Способ и устройство обеспечения эффективной структуры канала управления в системе беспроводной связи
Иллюстрации
Показать всеИзобретение относится к технике передачи и обработки данных. Технический результат состоит в повышении эффективности структуры канала управления. Для этого канал управления, используемый для передачи управляющей информации, разделяется на множество подканалов, каждый из которых работает на заданной скорости передачи данных. Для каждого из одного или нескольких абонентских терминалов один из подканалов выбирается на основе одного или нескольких критериев выбора для передачи управляющей информации от точки доступа на соответствующий абонентский терминал. Управляющая информация передается от точки доступа на абонентский терминал по конкретному подканалу, выбранному для соответствующего абонентского терминала. На абонентском терминале упомянутые один или несколько подканалов декодируются для получения управляющей информации, предназначенной для абонентского терминала. 9 н. и 36 з.п. ф-лы, 12 ил., 17 табл.
Реферат
1. Область техники, к которой относится изобретение
Настоящее изобретение относится, в основном, к передаче и обработке данных и, в частности, к способу и устройству обеспечения эффективной структуры канала управления в системе связи беспроводной локальной сети (БЛС, WLAN).
2. Предшествующий уровень техники
Системы беспроводной связи были широко внедрены для обеспечения различных типов передачи данных, таких как речь, пакетные данные и т.п. Этими системами могут быть системы с многостанционным доступом, способные поддерживать передачу данных для многочисленных абонентов, последовательно или параллельно, посредством совместного использования доступных системных ресурсов. Примеры систем с многостанционным доступом включают в себя системы многостанционного доступа с кодовым разделением каналов (МДКР, CDMA), системы многостанционного доступа с временным разделением каналов (МДВР, TDMA) и системы многостанционного доступа с частотным разделением каналов (МДЧР, FDMA).
В последние годы беспроводные локальные сети (БЛС) также широко применялись в соответствии с различными стандартами БЛС (например, 802.11а, 802.11b, 802.11g Института инженеров по электротехнике и радиоэлектронике (IEEE) и т.д.) для осуществления возможности передачи данных между беспроводными электронными устройствами (например, компьютерами) по беспроводной линии связи. В БЛС могут применяться устройства, называемые точками доступа (или базовыми станциями), которые действуют подобно концентраторам и/или маршрутизаторам и обеспечивают возможность соединения для других беспроводных устройств в сети (например, абонентских терминалов или абонентских станций). Точки доступа также могут соединять (или «связывать») БЛС с проводными локальными станциями (ЛС, LAN), тем самым позволяя беспроводным устройствам обращаться к ресурсам ЛС.
В системе беспроводной связи радиочастотный (РЧ) модулированный сигнал от блока передатчика может достигать блока приемника по нескольким путям распространения. Характеристики путей распространения обычно изменяются во времени из-за ряда факторов, таких как замирание и многолучевость. Чтобы обеспечить разнесение для компенсации негативного воздействия многолучевого распространения и улучшить рабочие характеристики, могут использоваться многочисленные передающие и приемные антенны. Если пути распространения между передающими и приемными антеннами являются линейно независимыми (например, передача по одному пути не формируется как линейная комбинация передач по другим путям), тогда вероятность правильного приема передач данных увеличивается с увеличением количества антенн. В общих чертах, разнесение увеличивается и рабочие характеристики улучшаются, когда увеличивается количество передающих и приемных антенн.
Система со многими входами и многими выходами (МВМВ, MIMO) использует многочисленные (NT) передающие антенны и многочисленные (NR) приемные антенны для передачи данных. МВМВ-канал, образованный посредством NT передающих и NR приемных антенн, может быть разложен на NS пространственных каналов, при этом NS≤min {NT, NR}. Каждый из NS пространственных каналов соответствует измерению. МВМВ-система может обеспечивать улучшенные рабочие характеристики (например, увеличенную пропускную способность и/или большую надежность), если используются дополнительные размерности, создаваемые многочисленными передающими и приемными антеннами.
Примерная МВМВ-БЛС-система описывается в вышеупомянутой заявке на патент США № 10/693419, правопреемником которой является правопреемник настоящего изобретения. Такая МВМВ-БЛС-система может быть сконфигурирована для обеспечения различных типов служб и поддержки различных типов применений, и может достигать высокого уровня рабочих характеристик системы. В различных вариантах осуществления МВМВ и мультиплексирование с ортогональным частотным разделением каналов (ОЧРК, OFDM) могут использоваться для достижения высокой пропускной способности, для борьбы с негативными воздействиями многолучевого распространения и достижения других преимуществ. Каждая точка доступа в системе может быть сконфигурирована для поддержки многочисленных абонентских терминалов. Распределение ресурсов нисходящей линии связи и восходящей линии связи может зависеть от требований абонентских терминалов, условий канала и других факторов.
В одном варианте осуществления в БЛС-системе, как описано в вышеупомянутой заявке на патент США, используется структура канала, предназначенная для поддержки эффективных передач нисходящей линии связи и восходящей линии связи. Такая структура канала может содержать несколько транспортных каналов, которые могут использоваться для различных функций, таких как сигнализация параметров системы и назначение ресурсов, передача данных по нисходящей линии связи и восходящей линии связи, произвольный доступ к системе и т.п. Различные атрибуты этих транспортных каналов могут быть конфигурируемыми, что позволяет системе легко адаптироваться к изменениям условий канала и загрузки. Один из этих транспортных каналов, называемый прямым каналом управления (ПКУ, FCCH), может использоваться точкой доступа для распределения ресурсов (например, назначений каналов) на нисходящей линии связи и восходящей линии связи. ПКУ также может использоваться для предоставления подтверждения приема для сообщений, принимаемых по другому транспортному каналу.
Как описано в вышеупомянутой заявке на патент США, в одном варианте осуществления ПКУ может передаваться или работать на различных скоростях передачи данных (например, на четырех различных скоростях передачи данных). Например, различные скорости передачи данных могут включать в себя 0,25 бит/с/Гц, 0,5 бит/с/Гц, 1 бит/с/Гц и 2 бит/с/Гц. Однако при такой конфигурации скорость передачи, используемая в ПКУ, определяется абонентом наихудшего случая в системе (т.е. абонентом, который работает на самой низкой скорости передачи данных). Эта схема является неэффективной, так как один абонент, который не может работать на более высокой скорости передачи, может снизить эффективность и коэффициент использования ПКУ, даже если другие абоненты в системе могут работать на более высоких скоростях передачи данных.
Существует, поэтому, в технике потребность в способе и устройстве обеспечения более эффективной структуры канала управления, которая может обслуживать различных абонентов, которые могут работать на различных скоростях передачи данных.
Сущность изобретения
Различные аспекты и варианты осуществления изобретения более подробно описываются ниже. Согласно одному аспекту изобретения предлагается способ, в котором канал управления, используемый для передачи управляющей информации, разделяется на множество подканалов, каждый из которых работает на заданной скорости передачи данных. Для каждого из одного или нескольких абонентских терминалов выбирается один из этих подканалов, основываясь на одном или нескольких критериях выбора, для передачи управляющей информации от точки доступа на соответствующий абонентский терминал. Управляющая информация передается от точки доступа на абонентский терминал по конкретному подканалу, выбранному для соответствующего абонентского терминала. На абонентском терминале упомянутые один или несколько подканалов декодируются для получения управляющей информации, предназначенной для абонентского терминала.
Перечень фигур чертежей
Различные варианты осуществления и аспекты изобретения могут быть понятны из подробного описания, изложенного ниже, совместно с нижеследующими чертежами, на которых:
фиг.1 - блок-схема МВМВ-БЛС-системы, в которой реализованы идеи изобретения;
фиг.2 - структура уровней для МВМВ-БЛС-системы;
фиг.3 - блок-схема, иллюстрирующая различные компоненты точки доступа и абонентских терминалов;
фиг.4А, 4В и 4С - структура кадра дуплексной связи с временным разделением каналов (ВДР) - мультиплексирования с временным разделением каналов (ВРК), структура кадра дуплексной связи с частотным разделением каналов (ЧДР) - ВРК и структура кадра ЧДР - мультиплексирования с кодовым разделением каналов (КРК), соответственно;
фиг.5 - структура кадра ВДР-ВРК с пятью транспортными каналами - широковещательным каналом (ШВК, BCH), ПКУ, прямым каналом (ПК, FCH), обратным каналом (ОК, RCH) и каналом произвольного доступа (КПД, RACH);
фиг.6А и 6В - иллюстрации различных форматов протокольного блока данных (ПБД, PDU) для различных транспортных каналов;
фиг.7 - новая структура ПКУ согласно одному варианту осуществления изобретения;
фиг.8 - блок-схема последовательности операций способа согласно одному варианту осуществления изобретения; и
фиг.9 - блок-схема последовательности операций процесса декодирования согласно одному варианту осуществления изобретения.
Подробное описание
Слово «примерный» используется в данном документе для того, чтобы означать «служащий в качестве примера, экземпляра или иллюстрации». Любой вариант осуществления или образец, описанный в данном документе в качестве «примерного», необязательно должен толковаться как предпочтительный или выгодный относительно других вариантов осуществления или образцов.
Фиг.1 изображает МВМВ-БЛС-систему 100, в которой реализованы идеи настоящего изобретения. Как показано на фиг.1, МВМВ-БЛС-система 100 включает в себя несколько точек 110 доступа (ТД, AP), которые поддерживают связь для нескольких абонентских терминалов (АТ, UT) 120. Для простоты на фиг.1 показаны только две точки 110 доступа. Точка доступа также может упоминаться в данном документе как базовая станция, контроллер доступа или контроллер связи.
Абонентские терминалы 120 могут быть рассредоточены по системе. Каждый абонентский терминал может быть стационарным или мобильным терминалом, который может осуществлять связь с точкой доступа. Абонентский терминал также может упоминаться в данном документе как мобильная станция, удаленная станция, терминал доступа, абонентское оборудование (АО, UE), беспроводное устройство, или может использоваться некоторая другая терминология. Каждый абонентский терминал может осуществлять связь с одной или, возможно, многочисленными точками доступа по нисходящей линии связи и/или восходящей линии связи в любой данный момент. Нисходящая линия связи (также называемая прямой линией связи) относится к передаче от точки доступа к абонентскому терминалу, и восходящая линия связи (также называемая обратной линией связи) относится к передаче от абонентского терминала к точке доступа.
На фиг.1 точка 110а доступа осуществляет связь с абонентскими терминалами 120а-120f, и точка 110b доступа осуществляет связь с абонентскими терминалами 120f-120k. В зависимости от конкретной конструкции системы 100 точка доступа может осуществлять связь с многочисленными абонентскими терминалами одновременно (например, посредством многочисленных кодовых каналов или подполос) или последовательно (например, посредством многочисленных временных слотов). В любой заданный момент абонентский терминал может принимать передачи нисходящей линии связи от одной или многочисленных точек доступа. Передача нисходящей линии связи от каждой точки доступа может включать в себя служебные данные, предназначенные для приема многочисленными абонентскими терминалами, специфические для конкретного абонента данные, предназначенные для приема определенными абонентскими терминалами, другие типы данных или любые их комбинации. Служебные данные могут включать в себя пилот-сигнал, сообщения поискового вызова и широковещательные сообщения, параметры системы и т.п.
В одном варианте осуществления МВМВ-БЛС-система основывается на сетевой архитектуре с центральным контроллером. Таким образом, системный контроллер 130 подключен к точкам 110 доступа и может дополнительно подключаться к другим системам и сетям. Например, системный контроллер 130 может подключаться к сети передачи пакетных данных (СППД, PDN), проводной локальной сети (ЛС), глобальной сети (ГС, WAN), Интернету, телефонной коммутируемой сети общего пользования (ТфОП, PSTN), сети сотовой связи и т.д. Системный контроллер 130 может быть предназначен для выполнения нескольких функций, таких как (1) координация и управление для точек доступа, подключенных к нему, (2) маршрутизация данных между этими точками доступа, (3) доступ и управление связью с абонентскими терминалами, обслуживаемыми этими точками доступа, и т.д. МВМВ-БЛС-система, показанная на фиг.1, может работать в различных полосах частот (например, в полосах частот 2,4 ГГц и нелицензированной национальной информационной инфраструктуры (ННИИ) 5,х ГГц) с учетом ограничений на ширину полосы частот и излучение, характерные для выбранной рабочей полосы частот.
В одном варианте осуществления каждая точка доступа может быть оснащена многочисленными передающими и приемными антеннами (например, четыре передающие и приемные антенны) для передачи и приема данных. Каждый абонентский терминал может быть оснащен одной передающей/приемной антенной или многочисленными передающими/приемными антеннами для передачи и приема данных. Количество антенн, используемых каждым типом абонентского терминала, может зависеть от различных факторов, таких как, например, службы, которые должны поддерживаться абонентским терминалом (например, передача речи, данных или обоих), принятие во внимание затрат, регулятивные ограничения, вопросы безопасности и т.п.
Для заданной пары многоантенной точки доступа и многоантенного абонентского терминала МВМВ-канал формируется посредством NT передающих антенн и NR приемных антенн, доступных для использования для передачи данных. Различные МВМВ-каналы формируются между точкой доступа и различными многоантенными абонентскими терминалами. Каждый МВМВ-канал может быть разложен на NS пространственных каналов, при этом NS≤min {NT, NR}. NS потоков данных могут передаваться по NS пространственным каналам. Пространственная обработка необходима на приемнике и может выполняться или может не выполняться на передатчике, чтобы передавать многочисленные потоки данных по NS пространственным каналам.
NS пространственных каналов могут быть или могут не быть ортогональными друг другу. Это зависит от различных факторов, таких как (1) выполнялась ли или нет пространственная обработка на передатчике для получения ортогональных пространственных каналов, и (2) была ли успешной или нет пространственная обработка как на передатчике, так и на приемнике при ортогонализировании пространственных каналов. Если на передатчике не выполняется пространственная обработка, тогда NS пространственных каналов может быть образовано при помощи NS передающих антенн, и маловероятно, что они ортогональны друг другу.
NS пространственных каналов могут быть ортогонализированы посредством выполнения разложения матрицы характеристики канала для МВМВ-канала, как описано в вышеупомянутой заявке на патент США. Для заданного количества (например, четырех) антенн на точке доступа количество пространственных каналов, доступных для каждого абонентского терминала, зависит от количества антенн, используемых этим абонентским терминалом, и характеристик беспроводного МВМВ-канала, который связывает антенны точки доступа и антенны абонентского терминала. Если абонентский терминал оснащен одной антенной, тогда четыре антенны на точке доступа и одна антенна на абонентском терминале образуют канал со многими входами и одним выходом (МВОВ, MISO) для нисходящей линии связи и канал с одним входом и многими выходами (ОВМВ, SIMO) для восходящей линии связи.
МВМВ-БЛС-система, показанная на фиг.1, может быть спроектирована и сконфигурирована для поддержки различных режимов передачи, как изображено ниже в таблице 1.
Таблица 1 | |
Режимы передачи | Описание |
ОВМВ | Данные передаются с одной антенны, но могут приниматься многочисленными антеннами для разнесения на приеме. |
Разнесение | Данные избыточно передаются с многочисленных передающих антенн и/или по многочисленным подполосам частот для обеспечения разнесения. |
Управление положением главного лепестка диаграммы направленности антенны | Данные передаются по одному (наилучшему) пространственному каналу с полной мощностью, используя информацию управления фазой для главной собственной моды МВМВ-канала. |
Пространственное мультиплексирование | Данные передаются по многочисленным пространственным каналам для достижения более высокой спектральной эффективности. |
Режимы передачи, доступные для использования для нисходящей линии связи и восходящей линии связи для каждого абонентского терминала, зависят от количества антенн, используемых на абонентском терминале. В таблице 2 перечисляются режимы передачи, доступные для различных типов терминалов для нисходящей линии связи и восходящей линии связи, предполагая многочисленные (например, четыре) антенны на точке доступа.
Таблица 2 | ||||
Режимы передачи | Нисходящая линия связи | Восходящая линия связи | ||
Одноантенный абонентский терминал | Многоантенный абонентский терминал | Одноантенный абонентский терминал | Многоантенный абонентский терминал | |
МВОВ (на нисходящей линии связи)/ОВМВ (на восходящей линии связи) | Х | Х | Х | Х |
Разнесение | Х | Х | Х | |
Управление положением главного лепестка диаграммы направленности антенны | Х | Х | Х | |
Пространственное мультиплексирование | Х | Х |
В варианте осуществления МВМВ-БЛС-система применяет ОЧРК для эффективного разделения всей ширины полосы частот системы на ряд (NF) ортогональных подполос. Эти подполосы также упоминаются как тоны, бины или частотные каналы. В ОЧРК каждая подполоса ассоциируется с соответствующей поднесущей, которая может модулироваться данными. Для МВМВ-системы, которая использует ОЧРК, каждый пространственный канал каждой подполосы может рассматриваться как независимый канал передачи, где комплексный коэффициент усиления, связанный с каждой подполосой, является эффективно постоянным по ширине подполосы.
В одном варианте осуществления ширина полосы частот системы может быть разделена на 64 ортогональные подполосы (т.е. NF=64), которым присваиваются индексы от -32 до +31. Из этих 64 подполос 48 подполос (например, с индексами ±{1, ... 6, 8, ... 20, 22, ... 26}) могут использоваться для данных, 4 подполосы (например, с индексами ±{7, 21}) могут использоваться для пилот-сигнала и, возможно, сигнализации, подполоса постоянного тока (DC) (с индексом 0) не используется, и оставшиеся подполосы также не используются и служат в качестве защитных подполос. Эта структура подполос ОЧРК более подробно описывается в документе на стандарт 802.11а IEEE, названный «Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band», September 1999, который доступен публично. В других вариантах осуществления другое количество подполос и различные другие структуры подполос ОЧРК также могут быть реализованы для МВМВ-БЛС-системы. Например, все 53 подполосы с индексами от -26 до +26 могут использоваться для передачи данных. В качестве другого примера может использоваться 128-подполосная структура, 256-подполосная структура или подполосная структура с некоторым другим количеством подполос.
Для ОЧРК данные, подлежащие передаче по каждой подполосе, сначала модулируются (т.е. отображаются в символы), используя конкретную схему модуляции, выбранную для использования для этой подполосы. Для неиспользованных подполос предусматриваются нули. Для каждого периода символа символы модуляции и нули для всех NF подполос преобразуются во временную область, используя обратное быстрое преобразование Фурье (ОБПФ), для получения преобразованного символа, который содержит NF выборок временной области. Длительность каждого преобразованного символа имеет обратную зависимость от ширины каждой подполосы. В одной конкретной конструкции МВМВ-БЛС-системы ширина полосы частот системы составляет 20 МГц, NF=64, ширина каждой подполосы составляет 312,5 кГц, и длительность каждого преобразованного символа составляет 3,2 мкс.
ОЧРК может обеспечивать определенные преимущества, такие как способность противостоять частотно-селективному замиранию, которое характеризуется различными коэффициентами усиления канала на различных частотах полной ширины полосы частот системы. Общеизвестно, что частотно-селективное замирание вызывает межсимвольные помехи (МСИ, ICI), которые представляют собой явление, посредством которого каждый символ в принимаемом сигнале действует как искажение для последующих символов в принимаемом сигнале. Искажения из-за МСИ ухудшают рабочие характеристики, оказывая влияние на способность правильно детектировать принимаемые символы. Частотно-селективное замирание может легко устраняться при ОЧРК посредством повторения части каждого преобразованного символа (или присоединением циклического префикса к нему), образуя соответствующий ОЧРК-символ, который затем передается.
Длина циклического префикса (т.е. величина для повторения) для каждого ОЧРК-символа зависит от разброса по задержке беспроводного канала. В частности, для эффективного подавления МСИ циклический префикс должен быть больше максимального ожидаемого разброса по задержке для системы.
В одном варианте осуществления циклические префиксы различной длины могут использоваться для ОЧРК-символов в зависимости от ожидаемого разброса по задержке. Для МВМВ-БЛС-системы, описанной выше, циклический префикс 400 нс (8 выборок) или 800 нс (16 выборок) может быть выбран для использования для ОЧРК-символов. «Короткий» ОЧРК-символ использует 400-нс циклический префикс и имеет длительность 3,6 мкс. «Длинный» ОЧРК-символ использует 800-нс циклический префикс и имеет длительность 4,0 мкс. Короткие ОЧРК-символы могут использоваться, если максимальный ожидаемый разброс по задержке составляет 400 нс или меньше, и длинные ОЧРК-символы могут использоваться, если разброс по задержке больше 400 нс. Различные циклические префиксы могут быть выбраны для использования для различных транспортных каналов, и циклический префикс также может быть динамически выбираемым, как описано ниже. Более высокие пропускные способности системы могут достигаться посредством использования более коротких циклических префиксов, когда это возможно, так как большее количество ОЧРК-символов более короткой длительности могут передаваться в течение заданного фиксированного интервала времени.
Фиг.2 иллюстрирует структуру 200 уровней, которая может использоваться для МВМВ-БЛС-системы. Как показано на фиг.2, в одном варианте осуществления структура 200 уровней включает в себя (1) протоколы прикладного и верхнего уровня, которые примерно соответствуют Уровню 3 и более высоким эталонной модели взаимодействия открытых систем ISO/OSI (верхние уровни), (2) протоколы и службы, которые соответствуют Уровню 2 (канальному уровню), и (3) протоколы и службы, которые соответствуют Уровню 1 (физическому уровню).
Верхние уровни включают в себя различные приложения и протоколы, такие как службы 212 сигнализации, службы 214 передачи данных, службы 216 передачи речи, приложения передачи данных с коммутацией каналов и т.п. Сигнализация обычно предусматривается в виде сообщений, и данные обычно предусматриваются в виде пакетов. Службы и приложения на верхних уровнях являются источниками и приемниками сообщений и пакетов в соответствии с семантикой и временными характеристиками протокола связи между точкой доступа и абонентским терминалом. Верхние уровни используют службы, предусматриваемые Уровнем 2.
Уровень 2 поддерживает доставку сообщений и пакетов, генерируемых верхними уровнями. В варианте осуществления, показанном на фиг.2, Уровень 2 включает в себя подуровень 220 управления доступом к линии связи (УДЛС, LAC) и подуровень 230 управления доступом к среде (УДС, MAC). Подуровень УДЛС реализует протокол линии передачи данных, который обеспечивает правильную транспортировку и доставку сообщений, генерируемых верхними уровнями. Подуровень УДЛС использует службы, предоставляемые подуровнем УДС и Уровнем 1. Подуровень УДС является ответственным за транспортировку сообщений и пакетов, используя службы, предоставляемые Уровнем 1. Подуровень УДС управляет доступом к ресурсам Уровня 1 посредством приложений и служб в верхних уровнях. Подуровень УДС может включать в себя протокол 232 радиолинии (ПРЛ, RLP), который представляет собой механизм повторной передачи, который может использоваться для обеспечения более высокой надежности для пакетных данных. Уровень 2 обеспечивает протокольные блоки данных (ПБД) для Уровня 1.
Уровень 1 содержит физический уровень 240 и поддерживает передачу и прием радиосигналов между точкой доступа и абонентским терминалом. Физический уровень выполняет кодирование, перемежение, модуляцию и пространственную обработку для различных транспортных каналов, используемых для посылки сообщений и пакетов, генерируемых верхними уровнями. В данном варианте осуществления физический уровень включает в себя подуровень 242 мультиплексирования, который мультиплексирует обработанные ПБД для различных транспортных каналов в надлежащий формат кадра. Уровень 1 обеспечивает данные в единицах кадров.
Специалисту в данной области техники должно быть понятно, что различные другие подходящие структуры уровней также могут быть спроектированы и использованы для МВМВ-БЛС-системы.
Фиг.3 изображает блок-схему одного варианта осуществления точки 110х доступа и двух абонентских терминалов 120х и 120y в МВМВ-БЛС-системе.
На нисходящей линии связи в точке 110х доступа процессор 310 данных передачи (ТХ) принимает данные трафика (например, информационные биты) от источника 308 данных и сигнализацию и другую информацию от контроллера 330 и, возможно, планировщика 334. Эти различные типы данных могут посылаться по различным транспортным каналам, которые более подробно описаны ниже. Процессор 310 данных ТХ «кадрирует» данные (если необходимо), скремблирует кадрированные/некадрированные данные, кодирует скремблированные данные, перемежает (т.е. переупорядочивает) кодированные данные и отображает перемеженные данные в символы модуляции. Для простоты «символ данных» относится к символу модуляции для данных трафика, и «пилот-символ» относится к символу модуляции для пилот-сигнала. Скремблирование рандомизирует биты данных. Кодирование повышает надежность передачи данных. Перемежение обеспечивает разнесение во времени, по частоте и/или в пространстве для кодовых битов. Скремблирование, кодирование и модуляция могут выполняться на основе сигналов управления, обеспечиваемых контроллером 330. Процессор 310 данных ТХ обеспечивает поток символов модуляции для каждого пространственного канала, используемого для передачи данных.
Пространственный процессор 320 ТХ принимает один или несколько потоков символов модуляции от процессора 310 данных ТХ и выполняет пространственную обработку символов модуляции для получения четырех потоков символов передачи, по одному потоку для каждой передающей антенны.
Каждый модулятор (МОД) 322 принимает и обрабатывает соответствующий поток символов передачи для получения соответствующего потока ОЧРК-символов. Каждый поток ОЧРК-символов дополнительно обрабатывается для получения соответствующего модулированного сигнала нисходящей линии связи. Четыре модулированных сигнала нисходящей линии связи от модулятора 322а-322d затем передаются с четырех антенн 324а-324d соответственно.
На каждом абонентском терминале 120 одна или более антенн 352 принимают передаваемые модулированные сигналы нисходящей линии связи, и каждая приемная антенна подает принимаемый сигнал на соответствующий демодулятор (ДЕМОД) 354. Каждый демодулятор 354 выполняет обработку, которая является взаимодополняющей к обработке, выполняемой в модуляторе 322, и обеспечивает принимаемые символы. Пространственный процессор 360 приема (RX) затем выполняет пространственную обработку принимаемых символов от всех демодуляторов 354 для получения восстановленных символов, которые являются оценками символов модуляции, посылаемых точкой доступа.
Процессор 370 данных RX принимает и демультиплексирует восстановленные символы в их соответствующие транспортные каналы. В отношении восстановленных символов для каждого транспортного канала может выполняться преобразование, обратное отображению в символы, обращенное перемежение, декодирование и дескремблирование для получения декодированных данных для этого транспортного канала. Декодированные данные для каждого транспортного канала могут включать в себя восстановленные пакетные данные, сообщения, сигнализацию и т.п., которые подаются на приемник 372 данных для сохранения и/или контроллер 380 для дополнительной обработки.
Для нисходящей линии связи на каждом активном абонентском терминале 120 пространственный процессор 360 RX дополнительно оценивает нисходящую линию связи для получения информации о состоянии канала (ИСК, CSI). ИСК может включать в себя оценки характеристики канала, принятые отношения сигнал/шум (ОСШ, SNR) и т.п. Процессор 370 данных RX также может предоставлять статус каждого пакета/кадра, принимаемого по нисходящей линии связи. Контроллер 380 принимает информацию о состоянии канала и статус пакета/кадра и определяет информацию обратной связи, подлежащую посылке обратно на точку доступа. Информация обратной связи обрабатывается процессором 390 данных ТХ и пространственным процессором 392 ТХ (если он присутствует), приводится в определенное состояние одним или несколькими модуляторами 354 и передается при помощи одной или нескольких антенн 352 обратно на точку доступа.
В точке 110 доступа передаваемый сигнал(ы) восходящей линии связи принимается антеннами 324, демодулируется демодуляторами 322 и обрабатывается пространственным процессором 340 RX и процессором 342 данных RX взаимодополняющим образом к обработке, которая была выполнена на абонентском терминале. Восстановленная информация обратной связи затем подается на контроллер 330 и планировщик 334.
В одном варианте осуществления планировщик 334 использует информацию обратной связи для выполнения ряда функций, таких как (1) выбор набора абонентских терминалов для передачи данных по нисходящей линии связи и восходящей линии связи, (2) выбор скорости (скоростей) передачи и режима передачи для каждого выбранного абонентского терминала и (3) назначение доступных ресурсов ПК/ОК выбранным терминалам. Планировщик 334 и/или контроллер 330 дополнительно используют информацию (например, векторы управления), полученную из передачи восходящей линии связи, для обработки передачи нисходящей линии связи.
Как упомянуто выше, ряд служб и приложений могут поддерживаться МВМВ-БЛС-системой, и различные транспортные каналы могут быть определены для МВМВ-БЛС-системы для пересылки различных типов данных. В таблице 3 перечисляется примерный набор транспортных каналов, и она также предоставляет краткое описание для каждого транспортного канала.
Таблица 3 | ||
Транспортные каналы | Описание | |
Широковещательный канал | ШВК | Используется точкой доступа для передачи пилот-сигнала и параметров системы на абонентские терминалы. |
Прямой канал управления | ПКУ | Используется точкой доступа для распределения ресурсов на нисходящую линию связи и восходящую линию связи. Распределение ресурсов может выполняться на покадровой основе. Также используется для предоставления подтверждения приема для сообщений, принимаемых по КПД. |
Прямой канал | ПК | Используется точкой доступа для передачи специфических для конкретного абонента данных на абонентские терминалы и, возможно, опорного сигнала (пилот-сигнала), используемого абонентскими терминалами для оценки канала. Также может использоваться в широковещательном режиме для посылки сообщений поискового вызова и широковещательных сообщений многочисленным абонентским терминалам. |
Канал произвольного доступа | КПД | Используется абонентскими терминалами для получения доступа к системе и посылки коротких сообщений на точку доступа. |
Обратный канал | ОК | Используется абонентскими терминалами для передачи данных на точку доступа. Также может передавать опорный сигнал, используемый точкой доступа для оценки канала. |
Как показано в таблице 3, транспортные каналы нисходящей линии связи, используемые точкой доступа, включают в себя ШВК, ПКУ и ПК. Транспортные каналы восходящей линии связи, используемые абонентскими терминалами, включают в себя КПД и ОК. Для специалиста в данной области техники должно быть понятно, что транспортные каналы, перечисленные в таблице 3, представляют примерный вариант осуществления канальной структуры, которая может использоваться для МВМВ-БЛС-системы. Меньшее количество каналов, дополнительные и/или другие транспортные каналы также могут быть определены для использования в МВМВ-БЛС-системе. Например, определенные функции могут поддерживаться специфическими для конкретной функции транспортными каналами (например, канал пилот-сигнала, канал поискового вызова, канал управления мощностью и канал синхронизации). Таким образом, другие канальные структуры с различными наборами транспортных каналов могут быть определены и использованы в МВМВ-БЛС-системе в пределах объема изобретения.
Несколько структур кадра могут быть определены для транспортных каналов. Конкретная структура кадра для использования в МВМВ-БЛС-системе зависит от различных факторов, таких как, например, (1) используются ли одинаковые или различные полосы частот для нисходящей линии связи и восходящей линии связи, и (2) схема мультиплексирования, используемая для мультиплексирования вместе транспортных каналов.
Если доступна только одна полоса частот, тогда нисходящая линия связи и восходящая линия связи могут передаваться в различных фазах кадра, используя дуплексную связь с временным разделением каналов (ВДР). Если доступны две полосы частот, тогда нисходящая линия связи и восходящая линия связи могут передаваться по различным полосам частот, используя дуплексную связь с частотным разделением каналов (ЧДР).
Как для ВДР, так и для ЧДР транспортные каналы могут мультиплексироваться вместе, используя мультиплексирование с временным разделением каналов (ВРК), мультиплексирование с кодовым разделением каналов (КРК), мультиплексирование с частотным разделением каналов (ЧРК) и т.п. Для ВРК каждый транспортный канал назначается различной части кадра. Для КРК транспортные каналы передаются одновременно, но каждый транспортный канал образуется посредством разного каналообразующего кода, подобно тому, что выполняется в системе многостанционного доступа с кодовым разделением каналов (МДКР). Для ЧРК каждый транспортный канал назначается различной части полосы частот линии связи.
В таблице 4 перечисляются различные структуры кадра, которые могут использоваться для передачи транспортных каналов. Каждая из этих структур кадра более подробно описывается ниже.
Таблица 4 | ||
Совместно используемая полоса частот для нисходящей линии связи и восходящей линии связи | Отдельные полосы частот для нисходящей линии связи и восходящей линии связи | |
Временное разделение | Структура кадра ВДР-ВРК | Структура кадра ЧДР-ВРК |
Кодовое разделение | Структура кадра ВДР-КРК | Структура кадра ЧДР-КРК |
Фиг.4А иллюстрирует вариант осуществления структуры 400а кадра ВДР-ВРК, которая может использоваться, если одна полоса частот используется как для нисходящей линии связи, так и для восходящей ли