Способ каталитического окисления метанола
Изобретение относится к способу глубокого каталитического окисления метанола низких концентраций и может быть использовано в целях защиты окружающей среды в различных отраслях народного хозяйства. Способ заключается в пропускании газовой или пароводяной смеси через каталитический реактор с псевдоожиженным слоем катализатора, предварительно нагретого до рабочей температуры 400°С -500°С. Для окисления метанола используют алюмооксидные катализаторы с нанесенными оксидными системами магния и хрома; меди и хрома; меди, магния и хрома; оксида железа. Изобретение позволяет предотвратить образование токсичных продуктов реакции за счет использования катализаторов глубокого окисления и организации процесса в псевдоожиженном слое. 1 з.п. ф-лы, 3 табл.
Реферат
Изобретение относится к области защиты окружающей среды, а именно к способам глубокой очистки сточных вод или сбросных газов с низкой концентрацией метанола или его паров и большим содержанием воды или водяного пара, и может быть использовано для очистки сбросных газов или сточных вод производств синтеза метанола, на газоконденсатных месторождениях, в лакокрасочной промышленности.
Известно, что метанол является токсичным веществом второго класса опасности и его попадание в окружающую среду недопустимо. Существует достаточно много способов очистки газовых выбросов или сточных вод от метанола с доведением его содержания до предельно допустимых концентраций, однако при низких концентрациях метанола в сбросных газах или сточных водах эффективность очистки снижается. В качестве наиболее эффективных способов, как правило, используют способы биологического (при очистке сточных вод) или каталитического окисления (как при очистке сточных вод, так и сбросных газов). Более перспективными представляются способы каталитического окисления, которые отличаются несложным аппаратурным оформлением и не требуют специальной подготовки обслуживающего персонала. Выделяющееся при окислении метанола тепло можно использовать в технологических целях. При соблюдении условий процесса продуктами окисления метанола являются углекислый газ и вода. Следует заметить, что катализаторами, обычно применяющимися для окисления метанола или его паров, служат благородные металлы (платина, палладий, серебро и т.д.), в результате чего стоимость каталитических установок значительно повышается. Данные катализаторы подвержены отравлению серой, фосфором и водой. Более того, процесс окисления метанола или его паров обычно проводится в стационарном слое катализатора, что существенно сокращает срок службы катализатора при работе с водными смесями. Поэтому предприятиям невыгодно использовать каталитические установки данного типа для очистки сточных вод или газовых сбросов с низким содержанием метанола и высоким содержанием воды.
Известны способы глубокого окисления метилового спирта различных концентраций, находящегося в газовой фазе, на катализаторах стационарного слоя из благородных металлов (в основном, платины, палладия, родия, серебра) и их комбинаций (RU 2155093, B01D 53/86, 27.08.2000, US 6436360, B01J 8/00, B01J 8/04, 20.08.2002, WO 0137976, B01D 53/86, 31.05.2003).
В частности, предложен способ каталитического окисления паров спирта малых концентраций в газовой смеси в стационарном слое катализатора (US 4950476, B01D 53/36, 21.08.1990). Процесс проводят при низких температурах при различных содержаниях кислорода. Газовая смесь поступает сначала на первый катализатор, состоящий преимущественно из палладия и родия в весовых соотношениях Rh/Pd=0-0,3 и/или CeO2 в весовом соотношении CeO2/Pd=0-50, и затем непосредственно на второй катализатор, состоящий, преимущественно, из металлического серебра, вследствие чего комбинация вышеупомянутых катализаторов синергетически интенсифицирует окисление, достигая степени окисления по меньшей мере 96% по вышеупомянутой системе. Недостатками данного способа являются его высокая стоимость и недолговечность катализаторов при работе с водяным паром, не учитывается возможность перегрева и последующего разрушения катализаторов в процессе окисления.
Известен также способ сжигания разнообразных газообразных, жидких и твердых топлив в псевдоожиженном слое катализатора в каталитических теплофикационных устройствах с псевдоожиженным слоем катализатора [В.Н.Пармон, З.Р.Исмагилов, В.А.Кириллов, А.Д.Симонов. Каталитические теплофикационные устройства для решения экологических и энергетических проблем // Катализ в промышленности. Часть 1. - 2002. - №3. - с.20-29]. Окисление топлива осуществляется при достаточно низких температурах (300-700°С), обеспечивая полную конверсию топлива в продукты глубокого окисления. Предложенный способ осуществляется следующим образом. После включения циркуляционных насосов и подачи воды в систему отопления воздух воздуходувкой подается в пусковой электроподогреватель, где нагревается до 500-700°С и поступает далее в газораспределительное устройство реактора и в слой катализатора. После нагрева слоя катализатора в реакторе 300-350°С, необходимой для начала каталитического окисления топлива, в слой насосом через форсунки начинают дозировать топливо. При температуре слоя 600°С электроподогреватель отключают, и установка переходит в автоматический режим работы. Время выхода на рабочий режим определяется мощностью электроподогревателя. Дымовые газы после очистки в циклоне, отдав свое тепло воздуху в отдельном теплообменнике, сбрасываются в атмосферу. В данном способе не рассматривается возможность глубокого окисления низших спиртов, содержащихся в малых концентрациях в газовой или водной смеси.
Задача, решаемая изобретением: глубокое каталитическое окисление метанола до предельно допустимых концентраций, содержащегося в малых концентрациях (но не менее 50 ppm с учетом разбавления) в сбросных газах с большим содержанием водяного пара или в сточных водах, снижение стоимости катализатора, работающего с водными смесями, предотвращение образования токсичных продуктов реакции за счет использования недорогих катализаторов глубокого окисления и организации процесса в псевдоожиженном слое.
Сущность изобретения.
Поставленная задача решается тем, что окисление малых концентраций метанола (но не менее 50 ppm с учетом разбавления), содержащегося в сбросных газах или водном растворе с высоким содержанием водяного пара или воды протекает в проточной каталитической установке с псевдоожиженным слоем катализатора при температуре 400-500°С.
Используют недорогие катализаторы глубокого окисления, приспособленные к работе с водными смесями в псевдоожиженном слое, а именно, алюмооксидные катализаторы с нанесенными оксидными системами магния и хрома, а также меди и хрома; меди, магния и хрома; оксида железа.
Исходная смесь может содержать до 90% водяного пара.
Заявляемый способ осуществляют следующим образом.
В реактор подают расчетное количество воздуха для создания псевдоожиженного слоя твердых частиц катализатора. С помощью электроподогревателя производят вывод на режим каталитического реактора при температуре 400°С, требуемой для начала протекания реакции окисления. После стабилизации температурного режима вводят сбросные газы или впрыскивают водный раствор, содержащий метанол. Через 5-10 мин после начала подачи газов или раствора на выходе из реактора отбираются пробы для газохроматографического анализа. Так как процесс глубокого каталитического окисления протекает с участием кислорода, то расход кислорода воздуха должен быть в соответствии со стехиометрией реакции окисления или в избытке. Подогрев катализатора извне осуществляется только перед введением реактора в работу или если концентрация метанола в смеси с учетом разбавления составляет ниже 50 ppm. Образующиеся продукты окисления сначала поступают в циклон для сбора твердых частиц катализатора, затем в отдельный теплообменник, где отдают свое тепло. Здесь парогазовая фаза, в случае подачи водного раствора, может быть сконденсирована и направлена на сброс в водоем, а очищенные газы, в случае подачи сбросных газов, могут быть направлены в атмосферу.
Примеры конкретного выполнения.
Пример 1.
Модельную смесь, содержащую с учетом разбавления 120 ppm метанола и пары воды, подают в реактор в слой катализатора, предварительно нагретого до 400°С. Расход смеси - 1,8·10-4 м3/ч. Загрузка катализатора - 0,5 дм3.
Таблица 1Технические характеристики процесса окисления метанола на катализаторе гранулированного оксида алюминия с нанесенной оксидной системой магния и хрома | |||||||
№ п/п | Параметры | Ед.изм. | № эксперимента | ||||
1 | 2 | 3 | 4 | 5 | |||
1 | Расход воздуха | м3/ч | 1,3 | 1,5 | |||
2 | Рабочая температура слоя | °С | 520 | 520 | 500 | 480 | 480 |
3 | Время пребывания смеси в рабочей зоне | с | 14 | 12 | |||
4 | Концентрация метанола на выходе | ppm | 0,50 | 0,48 | 0,51 | 0,46 | 0,50 |
5 | Конверсия | % | 99,58 | 99,60 | 99,57 | 99,61 | 99,58 |
Пример 2.
Модельную смесь, содержащую с учетом разбавления 70 ppm метанола и пары воды, подают в реактор в слой катализатора, предварительно нагретого до 400°С. Расход смеси - 1,9·10-4 м3/ч. Загрузка катализатора - 0,5 дм3.
Таблица 2Технические характеристики процесса окисления метанола на катализаторе гранулированного оксида алюминия с нанесенной оксидной системой магния и хрома | |||||||
№ п/п | Параметры | Ед.изм. | № эксперимента | ||||
1 | 2 | 3 | 4 | 5 | |||
1 | Расход воздуха | м3/ч | 1,3 | 1,5 | |||
2 | Рабочая температура слоя | °С | 510 | 480 | 460 | 465 | 460 |
3 | Время пребывания смеси в рабочей зоне | с | 14 | 12 | |||
4 | Концентрация метанола на выходе | ppm | 0,28 | 0,27 | 0,25 | 0,25 | 0,27 |
5 | Конверсия | % | 99,60 | 99,61 | 99,64 | 99,64 | 99,61 |
Пример 3. Модельную газовоздушную смесь, содержащую с учетом разбавления 50 ppm метанола, подают в реактор в слой катализатора, предварительно нагретого до 400°С. Загрузка катализатора - 0,5 дм3.
Таблица 3Технические характеристики процесса окисления метанола на катализаторе гранулированного оксида алюминия с нанесенной оксидной системой магния и хрома | ||||||||
№ п/п | Параметры | Ед.изм. | № эксперимента | |||||
1 | 2 | 3 | 4 | 5 | 6 | |||
1 | Расход воздуха | м3/ч | 1,3 | 1,5 | ||||
2 | Расход смеси | м3/ч | 0,8·10-4 | 1,45·10-4 | 1,9·10-4 | |||
3 | Рабочая температура слоя | °С | 400 | 400 | 410 | 405 | 415 | 410 |
4 | Время пребывания смеси в рабочей зоне | с | 14 | 12 | ||||
5 | Концентрация метанола на выходе | ppm | 0,41 | 0,48 | 0,28 | 0,27 | 0,25 | 0,23 |
6 | Конверсия | % | 99,18 | 99,04 | 99,44 | 99,46 | 99,50 | 99,54 |
Предложенный способ позволяет проводить глубокое окисление метанола, содержащегося в малых концентрациях до углекислого газа и воды в псевдоожиженном слое катализатора, в котором наблюдается более равномерное распределение температуры по слою катализатора и решается проблема локального перегрева катализатора, которая возникает в неподвижном слое катализатора. Кроме того, псевдоожиженный слой катализатора позволяет решить проблему дезактивации катализатора в смесях с большим содержанием водяного пара. Используемые катализаторы доступны и недороги по сравнению с другими катализаторами для окисления метанола, где активным компонентом являются благородные металлы и их комбинации (платина, палладий, родий, иридий, рутений), а также редкие металлы и их комбинации (ванадий, хром, церий, молибден). Данный способ может быть предложен для глубокого окисления метанола, содержащегося в малых концентрациях в водной жидкой смеси или сбросных газах до углекислого газа и воды при автоматическом режиме работы каталитической установки за счет тепла, выделяющегося при окислении спирта.
1. Способ каталитического окисления низких концентраций метанола до 50 млн-1 с учетом разбавления, отличающийся тем, что процесс проводят при температуре 400-500°С в проточной каталитической установке с псевдоожиженным слоем катализатора, в качестве которого используют алюмооксидные катализаторы с нанесенными оксидными системами магния и хрома; меди и хрома; меди, магния и хрома; оксида железа.
2. Способ по п.1, отличающийся тем, что исходная смесь может содержать до 90% водяного пара.