%
Mg:не более 0,006 мас.%

остальное железо и неизбежные примеси, имеющих значение величины Р, определенной ниже, в пределах от 2,5 и 4,0, до 1000-1250°С,

где Р=2,7С+0.4Si+Mn+0,8Cr+0,45(Ni+Cu)+(1+β)Мо-1+β,

где β=1, когда В≥3 ч/млн, и β=0, когда В<3 ч/млн,

где символы элементов обозначают мас.% отдельных элементов,

черновую прокатку в рекристаллизованной области,

прокатку в нерекристаллизованной аустенитной области при 900°С или ниже при суммарной степени обжатия прокатки не менее 75%,

применения быстрого охлаждения от аустенитной области, в результате которого центр толщины пластины охлаждается до 500°С или ниже со скоростью от 1 до 10°С/с,

формование изготовленного таким образом стального листа в форму трубы таким образом, что направление прокатки стального листа совпадает с продольным направлением производимой трубы, и

формование трубы с помощью шовной сварки ее краев.

(22) Способ производства сверхвысокопрочной магистральной трубы, обладающей прекрасной низкотемпературной ударной вязкостью, описанный в (21), который, кроме того, включает стадии:

формовки стального листа, предназначенного для быстрого охлаждения, в форму трубы с помощью UO-процесса таким образом, что направление прокатки стального листа совпадает с продольным направлением производимой трубы,

соединения ее краев с использованием дуговой сварки под флюсом с внутренней и внешней сторон и

расширения сваренной трубы.

Краткое описание чертежей

Фиг.1 демонстрирует структуру вырожденного верхнего бейнита.

Фиг.2 демонстрирует смешанную структуру мартенсит/бейнит (нижний бейнит).

Фиг.3 схематически показывает структуры нижнего бейнита, вырожденного верхнего бейнита и гранулярного бейнита: (а) нижний бейнит, (b) вырожденный верхний бейнит, (с) гранулярный бейнит.

Осуществление изобретения

Для обеспечения прочности, выдерживающей разрыв, причиной которого является напряжение, накапливающееся в продольном направлении трубопровода, прочность монтажной сварки должна быть равной осевой прочности трубопровода или более высокой.

Если продольная прочность трубопровода ниже прочности монтажной сварки, вероятность локальной деформации монтажной сварки и ее последующего разрыва уменьшается. С другой стороны, если продольная прочность трубопровода слишком велика, повышение прочности монтажной сварки снижает низкотемпературную ударную вязкость.

С целью разрешения этой проблемы изобретатель предпринял разработку сверхвысокопрочной магистральной трубы, обладающей прочностью на тангенциальное растяжение (TS-C) не ниже 900 МПа и пониженной прочностью на осевое растяжение (TS-L).

Изучая взаимозависимость между микроструктурой стального листа для сверхвысокопрочной магистральной трубы и прочностью листа в направлении прокатки и в поперечном направлении, изобретатель обнаружил, что прочность на осевое растяжение (прочность растяжения вдоль направления прокатки) стального листа можно существенным образом уменьшить путем преобразования его структуры в структуру вырожденного верхнего бейнита.

При этом прочность растяжения поперек направления прокатки описывается как прочность на поперечное растяжение.

В данном случае структура вырожденного верхнего бейнита означает структуру, которая имеет реечную структурную характеристику структур низкотемпературного превращения и образует карбиды и мартенсит-аустенитные (МА) составляющие второй фазы более крупные, чем в нижнем бейните.

Фиг.1 представляет сканированную электронную микрофотографию стального листа для сверхвысокопрочной магистральной трубы, имеющей микроструктуру вырожденного верхнего бейнита согласно настоящему изобретению. В целях сравнения на фиг.2 представлена сканированная электронная микрофотография стального листа для традиционной магистральной трубы марки X120, имеющего смешанную структуру мартенсит/бейнит (далее называемую структурой нижнего бейнита).

Поскольку сравнение сканированных электронных микрофотографий на фиг.1 и 2 не проясняет разницу в микроструктуре между структурами вырожденного верхнего бейнита и нижнего бейнита, на фиг.3 даются схематические иллюстрации.

Как показано на фиг.3(b), пакеты в дегенерированном верхнем бейните шире пакетов в нижнем бейните (см. Фиг.3(а)), не содержат в себе в отличие от нижнего бейнита мелкого цементита и имеют между пакетами МА-составляющие.

Сравнение между вырожденным верхним бейнитом и гранулярным бейнитом (см. Фиг.3(с)) обнаруживает, что гранулярный бейнит имеет более крупные МА-составляющие, чем вырожденный верхний бейнит, и в отличие от вырожденного верхнего бейнита содержит гранулярный феррит.

Хотя вырожденный верхний бейнит можно отличить от нижнего бейнита с помощью сканирующей электронной микроскопии, определить количественное соотношение между ними по микроструктурной фотографии затруднительно. В настоящем изобретении, поэтому вырожденный верхний бейнит и нижний бейнит различают путем сравнения твердости по Виккерсу, используя тот факт, что вырожденный верхний бейнит не столь тверд, как нижний бейнит.

Для сталей с химическим составом согласно настоящему изобретению твердость нижнего бейнита равна твердости мартенсита Hv-M, которая зависит от содержания углерода.

Hv-M можно получить из следующего уравнения:

Hv-M=270+1300C.

Если вырожденный верхний бейнит в микроструктуре стальной пластины составляет более приблизительно 70%, твердость стальной пластины Hv-avep-становится ниже Hv-M и отношение (Hv-avep)/(Hv-M) лежит в пределах от 0,8 до 0,9.

Твердость стального листа Hv-avep является средним значением твердости, измеряемой при приложении нагрузки 10 кгс с интервалами 1 мм по всей толщине листа в поперечном сечении параллельными направлению прокатки.

Когда отношение твердостей (Hv-avep)/(Hv-M) составляет от 0,8 до 0,9, прочность на поперечное растяжение стального листа (TS-Tp) находится в пределах от 880 до 1080 МПа. Магистральные трубы, произведенные из этого стального листа, имеют прочность тангенциального растяжения (TS-C) не ниже 900 МПа и, таким образом, обладают способностью выдерживать давление, требуемое от магистральных труб марки X120.

Стальной лист, прочность на поперечное растяжение которого не превышает 1080 МПа, обладает прекрасной формуемостью, поскольку сила противодействия, возникающая при формовании в трубчатую форму, уменьшается.

Стальной лист согласно настоящему изобретению, который состоит в основном из вырожденного верхнего бейнита, обладает прекрасными характеристиками ударных свойств.

Магистральные трубы должны обладать способностью останавливать быстрое пластическое разрушение. Чтобы удовлетворять этому требованию, ударная вязкость с V-образным надрезом по Шарпи при -20°С стального листа для магистральной трубы должна быть не менее 200 Дж.

Сталь настоящего изобретения, у которой вырожденный верхний бейнит составляет более чем приблизительно 70%, а отношение (Hv-avep)/(Hv-M) лежит в пределах от 0,8 до 0,9, характеризуется ударной вязкостью с V-образным надрезом по Шарпи не менее 200 Дж при -20°С.

У стали настоящего изобретения, состоящей в основном из вырожденного верхнего бейнита, прочность на осевое растяжение (TS-Lp) меньше прочности на поперечное растяжение (TS-Tp) и поддерживается на уровне менее 0,95 величины последней.

В порядке сравнения, в традиционной сверхвысокопрочной стали, состоящей в основном из нижнего бейнита, прочность на осевое растяжение по существу равна прочности на поперечное растяжение.

Магистральная труба, производимая формованием в трубчатую форму стального листа настоящего изобретения, состоящего в основном из вырожденного верхнего бейнита, таким образом, что направление прокатки стального листа совпадает с продольным направлением магистральной трубы, имеет пониженную прочность в продольном направлении при сохранении неизменной прочности в тангенциальном направлении.

Это способствует повышению прочности наплавленного металла монтажного шва по сравнению с осевой прочностью магистральной трубы, при сохранении при этом низкотемпературной ударной вязкости монтажных швов.

Хотя и желательно, чтобы прочность на осевое растяжение (TS-Lp) была как можно меньше по сравнению с прочностью на поперечное растяжение (TS-Tp), в действительности же сделать ее меньше 0,90 величины последней является затруднительным.

Если отношение предела текучести к пределу прочности YS/TS, в котором YS является 0,2%-ным условным пределом текучести стального листа, a TS является его прочностью на растяжение, невелико, в процессе формования стального листа в форму трубы имеет место улучшение формуемости.

Если отношение предела текучести к пределу прочности в направлении прокатки стальной плиты (YS-Lp)/(TS-Lp), в котором YS-Lp является 0,2%-ным условным пределом текучести в направлении прокатки стального сляба, а TS-Lp является ее прочностью на растяжение, невелико, отношение предела текучести к пределу прочности в продольном направлении магистральной трубы также становится небольшим.

Отсюда следует, что базовый металл магистральной трубы около монтажных швов трубопровода становится более деформируемым по сравнению со сварочным металлом монтажных швов.

Когда в продольном направлении трубопровода возникают деформации, вызванные землетрясением, сдвигами земной коры и т.п., базовый металл магистральной трубы деформируется и благодаря этому препятствует появлению разрыва трубопровода. Чтобы получить такой эффект, предпочтительно поддерживать отношение предела текучести к пределу прочности в направлении прокатки стального листа (YS-Lp)/(TS-Lp) не выше 0,80.

Далее описывается магистральная труба, производимая из стального листа для сверхвысокопрочной магистральной трубы, состоящего в основном из вырожденного верхнего бейнита согласно настоящему изобретению.

Для обеспечения выдерживания внутреннего давления, требуемого от магистральных труб марки X120, необходимо, чтобы их прочность на тангенциальное растяжение (TS-C) была не менее 900 МПа.

Если, с другой стороны, прочность на тангенциальное растяжение превышает 1100 МПа, производство магистральной трубы сильно осложняется. Учитывая это затруднение при производственном регулировании, предпочтительно установить верхний предел прочности на тангенциальное растяжение магистральной трубы равным 1000 МПа.

Поскольку стальной лист нагартовывается под влиянием пластической деформации при его формовании в магистральную трубу, твердость магистральной трубы становится выше твердости стального листа. Нагартовывание иногда увеличивает твердость Hv-ave сверхвысокопрочной магистральной трубы согласно настоящему изобретению на примерно 20 по сравнению со стальным листом.

Если количество вырожденного верхнего бейнита в микроструктуре магистральной трубы измеряется на основе твердости мартенсита Hv-M, которая зависит от содержания углерода, количество вырожденного верхнего бейнита оказывается заниженным из-за того, что при определении Hv-M не принимается в расчет нагартовывание.

Таким образом, в случае сверхвысокопрочной магистральной трубы согласно настоящему изобретению количество вырожденного верхнего бейнита может быть определено путем нахождения твердости структуры нагартованного нижнего бейнита из приведенного ниже уравнения для «Hv-M*», которое добавляет 20 к твердости мартенсита, зависящей от содержания углерода, и использования отношения Hv-ave/Hv-М*.

Hv-M*=290+1300С.

В то время как приемлемый диапазон Hv-ave/Hv-M* составляет от 0,75 до 0,90, предпочтительный нижний предел равен 0,80.

Твердость магистральной трубы Hv-ave представляет собой среднее от твердости, измеряемой при применении нагрузки 10 кгс с интервалами 1 мм по толщине магистральной трубы в ее продольном сечении.

Сверхвысокопрочная магистральная труба, изготовленная из стального листа, состоящего в основном из вырожденного верхнего бейнита, согласно настоящему изобретению, также имеет прекрасную низкотемпературную ударную вязкость, такую же, как и названный стальной лист. Ударная вязкость с V-образным надрезом по Шарпи у магистральной трубы при -20°С равна 200 Дж или выше.

Сверхвысокопрочная магистральная труба согласно настоящему изобретению, изготовленная из стального листа, прочность на осевое растяжение которой (TS-Lp) не превышает 0,95 от прочности на поперечное растяжение (TS-Tp), может иметь прочность на осевое растяжение (TS-L), как и указанный стальной лист, не превышающую 0,95 от ее прочности на тангенциальное растяжение (TS-C).

Хотя и желательно, чтобы TS-L была как можно меньше TS-C, в действительности затруднительно сделать TS-L не выше, чем 0,9 от TS-C.

Ниже объясняется причина того, почему составляющие элементы сверхвысокопрочного стального листа и магистральной трубы согласно настоящему изобретению имеют ограничения. Используемый в описании символ % означает мас.%.

С ограничивается пределами 0,03 и 0,07%. Поскольку С очень эффективен в отношении повышения прочности стали, уже содержание, равное С 0,03%, должно довести прочность стального листа и магистральной трубы до запланированного диапазона значений настоящего изобретения.

Однако, поскольку слишком много С значительно ухудшает низкотемпературную ударную вязкость и пригодность базового металла и околошовной зоны (HAZ) для монтажной сварки, установлен верхний предел, равный 0,07%. Предпочтительный верхний предел содержания С составляет 0,06%.

Si добавляют для раскисления и повышения прочности. Однако, поскольку избыточное добавление Si значительно ухудшает ударную вязкость околошовной зоны и пригодность к монтажной сварке, установлен верхний предел, равный 0,6%. Поскольку сталь в достаточной степени раскисляется добавками Al и Ti, добавление Si не является обязательным.

Mn является необходимым элементом для получения микроструктуры сталей согласно настоящему изобретению, состоящей в основном из вырожденного верхнего бейнита и сохраняющей равновесие между высокой прочностью и прекрасной низкотемпературной ударной вязкостью. Необходимая добавка составляет не менее чем 1,5%.

Однако слишком большая добавка Mn усиливает отверждаемость стали, ухудшая тем самым ударную вязкость околошовной зоны и пригодность к монтажной сварке, и усиливает осевую ликвацию в непрерывно отливаемых слябах, ухудшая тем самым низкотемпературную ударную вязкость базового металла. Таким образом, верхний предел установлен равным 2,5%.

Содержание примесных элементов Р и S ограничивается, соответственно, значениями не более 0,015% и не более 0,003%. Это служит, прежде всего, для дальнейшего повышения низкотемпературной ударной вязкости базового металла и околошовной зоны.

Снижение содержания Р уменьшает осевую ликвацию в непрерывно отливаемых слябах и повышает низкотемпературную ударную вязкость благодаря предотвращению разлома по межзеренной границе. Снижение содержания S повышает пластичность и ударную вязкость благодаря снижению MnS, который расширяется в процессе горячей прокатки.

Целью добавления Мо является усиление прокаливаемости стали и получение желаемой микроструктуры, состоящей в основном из вырожденного верхнего бейнита. Добавление Мо дополнительно усиливает способствующий прокаливаемости эффект добавления В.

Совместное добавление Мо и Nb улучшает аустенитную структуру, ингибируя рекристаллизацию аустенита при регулируемой прокатке. Для обеспечения этого эффекта необходимо добавление по меньшей мере 0,15% Мо.

Однако, поскольку избыточное добавление Мо ухудшает удар