Система беспроводной локальной вычислительной сети со множеством входов и множеством выходов

Иллюстрации

Показать все

Изобретение относится к беспроводной локальной вычислительной сети с множеством входов и выходов (MIMO). Технический результат состоит в увеличении пропускной способности передачи. Для этого система использует канальную структуру с несколькими конфигурируемыми транспортными каналами, поддерживает множество скоростей передачи и режимов передачи, которые можно конфигурировать на основе канальных условий и возможностей пользовательских терминалов, применяет пилотные структуры с несколькими типами пилот-сигнала (например, маяковый, (MIMO), управляемый эталон и пилот-сигнал несущей) для различных функций, реализует контуры управления скоростью передачи, синхронизацией и мощностью для надлежащей работы системы, и применяет случайный доступ для доступа к системе пользовательскими терминалами, быстрого подтверждения и быстрого назначения ресурсов. Может выполняться калибровка для учета различий в частотных откликах цепей передачи/приема в пункте доступа и пользовательских терминалах. Пространственная обработка затем может быть упрощена использованием преимуществ обратимого характера нисходящей и восходящей линий и калибровки. 6 н. и 12 з.п. ф-лы, 16 ил., 36 табл.

Реферат

Данная заявка испрашивает приоритет предварительной заявки США № 60/421.309, озаглавленной "Система БЛВС с множеством входов и множеством выходов", поданной 25 октября 2002.

Область техники

Настоящее изобретение относится в общем к передаче данных, более конкретно к системе связи беспроводной локальной вычислительной сети (БЛВС) (WLAN) со множеством входов и множеством выходов (МВхМВых) (MIMO).

Уровень техники

Системы беспроводной связи широко распространены для обеспечения различных типов передач, таких как передача речи, пакетных данных и т.д. Эти системы могут быть системами множественного доступа, способными поддерживать связь со множеством пользователей последовательно или одновременно путем совместного использования доступных системных ресурсов. Примеры систем множественного доступа включают в себя системы множественного доступа с кодовым разделением каналов (МДКР) (CDMA), системы множественного доступа с временным разделением каналов (МДВР) (TDMA) и системы множественного доступа с частотным разделением каналов (МДЧР) (FDMA).

Беспроводные локальные вычислительные сети (БЛВС) (WLAN) также широко распространены для обеспечения связи между беспроводными электронными приборами (например, компьютерами) по беспроводной линии. БЛВС может использовать пункты доступа (или базовые станции), которые действуют как концентраторы и обеспечивают возможность соединения для беспроводных приборов. Пункты доступа могут также связывать (или сопрягать) БЛВС с проводными ЛВС, тем самым предоставляя беспроводным приборам доступ к ресурсам ЛВС.

В системе беспроводной связи модулированный высокочастотный (ВЧ) сигнал от передающего блока может поступать в приемный блок по нескольким трассам распространения. Характеристики этих трасс распространения обычно изменяются во времени вследствие таких факторов, как замирания и многолучевое распространение. Чтобы обеспечить разнесенный режим для противодействия вредным эффектам на трассе распространения и улучшить производительность, можно использовать множество передающих и приемных антенн. Если трассы распространения между передающими и приемными антеннами линейно независимы (т.е. передача по одной трассе не формируется как линейная комбинация передач по другим трассам), что в общем случае справедливо по меньшей мере до некоторой степени, то вероятность точного приема передач данных возрастает по мере увеличения числа антенн. Обычно разнесение увеличивается и производительность улучшается по мере того, как увеличивается число передающих и приемных антенн.

Системы с множеством входов и множеством выходов (МВхМВых) используют для передачи данных множество () передающих антенн и множество () приемных антенн. Канал МВхМВых, образованный передающими антеннами и приемными антеннами, может быть разложен на пространственных каналов, при ≤ {min , }. Каждый из пространственных каналов соответствует одному измерению (размерности). Система МВхМВых может обеспечить улучшенную производительность (например, увеличенную пропускную способность передачи и (или) бóльшую надежность), если используются дополнительные размерности, созданные множеством передающих и приемных антенн.

Ресурсы для заданной системы связи, как правило, ограничиваются различными регулирующими ограничениями и требованиями, и иными практическими соображениями. Однако от системы может требоваться поддержка нескольких терминалов, обеспечение разнесенных услуг, достижение определенных уровней показателей и т.д.

Поэтому в технике имеется необходимость в системе БЛВС МВхМВых, способной поддерживать множество пользователей и обеспечивать высокую производительность системы.

Сущность изобретения

Заявлена система множественного доступа БЛВС МВхМВых, имеющая различные возможности и способная достичь высокой производительности. В варианте осуществления эта система применяет МВхМВых и мультиплексирование с ортогональным разделением частот (МОРЧ) (OFDM) для достижения высокой пропускной способности, борьбы с вредными эффектами на трассе распространения и обеспечения других выгод. Каждый пункт доступа в этой системе может поддерживать множество пользовательских терминалов. Выделение ресурсов нисходящей и восходящей линий зависит от требований пользовательских терминалов, канальных условий и иных факторов.

Также предлагается канальная структура, поддерживающая эффективные передачи нисходящей и восходящей линий. Эта канальная структура содержит ряд транспортных каналов, которые могут использоваться для таких функций, как сигнализация о параметрах системы и назначениях ресурсов, передача данных по нисходящей и восходящей линиям, случайный доступ системы и т.д. Различные свойства этих транспортных каналов являются конфигурируемыми, что позволяет системе легко адаптироваться к изменению канала и условиям загрузки.

Множество скоростей передачи и режимов передачи поддерживаются системой БЛВС МВхМВых, чтобы достичь высокой пропускной способности, когда она поддерживается канальными условиями и возможностями пользовательских терминалов. Эти скорости передачи устанавливаются на основании оценок канальных условий и могут выбираться независимо для нисходящей и восходящей линий. Могут также использоваться различные режимы передачи в зависимости от числа антенн в пользовательских терминалах и от канальных условий. Каждый режим передачи ассоциируется с различной пространственной обработкой в передатчике и приемнике и может выбираться для использования при различных рабочих условиях. Пространственная обработка облегчает передачу данных от множества передающих антенн и (или) прием данных множеством приемных антенн для более высокой пропускной способности и (или) более высокой степени разнесения.

В варианте осуществления система БЛВС МВхМВых использует единственную частотную полосу как для нисходящей, так и для восходящей линий, которые совместно используют одну и ту же рабочую полосу с использованием дуплексирования с временным разделением (ДВР) (TDD). Для системы ДВР канальные отклики нисходящей и восходящей линий являются взаимно обратными величинами. Здесь предлагаются методы калибровки для нахождения и учета различий в частотных откликах цепей передачи-приема в пункте доступа и пользовательских терминалах. Здесь также описываются методы для упрощения пространственной обработки в пункте доступа и пользовательских терминалах путем использования преимущества обратимости природы нисходящей и восходящей линий и калибровки.

Предлагается также структура пилот-сигналов с несколькими типами пилот-сигнала для различных функций. К примеру, маяковый пилот-сигнал может использоваться для захвата частоты и обнаружения системы, МВхМВых пилот-сигнал может использоваться для оценки канала, управляемый эталон (т.е. управляемый пилот-сигнал) может использоваться для улучшенной оценки канала, а несущий пилот-сигнал может использоваться для слежения за фазой.

Предлагаются также различные контура управления для надлежащей работы системы. Управление скоростью передачи может осуществляться независимо на нисходящей и восходящей линии. Управление мощностью может осуществляться для некоторых передач (к примеру, услуг с фиксированной скоростью передачи). Управление синхронизацией может использоваться для передач восходящей линии, чтобы учитывать различные задержки распространения для пользовательских терминалов, расположенных повсюду в системе.

Предлагаются также методы случайного доступа для обеспечения пользовательским терминалам возможности доступа к системе. Эти методы поддерживают доступ к системе множества пользовательских терминалов, быстрое уведомление о попытках доступа к системе и быстрое назначение ресурсов нисходящей/восходящей линий.

Ниже более подробно описываются различные аспекты и варианты осуществления изобретения.

Краткое описание чертежей

Признаки и сущность настоящего изобретения поясняются в изложенном ниже подробном описании, иллюстрируемом чертежами, на которых одинаковые ссылочные позиции обозначают повсюду одни и те же элементы, и на которых представлено следующее:

Фиг.1 - система БЛВС МВхМВых;

Фиг.2 - структура уровней для системы БЛВС МВхМВых;

Фиг.3А, 3В и 3С - структура кадра TDD-TDM, структура кадра FDD-TDM и структура кадра FDD-CDM, соответственно;

Фиг.4 - структура кадра TDD-TDM с пятью транспортными каналами - BCH, FCCH, FCH, RCH и RACH;

Фиг.5А-5G - различные форматы протокольного блока данных (ПБД) (PDU) для пяти транспортных каналов;

Фиг.6 - структура для пакета FCH/RCH;

Фиг.7 - пункт доступа и два пользовательских терминала;

Фиг.8А, 9А и 10А - три передающих блока для режимов разнесения, пространственного мультиплексирования и управления лучом, соответственно;

Фиг.8В, 9В и 10В - три процессора разнесения ТХ для режимов разнесения, пространственного мультиплексирования и управления лучом соответственно;

Фиг.8С - модулятор МОРЧ;

Фиг.8D - символ МОРЧ;

Фиг.11А - блок формирования кадра и скремблер в процессоре данных ТХ;

Фиг.11В - кодер и блок повторения-перфорирования в процессоре данных ТХ;

Фиг.11С - другой процессор данных ТХ, который может быть использован для режима пространственного мультиплексирования;

Фиг.12А и 12В - диаграмма состояний для работы пользовательского терминала;

Фиг.13 - временная шкала для RACH;

Фиг.14А и 14В - процессы управления скоростями передач соответственно нисходящей и восходящей линий;

Фиг.15 - иллюстрация действия контура управления мощностью; и

Фиг.16 - процесс регулировки синхронизации восходящей линии для пользовательского терминала.

Подробное описание

Слово "примерный" используется исключительно как "служащий в качестве примера, случая или иллюстрации". Любой вариант осуществления или проект, описанный здесь как "примерный", не обязательно интерпретировать как предпочтительный или преимущественный относительно других вариантов осуществления или проектов.

I. Обзор системы

Фиг.1 показывает систему 100 БЛВС МВхМВых, которая поддерживает множество пользователей и способна воплощать различные варианты осуществления изобретения. Система 100 БЛВС МВхМВых включает в себя несколько пунктов 110 доступа (ПД) (АР), которые поддерживают связь для нескольких пользовательских терминалов 120 (ПТ) (UT). Для простоты на фиг.1 показаны только два пункта 110 доступа. Пункт доступа представляет собой, как правило, стационарную станцию, которая используется для связи с пользовательскими терминалами. Пункт доступа может также определяться как базовая станция или каким-либо иным термином.

Пользовательские терминалы 120 могут быть распределены повсюду в системе. Каждый пользовательский терминал может быть стационарным или подвижным терминалом, который может связываться с пунктом доступа. Пользовательский терминал может также упоминаться как мобильная станция, удаленная станция, терминал доступа, пользовательское оборудование (ПО) (UE), беспроводное устройство, или обозначаться каким-либо иным термином. Каждый пользовательский терминал может связываться с одним или, возможно, множеством пунктов доступа по нисходящей и (или) восходящей линии в любой заданный момент времени. Нисходящей линией (т.е. прямой линией) именуется передача от пункта доступа к пользовательскому терминалу, а восходящей линией (т.е. обратной линией) именуется передача от пользовательского терминала к пункту доступа.

На фиг.1 пункт 110а доступа связывается с пользовательскими терминалами 120а-120f, а пункт 110b доступа связывается с пользовательскими терминалами 120f-120k. В зависимости от конкретного выполнения системы 100, пункт доступа может связываться со множеством пользовательских терминалов одновременно (например, во множестве кодовых каналов или поддиапазонов) или последовательно (например, во множестве временных сегментов). В любой заданный момент времени пользовательский терминал может принимать передачи нисходящей линии от одного или множества пунктов доступа. Передача нисходящей линии от каждого пункта доступа может включать в себя дополнительные служебные данные, предназначенные для их приема множеством пользовательских терминалов, конкретные пользовательские данные, предназначенные для их приема конкретным пользовательским терминалом, другие типы данных или любое их сочетание. Дополнительные служебные данные могут включать в себя пилот-сигнал, сообщения поискового вызова и широковещательные сообщения, параметры системы и т.д.

Система БЛВС МВхМВых базируется на сетевой архитектуре с централизованным контроллером. Так, системный контроллер 130 связан с пунктами 110 доступа и может далее связываться с другими системами и сетями. К примеру, системный контроллер 130 может связываться с сетью пакетированных данных (СПД) (PDN), с проводной локальной вычислительной сетью (ЛВС) (LAN), с широкомасштабной сетью (ШМС) (WAN), с интернетом, с телефонной сетью общего пользования (ТСОП) (PSTN), с сетью сотовой связи и т.д. Системный контроллер 130 может быть спроектирован для выполнения нескольких функций, таких как (1) координация и управление для подсоединенных к нему пунктов доступа, (2) маршрутизация данных между этими пунктами доступа, (3) доступ и управление связью с пользовательскими терминалами, обслуживаемыми этими пунктами доступа, и т.д.

Система БЛВС МВхМВых может обеспечивать высокую пропускную способность с возможностью значительно большего покрытия, нежели традиционные системы БЛВС. Система БЛВС МВхМВых может поддерживать синхронные, асинхронные и изохронные услуги по передаче данных/речи. Система БЛВС МВхМВых может быть спроектирована для обеспечения следующих характеристик:

- Высокая надежность обслуживания

- Гарантированное качество обслуживания (КО) (QoS)

- Высокие мгновенные скорости передачи данных

- Высокая спектральная эффективность

- Расширенный диапазон покрытия.

Система БЛВС МВхМВых может работать в различных полосах частот (например, полосы U-NII 2,4 ГГц и 5,х ГГц), при условиях ограничений по ширине полосы и излучению, свойственных выбранной рабочей полосе. Система может размещаться как внутри, так и вне помещения, с типичным максимальным размером сотовой ячейки 1 км или меньше. Система поддерживает приложения стационарных терминалов, хотя некоторые рабочие режимы также поддерживают работу портативных и имеющих ограниченную мобильность терминалов.

1. МВхМВых, МВхОВых и ОВхМВых

В конкретном варианте выполнения и как описывается далее в описании, каждый пункт доступа снабжен четырьмя передающими и приемными антеннами для передачи и приема данных, причем одни и те же четыре антенны используются для передачи и для приема. Система также поддерживает случай, когда передающие и приемные антенны устройства (например, пункта доступа, пользовательского терминала) не используются совместно, хотя эта конфигурация в нормальном состоянии обеспечивает более низкую производительность, чем при совместном использовании антенн. Система БЛВС МВхМВых может также проектироваться так, чтобы каждый пункт доступа был оборудован некоторым другим числом передающих/приемных антенн. Каждый пользовательский терминал может быть снабжен единственной передающей/приемной антенной или множеством передающих/приемных антенн для передачи и приема. Число антенн, используемых каждым типом пользовательского терминала, может зависеть от различных факторов, таких как, к примеру, услуги, поддерживаемые пользовательским терминалом (например, речь, данные или обе), соображения стоимости, регулирующие ограничения, вопросы надежности и т.д.

Для заданной пары многоантенного пункта доступа и многоантенного пользовательского терминала канал МВхМВых образуется передающими антеннами и приемными антеннами, доступными для использования для передачи данных. Различные каналы МВхМВых формируются между пунктом доступа и различными многоантенными пользовательскими терминалами. Каждый канал МВхМВых может быть разделен на пространственных каналов, где ≤ min {, }. потоков данных могут передаваться по пространственным каналам. Пространственная обработка требуется в приемнике и может выполняться или не выполняться в передатчике для передачи множества потоков данных по пространственным каналам.

пространственных каналов могут быть, а могут и не быть ортогональны друг другу. Это зависит от разных факторов, таких как (1) выполнялась ли пространственная обработка в передатчике, чтобы получить ортогональные пространственные каналы, и (2) была ли пространственная обработка как в передатчике, так и в приемнике успешной при ортогонализации пространственных каналов. Если в передатчике не выполняется никакой пространственной обработки, то пространственных каналов могут формироваться передающими антеннами, и маловероятно, что они будут ортогональны друг другу.

пространственных каналов могут быть ортогонализированы путем выполнения декомпозиции на матрице канальных откликов для канала МВхМВых, как описано ниже. Каждый пространственный канал упоминается как собственная мода канала МВхМВых, если пространственных каналов ортогонализированы с помощью декомпозиции, что требует пространственной обработки как в передатчике, так и в приемнике, как описано ниже. В этом случае потоков данных могут передаваться ортогонально на собственных модах. Однако собственная мода обычно считается теоретическим построением. пространственных каналов, как правило, не полностью ортогональны друг другу вследствие различных причин. Например, пространственные каналы не будут ортогональными, если (1) передатчик не имеет информации о канале МВхМВых или (2) передатчик и (или) приемник имеют несовершенную оценку канала МВхМВых. Для простоты в нижеследующем описании термин "собственная мода" используется для обозначения случая, когда делается попытка ортогонализировать пространственные каналы с использованием декомпозиции, даже если эта попытка может и не быть полностью успешной, например, из-за несовершенной оценки канала.

Для заданного числа (к примеру, четырех) антенн в пункте доступа число пространственных каналов, доступных для каждого пользовательского терминала, зависит от числа антенн, используемых этим пользовательским терминалом, и от характеристик беспроводного канала МВхМВых, который связывает антенны пункта доступа и антенны пользовательского терминала. Если пользовательский терминал снабжен одной антенной, то четыре антенны в пункте доступа и единственная антенна в пользовательском терминале образуют канал со множеством входов и одним выходом (МВхОВых) (MISO) для нисходящей линии, и канал с одним входом и множеством выходов (ОВхМВых) (SIMO) для восходящей линии.

Система БЛВС МВхМВых может быть спроектирована для поддержания нескольких режимов передачи. Таблица 1 перечисляет режимы передачи, поддерживаемые примерным проектом системы БЛВС МВхМВых.

Таблица 1
Режимы передачиОписание
ОВхМВыхДанные передаются единственной антенной, но могут приниматься множеством антенн для разнесения приема
РазнесениеДанные передаются с избыточностью множеством передающих антенн и (или) во множестве поддиапазонов для обеспечения разнесения
Управление лучомДанные передаются в единственном (лучшем) канале при полной мощности с использованием информации управления фазой для основной собственной моды канала МВхМВых.
Пространственное мультиплексированиеДанные передаются по множеству пространственных каналов для достижения более высокой спектральной эффективности.

Для простоты термин "разнесение" в нижеследующем описании относится к разнесению передачи, если не отмечено иное.

Режимы передачи, доступные для использования для нисходящей линии и для восходящей линии для каждого пользовательского терминала, зависят от числа антенн, используемых в пользовательском терминале. Таблица 2 перечисляет режимы передачи, доступные для разных типов терминалов для нисходящей линии и восходящей линии в предположении множества (например, четырех) антенн в пункте доступа.

Таблица 2
Режимы передачиНисходящая линияВосходящая линия
Одноантенный пользовательский терминалМногоантенный пользовательский терминалОдноантенный пользовательский терминалМногоантенный пользовательский терминал
МВхОВых (на нисходящей)/ ОВхМВых (на восходящей)ХХХХ
РазнесениеХХХ
Управление лучомХХХ
Пространственное мультиплексированиеХХ

Для нисходящей линии все режимы передачи за исключением режима пространственного мультиплексирования могут использоваться для одноантенных пользовательских терминалов и все режимы передачи могут использоваться для многоантенных пользовательских терминалов. Для восходящей линии все режимы передачи могут использоваться многоантенными пользовательскими терминалами, тогда как одноантенные пользовательские терминалы используют режим ОВхМВых для передачи данных одной доступной антенной. Для ОВхМВых может использоваться разнесение на приеме (т.е. прием передаваемых данных множеством приемных антенн), а также режимы управления лучом.

Система БЛВС МВхМВых может также быть спроектирована для поддержания различных других режимов передачи, что также входит в объем изобретения. Например, режим формирования луча может использоваться для передачи данных на единственной собственной моде с использованием как амплитудной, так и фазовой информации для собственной моды (вместо одной лишь фазовой информации, которая только и используется режимом управления лучом). В качестве другого примера может быть определен "неуправляемый" режим пространственного мультиплексирования, посредством чего передатчик просто передает множество потоков данных множеством передающих антенн (без какой бы то ни было пространственной обработки), а приемник выполняет пространственную обработку, необходимую для выделения и восстановления потоков данных от множества передающих антенн. В качестве еще одного примера может быть определен режим "многопользовательского" пространственного мультиплексирования, посредством чего пункт доступа передает множество потоков данных множеством передающих антенн (с пространственной обработкой) ко множеству пользовательских терминалов одновременно по нисходящей линии. В качестве еще одного примера может быть определен режим пространственного мультиплексирования, посредством чего передатчик выполняет пространственную обработку, пытаясь ортогонализировать множество потоков данных, посланных на множество передающих антенн (что может не быть полностью успешным из-за несовершенной оценки канала), а приемник выполняет необходимую пространственную обработку для выделения и восстановления потоков данных, переданных множеством передающих антенн. Таким образом, пространственная обработка для передачи множества потоков данных через множество пространственных каналов может выполняться (1) как в передатчике, так и в приемнике, (2) только в приемнике или (3) только в передатчике. Различные режимы пространственного мультиплексирования могут использоваться в зависимости от, к примеру, возможностей пункта доступа и пользовательских терминалов, доступной информации о состоянии канала, требований системы и т.д.

В общем, пункты доступа и пользовательские терминалы могут быть спроектированы с несколькими передающими и приемными антеннами. Для ясности, ниже описываются конкретные варианты осуществления и проекты, в соответствии с которыми каждый пункт доступа снабжен четырьмя передающими/приемными антеннами, а каждый пользовательский терминал снабжен четырьмя или меньше передающими/приемными антеннами.

2. МОРЧ

В варианте осуществления система БЛВС МВхМВых использует МОРЧ для эффективного разделения всей системной ширины полосы на несколько () ортогональных поддиапазонов. Эти поддиапазоны именуются также тонами, бинами (элементами дискретизации) или частотными каналами. При МОРЧ каждый поддиапазон ассоциируется с соответствующей поднесущей, которая может быть промодулирована данными. Для системы МВхМВых, которая использует МОРЧ, каждый пространственный канал каждого поддиапазона может рассматриваться как независимый канал передачи, где комплексное усиление, связанное с каждым поддиапазоном, эффективно ограничивается по ширине полосы поддиапазона.

В варианте осуществления ширина полосы системы разделяется на 64 ортогональных поддиапазона (т.е. =64), которым назначаются индексы от -32 до +31. Из этих 64 поддиапазонов используются для данных 48 поддиапазонов (например, с индексами ±{1, ..., 6, 8, ..., 20, 22, ..., 26}), 4 поддиапазона (например, с индексами ±{7, 21}) используются для пилотного сигнала и, возможно, сигнализации, поддиапазон постоянной составляющей (DC) (с индексом 0) не используется, и остальные поддиапазоны не используются и служат в качестве защитных поддиапазонов. Эта структура поддиапазонов МОРЧ описывается более подробно в документе стандарта 802.11а IEEE "Часть 11: Спецификация управления доступом к среде (МАС) беспроводной ЛВС и физического уровня (PHY): Высокоскоростной физический уровень в диапазоне 5 ГГц", сентябрь 1999, который общедоступен и включен в настоящее описание посредством ссылки. Различное число поддиапазонов и различные иные структуры поддиапазонов МОРЧ могут также воплощаться для системы БЛВС МВхМВых, что также входит в объем изобретения. Например, все 53 поддиапазона с индексами от -26 до +26 могут использоваться для передачи данных. В качестве другого примера могут использоваться 128-поддиапазонная структура, 256-поддиапазонная структура или поддиапазонная структура с каким-либо иным числом поддиапазонов. Для ясности, ниже описывается система БЛВС МВхМВых с 64-поддиапазонной структурой, описанной выше.

Для МОРЧ подлежащие передаче данные в каждом поддиапазоне сначала модулируются (т.е. осуществляется отображение символов) с помощью конкретной схемы модуляции, выбранной для использования в этом поддиапазоне. Нули соответствуют неиспользуемым поддиапазонам. Для каждого символьного периода символы модуляции и нули для всех поддиапазонов преобразуются во временную область с использованием обратного быстрого преобразования Фурье (ОБПФ) (IFFT) для получения преобразованного символа, который содержит отсчетов во временной области. Длительность каждого преобразованного символа взаимно обратно связана с шириной полосы каждого символа. В одном конкретном проекте для системы БЛВС МВхМВых ширина полосы системы составляет 20 МГц, =64, ширина полосы каждого символа составляет 312,5 кГц, а длительность каждого символа равна 3,2 мкс.

МОРЧ может обеспечить некоторые преимущества, такие как противодействие эффекту частотно-селективного замирания, которое характеризуется различным усилением канала на различных частотах всей системной ширины полосы. Общеизвестно, что частотно-селективное замирание вызывает межсимвольную интерференцию (МСИ) (ISI), за счет которой каждый символ в принятом сигнале действует как искажение для последующих символов в принятом сигнале. Искажение МСИ ухудшает производительность, воздействуя на способность правильно детектировать принятые символы. С частотно-селективным замиранием можно бороться с помощью МОРЧ путем повторения каждого преобразованного символа (или прибавления циклического префикса к каждому преобразованному символу) для формирования соответствующего символа МОРЧ, который затем и передается.

Длина циклического префикса (т.е. значение для повторения) для каждого символа МОРЧ зависит от разброса задержек беспроводного канала. В частности, для эффективной борьбы с МСИ циклический префикс должен быть длиннее, чем максимальный ожидаемый разброс задержек для системы.

В варианте осуществления для символов МОРЧ могут использоваться циклические префиксы разных длительностей, зависящие от ожидаемого разброса задержек. Для конкретной вышеописанной системы БЛВС МВхМВых может быть выбран циклический префикс длительностью 400 мкс (8 отсчетов) или 800 мкс (16 отсчетов) для использования для символов МОРЧ. "Короткий" символ МОРЧ использует циклический префикс длительностью 400 нс и имеет длительность 3,6 кс. "Длинный" символ МОРЧ использует циклический префикс 800 кс и имеет длительность 4,0 мкс. Короткие символы МОРЧ могут использоваться, если максимальный ожидаемый разброс задержки составляет 400 мкс и менее, а длинные символы МОРЧ могут использоваться, если разброс задержек больше, чем 400 мкс. Для использования с разными транспортными каналами могут выбираться разные циклические префиксы, и циклический префикс может также выбираться динамически, как описано ниже. За счет использования, когда это возможно, более короткого циклического префикса можно повысить пропускную способность системы, поскольку большее число символов МОРЧ более короткой длительности можно передавать в заданном фиксированном временном интервале.

Система БЛВС МВхМВых может быть также спроектирована без использования МОРЧ, что также входит в объем изобретения.

3. Уровневая структура

Фиг.2 иллюстрирует уровневую структуру 200, которая может использоваться с системой БЛВС МВхМВых. Уровневая структура 200 включает в себя (1) приложения и протоколы верхнего уровня, которые примерно соответствуют Уровню 3 или выше в эталонной модели ISO/OSI (верхние уровни), (2) протоколы и услуги, которые соответствуют Уровню 2 (уровень линии), и (3) протоколы и услуги, которые соответствуют Уровню 1 (физический уровень).

Верхние уровни включают в себя различные приложения и протоколы, такие как услуги 212 сигнализации, услуги 214 передачи данных, услуги 214 речевой передачи, приложения схемных данных и т.д. Сигнализация обычно обеспечивается как сообщения, а данные - как пакеты. Услуги и приложения в верхних уровнях инициируют и завершают сообщения и пакеты согласно семантике и синхронизации протокола связи между пунктом доступа и пользовательским терминалом. Верхние уровни используют услуги, предоставленные Уровнем 2.

Уровень 2 поддерживает доставку сообщений и пакетов, генерируемых верхними уровнями. В варианте осуществления, показанном на фиг.2, уровень 2 включает в себя подуровень 220 управления доступом к линии (УДЛ) (LAC) и подуровень 230 управления доступом к среде передачи (УДС) (МАС). Подуровень УДЛ воплощает протокол линии передачи данных, который предусматривает правильный перенос и доставку сообщений, генерируемых верхними уровнями. Подуровень УДЛ использует услуги, предоставленные подуровнем УДС и Уровнем 1. Подуровень УДС отвечает за передачу сообщений и пакетов с использованием услуг, обеспеченных Уровнем 1. Подуровень УДС управляет доступом к ресурсам Уровня 1 посредством приложений и услуг в верхних уровнях. Подуровень УДС может включать в себя протокол 232 радиолинии (ПРЛ) (RLP), являющийся механизмом повторной передачи, который может использоваться для обеспечения более высокой надежности для пакетированных данных. Уровень 2 выдает протокольные блоки данных (ПБД) (PDU) на Уровень 1.

Уровень 1 содержит физический уровень 240 и поддерживает передачу и прием радиосигналов между пунктом доступа и пользовательским терминалом. Этот физический уровень выполняет кодирование, перемежение, модуляцию и пространственную обработку для различных транспортных каналов, используемых для посылки сообщений и пакетов, генерируемых верхними уровнями. В этом варианте осуществления физический уровень включает в себя подуровень 242 мультиплексирования, который мультиплексирует обработанные ПВД для различных транспортных каналов в надлежащий кадровый формат. Уровень 1 обеспечивает данные в блоках кадров.

Фиг.2 показывает конкретный вариант осуществления уровневой структуры, которая может быть использована для системы БЛВС МВхМВых. Различные иные пригодные уровневые структуры могут также проектироваться и использоваться для системы БЛВС МВхМВых, это также входит в объем изобретения. Более подробно функции, выполняемые каждым уровнем, описаны ниже, где это уместно.

4. Транспортные каналы

Системой БЛВС МВхМВых могут поддерживаться ряд услуг и приложений. Кроме того, для надлежащей работы системы может потребоваться передача других данных пунктом доступа или обмен данными между пунктом доступа и пользовательскими терминалами. Ряд транспортных каналов может быть определен для системы БЛВС МВхМВых для переноса разных типов данных. Таблица 3 перечисляет примерный набор транспортных каналов, а также обеспечивает краткое описание для каждого транспортного канала.

Таблица 3
Транспортные каналыОписание
Вещательный каналВСНИспользуется пунктом доступа для передачи пилот-сигнала и параметров системы к пользовательским терминалам
Прямой канал управленияFCCHИспользуется пунктом доступа для выделения ресурсов на нисходящей и восходящей линиях. Выделение ресурсов может выполняться на покадровой основе. Также используется для обеспечения подтверждения для сообщений, принятых по каналу RACH
Прямой каналFCHИспользуется пунктом доступа для передачи пользовательских данных к пользовательским терминалам и, возможно, эталонного (пилот) сигнала, используемого пользовательскими терминалами для оценки канала. Может также использоваться в режиме широковещательной передачи, чтобы посылать сообщения поискового вызова и широковещательные сообщения ко множеству пользовательских терминалов.
Канал случайного доступаRACHИспользуется пользовательскими терминалами для получения доступа к системе и отправки коротких сообщений к пункту доступа.
Обратный каналRCHИспользуется пользовательскими терминалами для передачи данных к пункту доступа. Может также переносить эталонный сигнал, используемый пунктом доступа для оценки канала.

Как показано в Таблице 3, транспортные каналы нисходящей линии, используемые пунктом доступа, включают в себя BCH, FCCH и FCH. Транспортные каналы восходящей линии, используемые пользовательскими терминалами, включают в себя RACH и RCH. Каждый из этих транспортных каналов описывается более подробно ниже.

Транспортные каналы, перечисленные