Растворимая ассоциативная карбоксиметилцеллюлоза, содержащие ее композиции, способ ее получения и применения

Иллюстрации

Показать все

Изобретение относится к получению водорастворимой ассоциативной карбоксиметилцеллюлозы (КМЦ), которая проявляет уникальные и в высокой степени благоприятные реологические и эксплуатационные свойства, и может быть использовано в пищевой, фармацевтической промышленности, при производстве персональных средств ухода, бумаги, строительных и конструкционных материалов, на нефтепромыслах и других отраслях народного хозяйства. Карбоксиметилцеллюлоза (КМЦ) имеет коэффициент соотношения относительной вязкости КМЦ в 6М мочевине и относительной вязкости КМЦ в воде меньше 0,9. Способ получения КМЦ включает: а) реакцию в суспензионном процессе источника целлюлозы и примерно 50-80 мас.% от стехиометрического количества NaOH в течение достаточного периода времени и при достаточной температуре для образования щелочной целлюлозы; б) доведение общего количества щелочи до примерно стехиометрического уровня, добавление монохлоруксусной кислоты в достаточном количестве и реакцию в суспензии при температуре и в течение времени, достаточных для осуществления этерификации с получением указанного КМЦ продукта. Фармацевтическая композиция в твердой дозированной форме содержит указанный продукт в качестве связующего или покрытия и дополнительно фармацевтически активный компонент. 8 н. и 22 з.п. ф-лы, 7 ил., 3 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к водорастворимым карбоксиметилцеллюлозам (КМЦ), которые проявляют уникальные и очень хорошие реологию и эксплуатационные свойства в системах конечного применения, и к способу их получения. КМЦ по настоящему изобретению проявляют ассоциативное поведение как в чистых растворах, так и в наполненных системах. Такая ассоциация является обратимой при сдвиге, что повышает ее эффективность.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Карбоксиметилцеллюлоза (КМЦ) представляет собой один из самых универсальных и широко применяемых простых эфиров целлюлозы в качестве компонента водных систем. Она может выполнять функции суспендирующего агента, загустителя, защитного коллоида, увлажнителя и быть использована для регулирования кристаллизации некоторых других компонентов. КМЦ физиологически инертна и представляет собой анионоактивный полиэлектролит. Вышеупомянутые характеристики делают КМЦ приемлемой для использования в широком диапазоне применений в пищевой, фармацевтической промышленности, в персональных средствах ухода, в производстве бумаги, в строительных и конструкционных материалах, на нефтепромыслах и в других отраслях промышленности.

Существует много типов доступных технических КМЦ с варьируемыми средней степенью полимеризации и замещения. Химические и физические свойства КМЦ зависят не только от средней степени полимеризации и замещения, но также от общей растворимости КМЦ, равно как и распределения карбометоксизаместителей вдоль целлюлозных цепей. В данной области техники хорошо известны как равномерно, так и блочно замещенные КМЦ. Блочно замещенные КМЦ могут быть получены уменьшением СЗ и/или изменением процесса получения. Однако способы, целью осуществления которых является блочно замещенная КМЦ, позволяют получать КМЦ с ограниченной растворимостью. Во многих случаях при применении в водных средах существенная часть КМЦ образует набухший гель. Такие гели нежелательны для многих применений, таких как приготовление зубной пасты, в которой гелевая структура придает зубной пасте нежелательный желатинообразный внешний вид.

В переизданном патенте US Re 32976 описана равномерно замещенная, стойкая к действию ферментов и солей КМЦ, которую получают с использованием этерифицирующего агента, который включает по меньшей мере 50% изопропилмонохлорацетата. Равномерно замещенные КМЦ не проявляют ассоциативных свойств по настоящему изобретению. КМЦ по настоящему изобретению получают из монохлоруксусной кислоты или натрийхлорацетата, не изопропилмонохлорацетата.

В патенте US 4579943 описана КМЦ, которая обладает высокой способностью абсорбировать жидкости и которую дериватизируют из регенерированной целлюлозы, имеющей форму II целлюлозы. Такие КМЦ характеризуются относительно низкой СЗ (0,1-0,64) и по существу нерастворимы в воде. КМЦ по настоящему изобретению дериватизируют из целлюлозы I, а не целлюлозы II или регенерированной целлюлозы.

В публикации WO 99/20657 описана КМЦ, которая в особых условиях испытания при концентрации 0,5% имеет тангенс дельта меньше 1,0. КМЦ по настоящему изобретению при 0,5%-ной концентрации не имеют тангенс дельта меньше 1,0.

В публикации G.Mann, J.Kunze, F.Loth и Н-Р Fink из Fraunhofer Institut fur Angewandte Polymerforschung, озаглавленной "Cellulose ethers with a Block-like Distribution of the Substituents by Structure-selective Derivatization of Cellulose", Polymer, т.39, №14, сс.3155-3165, изданной в 1998 г., описаны получение и испытание блокоподобного распределения КМЦ. Такую КМЦ готовят реакцией ступенчатой этерификации, где систематическое карбоксиметилирование проводят в водно-спиртовой среде при одновременном поддержании низкой концентрации NaOH (молярное соотношение NaOH/AGU<0,6). Щелочную целлюлозу получают при повышенных температурах (50-70°С). Сказано, что при осуществлении этого способа получают блокоподобные простые эфиры целлюлозы, содержащие КМЦ, или простые эфиры-сложные эфиры целлюлозы с чередующимися гидрофильными и гидрофобными сегментами, а также сегментами с различными ионными цепями. Такие КМЦ представляют собой набухшие частицы в воде и обладают несущественной растворимостью. КМЦ по настоящему изобретению получают при повышенных значениях соотношения NaOH/AGU (от примерно 1,1 до примерно 1,9) и низких температурах щелочной целлюлозы (20-30°С), они в значительной степени растворимы в воде.

Все еще существует потребность в ассоциативной тиксотропной КМЦ, которая проявляет ассоциативное поведение как в чистых растворах, так и в наполненных системах. Эта ассоциация обратима при сдвиге, что повышает эффективность. Такая реология обеспечивает высокую эффективность загущения и стабилизирует эмульсии и суспензии, а также, тем не менее, позволяет проявлять технологические преимущества, такие как легкость перекачивания или распределения, благодаря характеристикам обратимого сдвигового разжижения ассоциативной сетчатой структуры.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к композиции, обладающей ассоциативными и тиксотропными свойствами, содержащей карбоксиметилцеллюлозу, имеющую коэффициент соотношения относительной вязкости КМЦ в 6М мочевине и относительной вязкости КМЦ в воде меньше 0,9.

В частном случае осуществления изобретения указанный коэффициент соотношения составляет меньше 0,8.

Удельную пропорцию мочевины определяют следующим образом:

Объектом настоящего изобретения является также способ получения КМЦ, включающий: а) реакцию в суспензионном процессе источника целлюлозы и от примерно 50 до 80 мас.% от стехиометрического количества NaOH в течение достаточного периода времени и при достаточной температуре для образования щелочной целлюлозы; б) добавление в щелочную целлюлозу некоторого количества NaOH для доведения общего количества щелочи до примерно стехиометрического уровня и в) сразу же после стадии б) добавление монохлоруксусной кислоты на стадию б) в достаточном количестве и реакцию в суспензии при температуре и в течение времени, достаточных для осуществления этерификации с получением КМЦ-продукта.

Еще одним объектом изобретения является смешанная композиция, содержащая композицию КМЦ и другой водорастворимый или способный набухать в воде полимер.

Настоящее изобретение также охватывает применение КМЦ по настоящему изобретению в водной системе модификатора реологии в качестве связующего компонента персонального средства ухода, бытового средства ухода, краски, строительных и конструкционных материалов, в фармацевтических средствах, на нефтяных промыслах, в пищевых продуктах, при изготовлении бумаги или в композиции для нанесения покрытия на бумагу.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 приведен график вязкости зубной пасты с течением времени.

На фиг.2 приведен график предварительно нормализованной вязкости зубной пасты с течением времени.

На фиг.3 приведен график структуры зубной пасты с течением времени.

На фиг.4 приведен график предварительно нормализованной структуры зубной пасты с течением времени.

На фиг.5 приведен график значений сопротивления раздавливанию смесей полимеров.

На фиг.6 приведен график количества (в процентах) лекарственного средства, растворенного с течением времени.

На фиг.7 приведен график количества (в процентах) лекарственного средства, растворенного с течением времени.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Было установлено, что КМЦ проявляет уникальные и очень хорошие реологию и эксплуатационные свойства в системах конечного применения.

В соответствии с настоящим изобретением вязкость наращивают не только до значений, обычных для КМЦ, но также благодаря существенному содействию молекулярной ассоциации. Эта ассоциация приводит к образованию сетчатой структуры и возникновению желеобразных реологических свойств. Тот факт, что ассоциация является обратимой при сдвиге, повышает эффективность.

Было установлено, что применение КМЦ по настоящему изобретению позволяет уменьшить необходимое количество используемой КМЦ и сообщает характерные реологические признаки, уникальные, если сравнивать с другими КМЦ, доступными на сегодняшний день. Уникальная реология обеспечивает высокую эффективность загущения и стабилизирует эмульсии и суспензии. Применение КМЦ по настоящему изобретению обеспечивает значительно улучшенные эксплуатационные свойства, если сравнивать с известными КМЦ, в водных системах, включая композиции персональных средств ухода (например, зубная паста, средство ухода за кожей и средство ухода за волосами), медицинское средство ухода (например, средство для обработки ран и при травмах костей), в пищевых продуктах (т.е. смеси для плоских маисовых лепешек, сухие смеси для кексов, выпечки хлеба, хлеб, мороженое, сметана, пастеризованные пастообразные плавленые сыры и продукты питания на основе сыра), напитки (т.е. растворимые концентраты для холодных/горячих напитков, готовые к употреблению напитки и фруктовые напитки с вкусовым наполнителем), системы красок, строительные и конструкционные материалы (такие как соединительные композиции, строительные растворы, бетон, уплотнение и цемент), средства обработки минералов, композиции для нефтепромыслов (например, буровые растворы, жидкости для заканчивания скважин), изготовление бумаги и композиции для нанесения покрытия на бумагу, бытовые средства (например, моющие средства для белья, мягчители для тканей) и фармацевтические препараты.

Когда композиция в соответствии с настоящим изобретением представляет собой композицию персонального средства ухода, она включает (а) от примерно 0,1% до примерно 99,0 мас.% связующего компонента и (б) по меньшей мере одного активного компонента персонального средства ухода. Примерами по меньшей мере одного активного компонента персонального средства ухода являются дезодорант, охладители кожи, мягчительные средства, антиперспирантные вещества, увлажняющие вещества, очищающие агенты, солнцезащитные вещества, средства ухода за волосами, средства ухода за полостью рта, изделия из тонкой бумаги и косметические добавки.

В соответствии с настоящим изобретением композиция представляет собой композицию бытового средства ухода, она включает (а) от примерно 0,1% до примерно 99,0 мас.% связующего компонента и (б) по меньшей мере одного активного компонента бытового средства ухода. Примерами по меньшей мере одного активного компонента бытового средства ухода являются действующие вещества мыл в виде брусков, гелей и жидкостей, универсальные очищающие средства, дезинфицирующий компонент, очищающие средства для ковров и обивочных материалов, мягчители для белья, компоненты моющих средств для белья, посудомоющие средства, очищающие средства для унитазов и текстильные клеящие средства.

В дополнение к компонентам, обычно используемым в персональном средстве ухода и бытовом средстве ухода, композиция в соответствии с настоящим изобретением может также необязательно включать такие компоненты, как красящее вещество, консервант, антиоксидант, питательные добавки, усилитель активности, эмульгаторы, загущающие средства (такие как соли, т.е. NaCl, NH4Cl и KCl, водорастворимые или способные набухать в воде полимеры, т.е. гидроксиэтилцеллюлоза, и жирные спирты, т.е. цетиловый спирт), спирты, содержащие от 1 до 6 углеродных атомов, жиры и масла.

КМЦ можно также использовать в сочетании с другими известными модификаторами реологии, включающими, хотя ими их список не ограничен, неионогенные, анионные или катионные полимеры, полисахариды (например, каррагенан, кизельгур, гиалуроновую кислоту, глюкозаминогликан, гидроксиэтилцеллюлозу, гидрофобно модифицированную гидроксиэтилцеллюлозу, этилгидроксиэтилцеллюлозу, гидроксипропилметилцеллюлозу, гидроксиэтилметилцеллюлозу, метилцеллюлозу, катионоактивный кизельгур, карбомер), биополимеры (например, ксантан), синтетические полимеры (полиэтиленгликоль, поливинилацетат, хлоргексадиен) и загущающие кремнеземы.

Применение КМЦ в композициях зубных паст в производстве зубных паст в качестве связующей системы для зубной пасты, которая сообщает зубной пасте необходимую высокую структуру, известно хорошо. Такая связующая система включает представители КМЦ вместе с другими полисахаридами, неорганическими солями, хелатообразователями и их сочетаниями.

Технически доступные представители КМЦ варьируются по степени структуры, которую они сообщают зубной пасте. Высокотиксотропным маркам КМЦ свойственна тенденция сообщать зубной пасте более высокую структуру. Этим тиксотропным представителям КМЦ также свойственна тенденция способствовать большему последующему загущению.

Целлюлозная смола (КМЦ) самостоятельно служит традиционным связующим веществом для зубной пасты. В зубной пасте КМЦ обеспечивает вязкость, устойчивость или структуру и подавление синерезиса. Известно также, что зубная паста, приготовленная с КМЦ, обладает низкой скоростью нарастания вязкости в течение срока годности при хранении зубной пасты, не достигая, таким образом, стабильной вязкости по истечении первых 30 дней или дольше. Это называют также "последующим загущением".

Другими связующими веществами, обычно используемыми в зубной пасте, являются каррагенан или совместно каррагенан и ксантан. Каррагенан и ксантан обеспечивают хорошие устойчивость, вязкость и подавление синерезиса, однако они являются более дорогими альтернативами, если их сравнивать с КМЦ. Зубной пасте, приготовленной с каррагенаном и ксантаном, свойственно проявление стабильной вязкости достаточно быстро после обработки и незначительного последующего загущения.

В соответствии с настоящим изобретением КМЦ может быть использована либо самостоятельно либо в сочетании с другими полисахаридами, синтетическими полимерами и/или солями и обеспечивает высокие эффективности и улучшенные эксплуатационные свойства. Неожиданные результаты выполнения настоящего изобретения продемонстрированы на приведенных в дальнейшем примерах зубной пасты.

Применение КМЦ по настоящему изобретению дает возможность их использовать в количестве, уменьшенном примерно на 40%, при одновременном сохранении решающих свойств зубных паст, таких как устойчивость, блеск и подавление синерезиса. Уменьшенные используемые количества и/или характеристики сдвигового разжижения КМЦ могут придать свойствам зубных паст дополнительные преимущества, такие как улучшенное высвобождение ароматизирующих веществ, улучшенное выделение действующих веществ, улучшенное выделение фторидов, повышенный блеск, улучшенную выдавливаемость из тюбика и улучшенную противомикробная эффективность. Потенциальные усовершенствования процесса приготовления зубной пасты включают, хотя ими их список не ограничен, уменьшение количества захватываемого воздуха во время процесса приготовления, улучшение процессов смешения и улучшение экструзии внутрь тюбиков.

Водные композиции для нанесения защитных покрытий (обычно называемые красками), в которых, как правило, используют производные простых эфиров целлюлозы, включают латексные краски или дисперсионные краски, основными компонентами которых являются пленкообразующие латексы, такие как стирол-бутадиеновые сополимеры, винилацетатные полимеры и сополимеры и акриловые полимеры и сополимеры. Как правило, они также содержат придающие непрозрачность пигменты, диспергаторы и водорастворимые защитные коллоиды, причем их доли в пересчете на массу всей композиции составляют от примерно 10 до примерно 50 част. латекса, от примерно 10 до примерно 50 част. придающего непрозрачность пигмента, от примерно 0,1 до примерно 2 част. диспергатора и от примерно 0,1 до примерно 2 част. водорастворимого защитного коллоида.

Водорастворимые защитные коллоиды, обычно используемые при приготовлении латексных красок (для стабилизации латексов и более длительного в применении сохранения мокрой кромки окрашенного участка), включают казеин, метилцеллюлозу, гидроксиэтилцеллюлозу (ГЭЦ), натрийкарбоксиметилцеллюлозу (КМЦ), поливиниловый спирт, крахмал и полиакрилат натрия. Недостатки простых эфиров целлюлозы природного происхождения заключаются в том, что они могут оказаться чувствительными к биологической деструкции и часто придают свойства плохого растекания и выравнивания, тогда как синтетическим материалам, таким как поливиниловый спирт, часто не хватает достаточной загущающей эффективности для сохранения устойчивости против образования потеков. Загущающую эффективность простых эфиров целлюлозы обычно улучшают увеличением их молекулярной массы, что, как правило, является более дорогостоящим мероприятием.

В соответствии с настоящим изобретением КМЦ могут быть использованы в уменьшенных количествах в красках и обеспечивают неожиданно высокие качественные результаты. Это проиллюстрировано в дальнейшем в рабочих примерах.

КМЦ по настоящему изобретению получают с использованием обычных суспензионных технологических методов. Так, например, реакцию изопропилового спирта, воды и примерно 50-80% стехиометрического количества NaOH с целлюлозой проводят при температуре примерно 20°С в течение достаточного количества времени для получения щелочной целлюлозы, примерно 1,5 ч. Добавляют достаточное количество NaOH для доведения общего содержания NaOH до стехиометрических или слегка более высоких уровней и вскоре после второго добавления NaOH добавляют монохлоруксусной кислоты. Что касается реакционных условий, то для осуществления этерификации в течение примерно от одного до двух часов температуру, как правило, повышают до примерно 70°С. Молекулярную массу и вязкость КМЦ можно регулировать (уменьшать) добавлением после этерификации окислителя, такого как пероксид водорода. Затем реакционную смесь необязательно охлаждают, избыток основания нейтрализуют, если необходимо, и продукт промывают. Далее этот продукт может быть высушен и измельчен. Имеющая решающее значение особенность настоящего изобретения состоит в том, что количество щелочи, используемой для осуществления этерификации, меньше стехиометрического и что оставшуюся щелочь добавляют непосредственно перед этерифицирующим агентом. Степень замещения КМЦ составляет от примерно 0,6 до примерно 1,2.

В соответствии с настоящим изобретением такую КМЦ можно отличить от ранее известных КМЦ по ее существенной растворимости в окружающей водной среде и по ее поведению в окружающей среде, которая не благоприятствует ассоциации. Известен тот факт, что мочевина разрушает ассоциацию, разрывая водородные связи. Предлагаемые КМЦ проявляют уменьшение вязкости в присутствии мочевины, как это определяют по удельной пропорции мочевины. Удельную пропорцию мочевины определяют следующим образом:

ПРИМЕРЫ

Следующие примеры приведены просто для иллюстративных целей, но необходимо иметь в виду, что не выходя из сущности и объема изобретения могут быть осуществлены другие варианты выполнения настоящего изобретения, которые находятся в компетенции специалиста в данной области техники. Во всех случаях, если специально не указано иное, все проценты и части являются массовыми.

Пример 1

Изопропиловый спирт (ИПС, 696,67 г) и деионизированную (ДИ) воду (76,945 г) загружали в снабженный рубашкой реактор из полимерной смолы, оборудованный смесителем с воздушным приводом, мешалкой из нержавеющей стали, капельной воронкой с уравновешенным давлением, обратным холодильником, источником вакуума, впускным приспособлением для азота и термопарой. В реактор добавляли целлюлозную волокнистую массу (65,0 г, 6,4% влаги), реактор герметизировали и скорость вращения мешалки регулировали для достижения хорошего перемешивания. В реакторе создавали инертную атмосферу и смесь охлаждали до 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 60,92 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 1 ч при 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 16,02 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 5 мин при 20°С. Через открытое впускное отверстие реактора в него добавляли монохлоруксусную кислоту (МХК, 42,91 г), поддерживая температуру суспензии в реакторе 20°С. После завершения добавления МХК реакционную суспензию нагревали до 70°С и выдерживали в течение 1,5 ч. Реакционную суспензию фильтровали и полученный мокрый фильтровальный пирог три раза промывали 565 г 80%-ного водного метанола и один раз 1000 г чистого метанола. Полученный мокрый фильтровальный пирог разбивали на небольшие частицы и сушили в сушилке с псевдоожиженным слоем в течение 35 мин (сушка воздухом в течение 5 мин, горячая сушка при 50°С в течение 10 мин и горячая сушка при 70°С в течение дополнительных 20 мин). Продукт измельчали в приборе Retsch Grinding Mill с использованием сита с размером ячеек 1 мм. Степень замещения (СЗ) составляла 0,89.

Пример 2

Изопропиловый спирт (ИПС, 696,67 г) и деионизированную (ДИ) воду (76,945 г) загружали в снабженный рубашкой реактор из полимерной смолы, оборудованный смесителем с воздушным приводом, мешалкой из нержавеющей стали, капельной воронкой с уравновешенным давлением, обратным холодильником, источником вакуума, впускным приспособлением для азота и термопарой. В реактор добавляли целлюлозную волокнистую массу (65,0 г, 6,4% влаги), реактор герметизировали и скорость вращения мешалки регулировали для достижения хорошего перемешивания. В реакторе создавали инертную атмосферу и смесь охлаждали до 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 60,92 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 1 ч при 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 16,02 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 5 мин при 20°С. Через открытое впускное отверстие реактора в него добавляли монохлоруксусную кислоту (МХК, 42,91 г), поддерживая температуру суспензии в реакторе 20°С. После завершения добавления МХК реакционную суспензию нагревали до 70°С и выдерживали в течение 1,5 ч. В реактор добавляли 1,6 мл 6%-ной Н2О2 и суспензию выдерживали при 70°С в течение 30 мин. Реакционную суспензию фильтровали и полученный мокрый фильтровальный пирог три раза промывали 565 г 80%-ного водного метанола и один раз 1000 г чистого метанола. Полученный мокрый фильтровальный пирог разбивали на небольшие частицы и сушили в сушилке с псевдоожиженным слоем в течение 35 мин (сушка воздухом в течение 5 мин, горячая сушка при 50°С в течение 10 мин и горячая сушка при 70°С в течение дополнительных 20 мин). Продукт измельчали в приборе Retsch Grinding Mill с использованием сита с размером ячеек 1 мм. Степень замещения (СЗ) составляла 0,87.

Пример 3

Изопропиловый спирт (ИПС, 123,4 галлона), воду (130,3 фунта), метанол (6,36 галлона) и NaOH (хлопья, 35,4 фунта) загружали в реактор. В реакторе создавали инертную атмосферу и смесь каустическая сода/растворитель охлаждали до примерно 20°С, после чего в реактор добавляли целлюлозную волокнистую массу (108 фунтов, 4% влаги). Интенсивность перемешивания регулировали для достижения хорошего перемешивания суспензии и суспензию вновь охлаждали до примерно 20°С. Реакционную суспензию выдерживали в течение 1 ч при 20°С.

В реактор добавляли водный NaOH (50%-ный, 58,7 фунта) и после завершения добавления каустической соды реакционную смесь выдерживали в течение 15 мин при 20°С. В реактор добавляли монохлоруксусную кислоту (МХК, 70,5 фунта), ИПС (9,0 галлона), дихлоруксусную кислоту (ДХК, 926,8 г) и уксусную кислоту (79,9 г), поддерживая температуру суспензии в реакторе 20°С. После того как завершали добавление МХК, реакционную суспензию нагревали до 70°С и выдерживали в течение 1 ч. В реактор добавляли 282 г 18%-ной Н2О2 и суспензию выдерживали при 70°С в течение 60 мин.

Реакционную суспензию центрифугировали и мокрый фильтровальный пирог промывали три раза 300 галлонами 80%-ного метанола и два раза 300 галлонами 100%-ного метанола. Этот материал сушили в сушилке Abbe под вакуумом при 80-90°С до влагосодержания 4-6%. Продукт измельчали в микромельнице тонкого помола и просеивали через сито с размером ячеек 0,0278 дюйма. Степень замещения (СЗ) составляла 0,79.

Пример 4

Условия примера 3 повторяли. СЗ составляла 0,78.

Пример 5

Изопропиловый спирт (ИПС, 121,9 галлона), воду (130,0 фунта), метанол (6,29 галлона) и NaOH (хлопья, 45,6 фунта) загружали в реактор. В реакторе создавали инертную атмосферу и смесь каустическая сода/растворитель охлаждали до примерно 20°С, после чего в реактор добавляли целлюлозную волокнистую массу (108 фунтов, 4% влаги). Интенсивность перемешивания регулировали для достижения хорошего перемешивания суспензии и суспензию вновь охлаждали до примерно 20°С. Реакционную суспензию выдерживали в течение 1 ч при 20°С.

В реактор добавляли водный NaOH (50%-ный, 58,7 фунта) и после завершения добавления каустической соды реакционную смесь выдерживали в течение 15 мин при 20°С. В реактор добавляли монохлоруксусную кислоту (МХК, 81,0 фунта), ИПС (9,0 галлона), дихлоруксусную кислоту (ДХК, 1065,9 г) и уксусную кислоту (91,9 г), поддерживая температуру суспензии в реакторе 20°С. После того как завершали добавление МХК, реакционную суспензию нагревали до 70°С и выдерживали в течение 1 ч. В реактор добавляли 188 г 18%-ной Н2О2 и суспензию выдерживали при 70°С в течение 60 мин.

Реакционную суспензию центрифугировали и мокрый фильтровальный пирог промывали три раза 300 галлонами 80%-ного метанола и два раза 300 галлонами 100%-ного метанола. Этот материал сушили в сушилке Abbe под вакуумом при 80-90°С до влагосодержания 4-6%. Продукт измельчали в микромельнице тонкого помола и просеивали через сито с размером ячеек 0,0278 дюйма. Степень замещения (СЗ) составляла 0,86.

Пример 6

Условия примера 5 повторяли. СЗ составляла 0,86.

Пример 7

В реактор загружали изопропиловый спирт (ИПС, 121,1 галлона), воду (146,0 фунта), метанол (6,24 галлона) и NaOH (хлопья, 35,4 фунта). В реакторе создавали инертную атмосферу и смесь каустическая сода/растворитель охлаждали до примерно 20°С, после чего в реактор добавляли целлюлозную волокнистую массу (108 фунтов, 4% влаги). Интенсивность перемешивания регулировали для достижения хорошего перемешивания суспензии и суспензию вновь охлаждали до примерно 20°С. Реакционную суспензию выдерживали в течение 1 ч при 20°С.

В реактор добавляли водный NaOH (50%-ный, 58,7 фунта) и после завершения добавления каустической соды реакционную смесь выдерживали в течение 15 мин при 20°С. В реактор добавляли монохлоруксусную кислоту (МХК, 70,5 фунта), ИПС (9,0 галлона), дихлоруксусную кислоту (ДХК, 926,8 г) и уксусную кислоту (79,9 г), поддерживая температуру суспензии в реакторе 20°С. После того как завершали добавление МХК, реакционную суспензию нагревали до 70°С и выдерживали в течение 1 ч. В реактор добавляли 282 г 18%-ной H2O2 и суспензию выдерживали при 70°С в течение 60 мин.

Реакционную суспензию центрифугировали и мокрый фильтровальный пирог промывали три раза 300 галлонами 80%-ного метанола и два раза 300 галлонами 100%-ного метанола. Этот материал сушили в сушилке Abbe под вакуумом при 80-90°С до влагосодержания 4-6%. Продукт измельчали в микромельнице тонкого помола и просеивали через сито с размером ячеек 0,0278 дюйма. Степень замещения (СЗ) составляла 0,79.

Пример 8

В реактор загружали изопропиловый спирт (ИПС, 14 кг), воду (2184 г), метанол (728,8 г). В реакторе создавали инертную атмосферу и смесь растворителей охлаждали до примерно 20°С, после чего в реактор добавляли целлюлозную волокнистую массу (1800 г, 3,6% влаги). Интенсивность перемешивания регулировали для достижения хорошего перемешивания суспензии, суспензию вновь охлаждали до примерно 20°С и в реактор добавляли NaOH (хлопья, 691,4 г). Реакционную суспензию выдерживали в течение 1 ч при 20°С.

В реактор добавляли водный NaOH (50%-ный, 353,6 г) и после завершения добавления каустической соды реакционную смесь выдерживали в течение 15 мин при 20°С. В реактор добавляли монохлоруксусную кислоту (МХК, 939,8 г), ИПС (977 г), дихлоруксусную кислоту (ДХК, 27,3 г) и уксусную кислоту (2,4 г), поддерживая температуру суспензии в реакторе 20°С. После того как завершали добавление МХК, реакционную суспензию нагревали до 70°С и выдерживали в течение 1 ч.

Реакционную суспензию фильтровали и полученный мокрый фильтровальный пирог три раза промывали 12 галлонами 80%-ного водного метанола и один раз 12 галлонами 95%-ного метанола. Этот материал сушили в вакуумной лотковой сушилке при 70°С до конечного влагосодержания 4-6%. Высушенный продукт измельчали в микромельнице тонкого помола и просеивали через сито с размером ячеек 0,0278 дюйма. Степень замещения составляла 0,73.

Пример 9

Изопропиловый спирт (ИПС, 696,67 г) и деионизированную (ДИ) воду (76,95 г) загружали в снабженный рубашкой реактор из полимерной смолы, оборудованный смесителем с воздушным приводом, мешалкой из нержавеющей стали, капельной воронкой с уравновешенным давлением, обратным холодильником, источником вакуума, впускным приспособлением для азота и термопарой. В реактор добавляли целлюлозную волокнистую массу (65,0 г, 6,8% влаги), реактор герметизировали и скорость вращения мешалки регулировали для достижения хорошего перемешивания. В реакторе создавали инертную атмосферу и смесь охлаждали до 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 60,92 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 1 ч при 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 36,37 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 5 мин при 20°С. Через открытое впускное отверстие реактора в реактор добавляли монохлоруксусную кислоту (МХК, 42,91 г), поддерживая температуру суспензии в реакторе 20°С. После завершения добавления МХК реакционную суспензию нагревали до 70°С и выдерживали в течение 1,5 ч. В реактор добавляли 1,6 мл 6%-ной Н2О2 и суспензию выдерживали при 70°С в течение 30 мин. Реакционную суспензию фильтровали и полученный мокрый фильтровальный пирог три раза промывали 565 г 80%-ного водного метанола и один раз 1000 г чистого метанола. Полученный мокрый фильтровальный пирог разбивали на небольшие частицы и сушили в сушилке с псевдоожиженным слоем в течение 35 мин (сушка воздухом в течение 5 мин, горячая сушка при 50°С в течение 10 мин и горячая сушка при 70°С в течение дополнительных 20 мин). Продукт измельчали в приборе Retsch Grinding Mill с использованием сита с размером ячеек 1 мм. Степень замещения (СЗ) составляла 0,62. Вязкость 1%-ной водной среды была равной 2200 сП.

Пример 10

Изопропиловый спирт (ИПС, 713,86 г) и деионизированную (ДИ) воду (73,79 г) загружали в снабженный рубашкой реактор из полимерной смолы, оборудованный смесителем с воздушным приводом, мешалкой из нержавеющей стали, капельной воронкой с уравновешенным давлением, обратным холодильником, источником вакуума, впускным приспособлением для азота и термопарой. В реактор добавляли целлюлозную волокнистую массу (65,0 г, 3,7% влаги), реактор герметизировали и скорость вращения мешалки регулировали для достижения хорошего перемешивания. В реакторе создавали инертную атмосферу и смесь охлаждали до 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 39,98 г), поддерживая температуру суспензии на уровне 20°С. После того как добавление каустической соды завершали, реакционную смесь выдерживали в течение 1 ч при 20°С.

В реактор через капельную воронку медленно добавляли водный NaOH (50%-ный, 35,77 г), поддерживая температуру суспензии на уровне 20°С. После завершения добавления каустической соды реакционную смесь выдерживали в течение 5 мин при 20°С. Через открытое впускное отверстие реактора в него добавляли монохлоруксусную кислоту (МХК, 42,25 г), поддерживая температуру суспензии в реакторе 20°С. После завершения добавления МХК реакционную суспензию нагревали до 70°С и выдерживали в течение 1,5 ч. Реакционную суспензию фильтровали и полученный мокрый фильтровальный пирог три раза промывали 565 г 80%-ного водного метанола и один раз 1000 г чистого метанола. Полученный мокрый фильтровальный пирог разбивали на небольшие частицы и сушили в сушилке с псевдоожиженным слоем в течение 35 мин (сушка воздухом в течение 5 мин, горячая сушка при 50°С в течение 10 мин и горячая сушка при 70°С в течение дополнительных 20 мин). Продукт измельчали в приборе Retsch Grinding Mill с использованием сита с размером ячеек 1 мм. Степень замещения (СЗ) составляла 0,84. Вязкость 1%-ной водной среды была равной 3760 сП.

Пример 11

Этот пример иллюстрирует характеристики препаратов из образцов 1,0%-ной КМЦ по настоящему изобретению в 6,0 М растворе мочевины.

1%-ный раствор КМЦ готовили в следующем оборудовании:

установленная наверху мешалка Caframo RZR1, 8-унциевые стеклянные сосуды, вал мешалки из нержавеющей стали с двумя 3-лопастными пропеллерами (диаметром 1,5 дюйма) с использованием материала Parafilm®, деионизированной (ДИ) воды, продукта Germaben II.

0,50%-ный раствор продукта Germaben готовили добавлением продукта Germaben II в ДИ воду. Далее образовавшийся раствор взвешивали и помещали в 8-унциевый стеклянный сосуд. Затем раствор перемешивали установленной наверху мешалкой, одновременно быстро добавляя в раствор КМЦ. Содержание КМЦ составляло 1,0% от конечной массы образца. Массу КМЦ корректировали с учетом влагосодержания. Как только вязкость начинала повышаться, скорость вращения мешалки увеличивали до максимального значения, которое не вызывало расплескивания образца. При одновременном перемешивании сосуд накрывали материалом Parafilm с целью предотвратить выпаривание воды и ее потерю вследствие расплескивания. Образец перемешивали в течение одного часа. После одного часа перемешивания при наивысшей скорости скорость перемешивания уменьшали до положения 4 и его продолжали еще один час. Образец центрифугировали в течение приблизительно 5 мин для удаления захваченного воздуха.

Свойства образцов изучали в следующем оборудовании:

установленная наверху мешалка Caframo RZR1, 8-унциевые стеклянные сосуды, вал мешалки из нержавеющей стали с двумя 3-лопастными пропеллерами (диаметром 1 дюйм) с использованием материала Parafilm®, 6,0М мочевины (180,18 г мочевины, разбавленной до 500 мл).

Методика

6,0М раствор мочевины взвешивали и помещали в 8-унциевый стеклянный сосуд. Раствор перемешивали установленной наверху мешалкой Caframo RZR1, при этом в раствор быстро добавляли КМЦ. Содержание КМЦ составляло 1,0% конечной массы образца. Массу КМЦ корректировали с учетом влагосодержания. Как только вязкость начинала повышаться, скорость вращения мешалки увеличивали до максимального значения, которое не вызывало расплескивания образца. При одновременном перемешивании сосуд накрывали материалом Parafilm с целью предотвратить выпаривание воды и ее потерю вследствие расплескивания. Образец перемешивали в течение одного часа. После одного часа перемешивания при наивысшей скорости скорость перемешивания уменьшали до положения 4 и его продолжали еще один час. Образец центрифугировали в течение приблизительно 5 мин для удаления захваченного воздуха.

Пример 12

Значения динамической вязкости определяли при 25°С с помощью пластометра с регулируемой деформацией RFS III фирмы Rheometrics с использованием 40-миллиметрового инструмента с параллельной геометрией с з