Магнитомягкий наполнитель и полимерный композиционный магнитный материал на его основе

Изобретение относится к магнитным материалам, а именно к магнитомягким наполнителям и полимерным композиционным магнитным материалам на его основе с высокой магнитной проницаемостью в СВЧ-диапазоне, и может быть использовано в электронной промышленности. Наполнитель содержит частицы размером 10-300 мкм из ферримагнетика - феррита, обладающего низким полем кристаллографической магнитной анизотропии, и покрывающую частицы оболочку из структурированного электропроводящего полимера толщиной 10-300 нм. В качестве феррита он может содержать ферриты-шпинели Mn и Ni, содержащие разновалентные катионы железа - Fe+2 и Fe+3, или магнетит, или гексаферриты, содержащие разновалентные катионы железа, или феррогранат иттрия, легированный металлами из ряда: Si, Ge, Ti, Gd, Al, Cd, Sm, In, Co. Электропроводящий полимер представляет собой полимер, выбранный из ряда: полианилин, полипиррол, политолуидин, полианизидин. Полимерный композиционный магнитный материал состоит из указанного наполнителя и получен методом прессования. Согласно второму варианту материал дополнительно включает полимер-диэлектрик, при следующем соотношении компонентов, мас.%: наполнитель - 75-90, полимер-диэлектрик - 10-25. Технический результат - возможность управления величиной эффективной магнитной проницаемости и увеличение ее значения в СВЧ-диапазоне. 3 н.и 3 з.п. ф-лы.

Реферат

Изобретение относится к области магнитных материалов, конкретно, к магнитомягкому наполнителю и полимерным композиционным магнитным материалам на его основе с высокой магнитной проницаемостью. Изобретение может найти применение в электронной промышленности, в частности при производстве радиопоглощающих материалов, работающих в СВЧ-диапазоне электромагнитного излучения.

Традиционными наполнителями радиопоглощающих материалов являются магнитомягкие ферриты различных типов, которые благодаря сочетанию электрических и магнитных свойств обеспечивают защиту от электромагнитного излучения в различных диапазонах частот. За последнее десятилетие резко возросла потребность в радиопоглощающих материалах СВЧ-диапазона, что объясняется широко внедрившимися в повседневную жизнь СВЧ-устройствами (TV, СВЧ-печи, мобильные телефоны и др. устройства). Радиопоглощающие материалы нужны, прежде всего, для защиты человека от вредных воздействий СВЧ-излучения, а также для решения вопроса электромагнитной совместимости электронного оборудования. Несмотря на широкий выбор ферритов, предлагаемых ведущими отечественными и зарубежными производителями, не известны материалы, способные к эффективной защите в области телекоммуникационных частот 1-3 ГГц. Причина кроется в магнитной природе известных ферритов, для одних из которых - ферриты со структурой шпинели, ферриты-гранаты - область магнитной дисперсии лежит в диапазоне 102-109 Гц, тогда как для гексаферритов область дисперсии находится в диапазоне 3×109-100×109 Гц.

Основным способом сдвига области магнитной дисперсии в сторону более высоких частот является создание композиционных магнитных материалов путем подбора формы и размера наполнителя - магнитных частиц, а также концентрации магнитной компоненты в немагнитной среде. Однако при этом вследствие разбавления магнитной системы наблюдается значительное снижение основных магнитных характеристик материала, включая эффективную магнитную проницаемость (μ*). В настоящее время определилось новое направление - создание композиционных магнитных материалов, сочетающих в объеме магнитные и электропроводящие компоненты.

Известен композиционный магнитный материал на основе тонкодисперсных порошков металлических или интерметаллических ферромагнитных частиц, покрытых слоем феррита с малой проводимостью, полученный с помощью метода прессования (Заявка US №2004/0238796 А1. Опубл. 02.12.2004). Известный композиционный материал имеет в своем составе ферромагнитные частицы, надежно изолированные друг от друга, но связанные между собой магнитно, что обеспечивает высокую намагниченность насыщения при высоком электросопротивлении. Кроме того, в таких материалах возможно достижение высокой магнитной проницаемости (μ'˜10 в области 2 ГГц). Ферритовый слой, покрывающий частицу, создается методом электролиза или электрохимическим способом соосаждения из раствора солей. Основным недостатком известного материала является строгое лимитирование размера металлических магнитных частиц, который определяется толщиной скин-слоя, что трудно контролировать при синтезе. Как следствие, ухудшается воспроизводимость магнитного материала.

Другим примером композиционного магнитного материала является полимерный композиционный материал, наполненный NiZn ферритом и пермаллоем (Fe55Ni55) (Kasagi Т., Tsutaoka Т., Hatakeyma К. Complex permeability of permalloy-ferrite hybrid composite materials. J. Magn. Magn. Mater. 2004, 272-276, 2224-2226). Введение полимера (полифениленсульфида) способствует лучшей перерабатываемости материала. Использование двухкомпонентного наполнителя, оба из которых являются магнетиками, но один из которых является полупроводниковым ферримагнетиком (NiZn феррит), а другой - металлическим ферромагнетиком (пермаллой), приводит к увеличению μ* почти в два раза в сравнении с композиционным материалом на основе чистого NiZn феррита. Однако при этом не наблюдается никакого влияния на положение частоты ферромагнитного резонанса, перекрывающего область от 108-2×109 Гц.

Наиболее близким к изобретению по технической сущности является класс полимерных композиционных магнитных материалов, полученных на основе порошков магнитомягкого наполнителя - металлических ферромагнетиков или полупроводящих ферритов, покрытых электропроводящими полимерами - полианилином (PANI) или полипироллом (PPY) или их замещенными аналогами (Патент ЕР 0403180 А2, опубл. 08.06.1990; заявка US 2003/021644 А1, опубл. 20.11.2003; Kazantseva N.E., Vilčáková J., Kresálek V., Sapurina I., Stejskal J., Vilčáková J., Sáha P. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite. J. Magn. Magn. Mater. 2004, 269, 30-37). В качестве покрываемых материалов используются Fe, Ni, Co и их окислы, а также сплавы Co/Cr, Ni/Fe, сталь и ферриты различного состава: BaFe12O19, а также MnZn, NiZn, NiMnZn с разным содержанием Mn и Zn. Частицы могут иметь различную форму (гранулы, чешуйки, волокна) и широкий разброс по размерам (20-250 мкм). Технология получения мультикомпонентных частиц основана на электрохимическом или химическом методе нанесения электропроводящих полимеров на поверхность магнитных частиц. Процесс может проводиться в водной и неводной средах, как с катализатором, так и без него. Выбор среды, окислителя и катализатора реакции зависит от типа мономера. Предпочтительно использование следующих окислителей: К2Cr2О7, (NH4)2Cr2O7 и (NH4)2S2O8. В качестве катализатора могут быть использованы ионы переходных металлов, например МоV, RuIII, MnIII. При этом важной особенностью как электрохимического, так и химического метода осаждения является введение наполнителя в реакционную среду в процессе полимеризации мономера. Основная ценность таких магнитных материалов заключается в сочетании электрических и магнитных свойств мультикомпонентных частиц, взаимодействующих как с электрической, так и магнитной составляющими электромагнитного поля. Последнее качество известных композиционных магнитных материалов обеспечивает эффективность радиопоглощающих материалов на их основе в МГц диапазоне частот электромагнитного излучения. Однако в известных композиционных магнитных материалах не удается достичь возможности контролируемого варьирования частотной характеристикой магнитной проницаемости и добиться требуемых высоких значений магнитной проницаемости в СВЧ-диапазоне.

В качестве прототипа заявляемого изобретения можно рассматривать разработанный ранее авторами заявляемого изобретения полимерный композиционный магнитный материал, полученный методом прессования магнитомягкого наполнителя - поликристаллических частиц MnZn феррита, покрытых полианилином с различной степенью электропроводности (Kazantseva N.E., Bespyatykh Yu.I., Sapurina I., Stejskal J., Vilčáková J., Sáha P. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater., 2006, 301, 155-165). Феррит, использованный в качестве магнитной компоненты, представляет собой низкочастотный марганцево-цинковый феррит марки MnZn 3000 НМ (Завод "Магнетон", НПО "Домен"). Его основные параметры: начальная магнитная проницаемость μi˜2700-3000, максимальная магнитная проницаемость μmax˜3700-5200, намагниченность насыщения Ms=3.5 кГс, температура Нееля ТN=473 К, удельная электропроводность σf=2×10-2 Сим см-1, плотность ρf=4.8 г/см-3. Элементный состав феррита по данным фирмы производителя: 53.75 мол.% Fe2О3, 26.10 мол.% MnO и 21.15 мол.% ZnO. Порошок феррита с различным распределением частиц по размерам получен путем механического дробления ферритовых сердечников с помощью вибромельниц с последующим рассеиванием на ситовом анализаторе. Использованы порошки с размером частиц от 20 до 250 мкм. Процесс получения полимерного композиционного магнитного материала включает две основные стадии: (1) покрытие частиц феррита электропроводящим полимером; (2) прессование порошка в изделие. Первая стадия осуществляется путем прямой окислительной полимеризации анилина (в водной среде) на поверхности поликристаллических многодоменных частиц MnZn феррита. В качестве окислителя используют перроксидисульфат аммония. Температура синтеза варьируется в пределах 0°С-50°С, что позволяет получить на поверхности ферритовых частиц пленку различной толщины (250-50 нм соответственно). Порошок феррита погружают непосредственно в полимеризационный состав, содержащий мономер и окислитель. Экзотермический процесс полимеризации завершается в течение 5-30 мин в зависимости от температуры, заданной во время синтеза. Степень экзотермичности процесса и анализ состава композита показывают, что и в присутствии и в отсутствие феррита конверсия мономера близка к 100%, т.е. полному превращению в полимер. Полученный в результате реакции продукт фильтруют, промывают 0,2 М раствором HCl для удаления побочных продуктов реакции, а далее сушат при комнатной температуре до постоянной массы. Часть порошка депротонируется гидроокисью аммония до получения на поверхности феррита полианиновой пленки с разной степенью проводимости (от 1 Сим/см до 10-7 Сим/см). Порошок затем легко прессуется в образцы различной формы при давлении 200 МПа. Характер частотной зависимости μ* MnZn-PANI композитов в значительной степени определяется структурой и свойствами полупроводниковой органической пленки, которые, в свою очередь, можно контролировать условиями синтеза полианилина. Причиной этому могут быть как поверхностное явление закрепления границ доменов на активных центрах, каковыми являются растущие с поверхности полимерные цепочки полианилина, так и контактные явления, возникающие на межфазной границе между ферритом-полупроводником n-типа и полианилином-полупроводником p-типа. Как установлено авторами изобретения, в наполнителе-прототипе наряду с частицами MnZn-PANI присутствует свободный (несвязанный) полианилин, образующийся в процессе полимеризации. Количество свободного полианилина трудно контролировать, по оценкам авторов оно может достигать 10-20 мас.%.

Существенным недостатком известного материала являются недостаточно высокие значения магнитной проницаемости в СВЧ-диапазоне (μ'˜1,5 и μ''max˜2,5 в области 1-3 ГГц).

Все известные в настоящее время и указанные выше технологические подходы не позволяют получить композиционные магнитные материалы для производства радиопоглощающих материалов, обеспечивающих эффективную электромагнитную защиту в области СВЧ, конкретно, в диапазоне телекоммуникационных частот 1-3 ГГц.

Таким образом, проблема совершенствования качества композиционных магнитных материалов остается актуальной.

Задачей заявляемого изобретения является создание эффективного магнитомягкого мультикомпонентного наполнителя, усиливающего энергию магнитного взаимодействия магнитных частиц в композиционном материале и обеспечивающего управляемость магнитной проницаемостью последнего, а также полимерных композиционных магнитных материалов, обладающих высокими значениями эффективной магнитной проницаемости в СВЧ-диапазоне. Эта задача решается заявляемой группой изобретений - магнитомягким наполнителем и прессованными и литьевыми полимерными композиционными магнитными материалами на его основе, объединенных единым изобретательским замыслом.

Заявляемый магнитомягкий наполнитель обладает следующей совокупностью существенных признаков:

1. Магнитомягкий наполнитель для полимерного композиционного магнитного материала состоит из ядра из ферримагнетика - феррита, обладающего низким полем кристаллографической магнитной анизотропии, в виде частиц произвольной формы размером 10-300 мкм и покрывающей ядро оболочки из структурированного электропроводящего полимера толщиной 30-300 нм.

2. В качестве ферримагнетика наполнитель включает ферриты из ряда: ферриты-шпинели Mn и Ni, содержащие разновалентные катионы железа - Fe+2 и Fe+3, или магнетит, или гексаферриты, содержащие разновалентные катионы железа, или феррогранат иттрия, легированный металлами из ряда: Si, Ge, Ti, Gd, Al, Cd, Sm, In, Co.

3. В качестве электропроводящего полимера наполнитель включает полианилин, или полипиррол, или их производные - политолуидин и полианизидин.

Совокупность существенных признаков заявляемого магнитомягкого наполнителя приводит к получению технического результата - повышение эффективности его использования в качестве магнитной компоненты композиционных материалов за счет обеспечения улучшенной магнитной связанности магнитных частиц в композиционных магнитных материалах на его основе, а также улучшения качества наполнителя за счет достижения его однородности и воспроизводимости.

Заявляемый наполнитель отличается от известного наполнителя-прототипа рядом существенных признаков. Во-первых, заявляемый наполнитель представляет собой непосредственно ядро из ферримагнетика, покрытое оболочкой из структурированного электропроводящего полимера. Как указывалось выше, в наполнителе-прототипе наряду с частицами «ядро-оболочка» присутствует свободный (несвязанный) полианилин, образующийся в процессе полимеризации. Во-вторых, в заявляемом наполнителе использованы разнообразные ферримагнетики, ряд электропроводящих полимеров. В-третьих, диапазон размеров ядра и толщины оболочки шире.

Анализ известного научно-технического уровня не позволил обнаружить решение, полностью совпадающее по совокупности существенных признаков с заявляемым изобретением. Это может свидетельствовать о новизне заявляемого наполнителя.

Только совокупность существенных признаков заявляемого изобретения позволяет достичь указанного выше технического результата. Авторы заявляемого изобретения во время физических магнитных экспериментов с прототипом - композиционными материалами, полученными прессованием мультикомпонентных наполнителей, приготовленных методом прямой полимеризации и отличающихся соотношением феррита и проводящего полимера, неожиданно установили неоднородность структуры входящего в них полианилина. До указанных экспериментов структура полианилина в композите специально не изучалась и считалось, что на эффективную магнитную проницаемость влияет общее содержание полианилина как такового. Обнаруженный эффект был зафиксирован в публикации авторов, однако лишь как констатация факта, при этом отмечалась, что известные радиопоглощающие материалы эффективны только в МГц-диапазоне частот электромагнитного излучения. Известно, что наличие неструктурированного полимера положительно сказывается на перерабатывемости наполнителя в композиционный магнитный материал, и его даже специально добавляют при приготовлении прессованных и литьевых композитов. Тем более трудно было предположить, что создание наполнителя из непосредственно «ядер-оболочек» настолько улучшит магнитную связанность магнитных частиц в композите, что обеспечит в дальнейшем получение композиционного магнитного материала с высокой магнитной проницаемостью в СВЧ-диапазоне и к тому же с хорошими механическими свойствами. Дополнительного изобретательства потребовал способ выделения наполнителя «ядро-оболочка». Нельзя было также предположить, что уровень свойств композиционных магнитных материалов сохранится для заявляемого широкого диапазона размеров частиц-ядер и оболочек и, кроме того, что выбором размера ядра и толщины оболочки можно будет управлять частотной дисперсией магнитной проницаемости, смещая область максимума магнитных потерь в диапазон 1-3 ГГц. Это позволяет утверждать о соответствии заявляемого изобретения условию охраноспособности "изобретательский уровень" ("неочевидность").

Заявляемые полимерные композиционные магнитные материалы на основе заявляемого магнитомягкого наполнителя характеризуются следующей совокупностью существенных признаков.

1 (4). Полимерный композиционный магнитный материал на основе магнитомягкого наполнителя состоит из прессованного наполнителя по пп.1-3.

2 (5). Полимерный композиционный магнитный материал на основе магнитомягкого наполнителя включает наполнитель по пп.1-3 и полимер-диэлектрик, при следующем соотношении компонентов, в мас.%:

наполнитель по пп.1-3 75-90
полимер-диэлектрик 10-25

и полученный литьевым способом.

3 (6). Полимерный композиционный магнитный материал по п.5, отличающийся тем, что в качестве полимера-диэлектрика он включает полимер из ряда: полиорганосилоксан, полиуретан, перфторполиэфир.

Совокупность существенных признаков заявляемых полимерных композиционных магнитных материалов обеспечивает получение технического результата - достижение управляемой частотной характеристикой магнитной проницаемости и высокими значениями магнитной проницаемости в СВЧ-диапазоне; улучшение качества композитов за счет контролируемой структуры и, как следствие, воспроизводимости характеристик материала.

Заявляемые полимерные композиционные магнитные материалы отличаются от прототипа структурой наполнителя - «ядро-оболочка», четко установленным качественным и количественным составом компонентов (в прототипе количество неструктурированной полимерной компоненты не контролируется), большим разнообразием используемых наполнителей и полимеров.

Анализ известного научно-технического уровня не позволил обнаружить решение, полностью совпадающее по совокупности существенных признаков с заявляемым изобретением. Это может свидетельствовать о новизне заявляемых композиционных материалов.

Только совокупность существенных признаков заявляемого изобретения позволяет достичь указанного выше технического результата. Совершенно неочевидным, как указывалось выше, оказался факт, что заявляемые композиционные материалы дадут скачок в значении магнитной проницаемости и что удастся направленно варьировать этими значениями. Все это позволяет утверждать о соответствии заявляемого изобретения условию охраноспособности "изобретательский уровень" ("неочевидность").

Таким образом, группа заявляемых изобретений в целом обладает новизной и неочевидностью.

Для подтверждения соответствия заявляемой группы изобретений требованию "промышленная применимость" приводим примеры конкретной реализации.

Методики и приборы:

1. Комплексные значения диэлектрической и магнитной проницаемостей измерены двумя различными методами. В диапазоне частот 1 МГц - 3 ГГц на торроидальных образцах (внешний диаметр - 8 мм, внутренний диаметр - 3.1 мм, толщина 2-3 мм) импедансным методом с помощью прибора фирмы Adgilent (RF Impedance/Material Analyzer, Agilent E49991A). В диапазоне частот 2-10 ГГц на образцах в форме сердечников (1×1×100 мм) резонаторным методом с использованием панорамных измерителей коэффициента стоячей волны.

2. Гранулометрический состав и форма частиц определены с помощью электронного микроскопа JEOL JEM (Франция).

3. Морфология поверхности ферритовых частиц, покрытых электропроводящими полимерами, исследована с помощью атомно-силовой спектроскопии.

В качестве ферримагнетика выбраны ферриты, обладающие низкими полями кристаллографической магнитной анизотропии: ферриты-шпинели Mn и Ni, содержащие разновалентные катионы железа - Fe+2 и Fe+3, или магнетит, или гексаферриты, содержащие разновалентные катионы железа, или феррогранат иттрия, легированный металлами из ряда: Si, Ge, Ti, Gd, Al, Cd, Sm, In, Co. Форма частиц феррита произвольная. Размер частиц феррита варьируют в зависимости от выбранного частотного диапазона, в котором проявляется магнитная дисперсия.

В качестве электропроводящих полимеров использованы полупроводники p-типа: PANI, PPY, политолуидин, полианизидин. Проводимость полимеров в зависимости от условий получения и обработки варьируется от 6×10-11 Сим/см до 4×100 Сим/см.

Магнитомягкий наполнитель, представляющий собой ядро ферримагнетика и слой электропроводящего полимера, получают методом прямой полимеризации мономеров на поверхности микрочастиц ферритов. Окислительную полимеризацию анилина, пиррола, толлуидина, анизидина проводят под действием различных окислителей: перроксидисульфата аммония, треххлористого железа, бихромата калия, в подкисленных водных растворах. Порошкообразные ферриты погружают в раствор мономера и для лучшего диспергирования обрабатывают ультразвуком. Полимеризация начинается при добавлении к раствору окислителя и проводится при интенсивном перемешивании под действием ультразвука. Температура полимеризации варьируется в интервале -12°С-+80°С. В зависимости от природы мономера и окислителя реакция проходит за время от нескольких минут до 3-х часов. Полученный материал высаждается на фильтр и промывается водным раствором соляной кислоты, затем ацетоном. Материал сушат при температурах не выше 50°С. Депротонирование слоя электропроводящего полимера проводят, обрабатывая материал 1 М раствором гидроксида аммония. После промывания водой и ацетоном материал высушивают. Отделение мультикомпонентного наполнителя ядро-оболочка проводят методом флотации или с помощью магнитной сепарации.

Процесс прессования в изделие: порошки из заявляемого наполнителя прессуют в изделия (торроиды, диски, сердечники и др.) при давлении 200 МПа в течение 5-10 мин.

Литьевые композиционные материалы: Полимерные композиты получают путем механического смешения порошков наполнителей с полимером (полиорганосилоксаном, или полиуретаном, или перфторполиэфиром) в соответствующих пропорциях. Образцы помещают между металлическими пластинами, прессуют и отверждают на воздухе или в заданном температурном режиме в вакууме. Тип полимера, а также режим отверждения (температура, время, условия вакуума) подбирают в каждом конкретном случае. Объемное содержание мультикомпонентного наполнителя в композите рассчитывается исходя из плотностей (ρ) компонентов: плотность феррита, покрытого PANI ρн=3,4 г/см3, плотность полимерных матриц ρп=1.02 г/см3.

Пример 1.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 170 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Полианилиновый слой толщиной 170 нм формируют методом прямой окислительной полимеризации анилина (в водной среде) на поверхности поликристаллических многодоменных частиц MnZn феррита. Для этого порошок феррита помещают в водный раствор гидрохлорида анилина при комнатной температуре. Смесь подвергают действию ультразвука. Процесс полимеризации начинается при введении в суспензию окислителя в виде раствора пероксидисульфида аммония. Степень экзотермичности процесса показывает, что конверсия мономера близка к 100%, т.е. к полному превращению в полимер. На поверхности феррита образуется сплошная пленка полианилина гранулометрической морфологии, о чем свидетельствуют данные микроструктурных исследований частиц феррита до и после их покрытия полианилином. После завершения процесса полимеризации осадок отфильтровывают, промывают 0,2 М раствором HCl, а далее сушат при комнатной температуре на бумажном фильтре до постоянной массы. После чего покрытые оболочкой частицы феррита отделяют от свободного (несвязанного полимера) с помощью магнита. Часть порошка депротонируют раствором 1 М раствора гидроокиси аммония. Далее порошки прессуют в металлических пресс-формах при давлении 200 МПа в течение 10 мин. Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-PANI стандарт, проводимость полианилиновой пленки σPANI составляет 4 Сим/см, область магнитной дисперсии распространяется на диапазон от 107 до 3×109 Гц; максимумом магнитных потерь μ''max=5 на резонансной частоте fres=5×108 Гц;

(2) для депротонированных композитов: σPANI˜108 Сим/см; область магнитной дисперсии 3×108-3×109 Гц, μ''max=3,5 на fres=1×109 Гц.

Для сравнения, полимерные композиты с максимальным содержанием чистого (не покрытого полианилином) MnZn феррита того же элементного состава и размера частиц в полиуретане (50 об.%) имеют область магнитной дисперсии 108-109 Гц; μ''max˜3,5 на fres=7×107 Гц.

Пример 2.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 200 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Полианилиновый слой толщиной 200 нм сформирован методом прямой окислительной полимеризации анилина (в водной среде) при температуре 0°С на поверхности поликристаллических многодоменных частиц MnZn феррита.

Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI˜0,2 Сим/см, область магнитной дисперсии 108-109 Гц, μ''max=6 на fres=3×108 Гц;

(2) для депротонированных композитов - σ порядка 10-7 Сим/см, область магнитной дисперсии 107×109 Гц, μ''max=4 на fres=7×108 Гц.

Пример 3.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 50 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Полианилиновый слой толщиной 50 нм сформирован методом прямой окислительной полимеризации анилина (в водной среде) при температуре 50°С на поверхности поликристаллических многодоменных частиц MnZn феррита. Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI составляет σ˜1 Сим/см, область магнитной дисперсии 108-3×109 Гц, μ''max=3,5 на fres=1×109 Гц.

(2) для депротонированных композитов - σ˜10-7 Сим/см, область магнитной дисперсии 5×108-10×109 Гц, μ''max=2,5 на fres=3×109 Гц.

Пример 4.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 10 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Полианилиновый слой толщиной 10 нм сформирован методом прямой окислительной полимеризации анилина (в водной среде) при температуре 80°С на поверхности поликристаллических многодоменных частиц MnZn феррита.

Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI составляет σ˜10 Сим/см, область магнитной дисперсии 108-5×109 Гц, μ''max=3,5 на fres=2×109 Гц.

(2) для депротонированных композитов - σ˜10-7 Сим/см, область магнитной дисперсии 5×108-10×109 Гц, μ''max=3 на fres=3,5×109 Гц.

Пример 5.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 300 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Полианилиновый слой толщиной 300 нм сформирован методом прямой окислительной полимеризации анилина (в водной среде) при температуре -12°С на поверхности поликристаллических многодоменных частиц MnZn феррита.

Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI˜0,1 Сим/см, область магнитной дисперсии 107-109 Гц, μ''max=6,5 на fres=2,5×109 Гц.

(2) для депротонированных композитов - σ порядка 10-11 Сим/см, область магнитной дисперсии 5×108-10×109 Гц, μ''max=4,5 на fres=5×108 Гц.

Пример 6.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 10-20 мкм, оболочка из полианилина толщиной 200 нм.

Полимерный композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Образцы полимерных композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI˜0,2 Сим/см, область магнитной дисперсии 2×108-3×109 Гц, μ''max=3 на fres=1,5×109 Гц;

(3) для депротонированных композитов - σ порядка 10-7 Сим/см, область магнитной дисперсии 5×108-5×109 Гц, μ''max=2,5 на fres=3×109 Гц.

Пример 7.

Магнитомягкий наполнитель: ядро из MnZn феррита, размер частиц 250-300 мкм, оболочка из полианилина толщиной 300 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов MnZn-полианилин, проводимость полианилиновой пленки (σPANI˜0,1 Сим/см, область магнитной дисперсии 106-108 Гц, μ''max=8,5 на fres=2,5×108 Гц.

(2) для депротонированных композитов - σ порядка 10-11 Сим/см, область магнитной дисперсии 107-109 Гц, μ''max=5 на fres=6×108 Гц.

Пример 8.

Магнитомягкий наполнитель: ядро из NiZn феррита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 200 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель. Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов NiZn-полианилин, проводимость полианилиновой пленки (σPANI˜0,1 Сим/см, область магнитной дисперсии 107×109 Гц, μ''max=4,5 на fres=4,5×108 Гц.

(2) для депротонированных композитов - σ порядка 10-11 Сим/см, область магнитной дисперсии 107-109 Гц, μ''max=3 на fres=9×108 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (непокрытого полианилином) NinZn феррита того же элементного состава и размера частиц в полиуретане (50 об.%) имеют μ''max≅2-3 на частоте 5×108 Гц.

Пример 9.

Магнитомягкий наполнитель: ядро из магнетита, размер частиц 40-60 мкм, оболочка из полианилина толщиной 300 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов магнетит-полианилин, проводимость полианилиновой пленки (σPANI˜0,1 Сим/см), область магнитной дисперсии 106-108 Гц, μ''max=3,5 на fres=5×108 Гц.

(2) для депротонированных композитов - σ порядка 10-11 Сим/см, область магнитной дисперсии 106-108 Гц, μ''max=3 на fres=109 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (непокрытого полианилином) магнетита того же элементного состава и размера частиц в полиуретане (50 об.%) имеют μ''max≅1,5-2 на частоте 6×107 Гц.

Пример 10.

Магнитомягкий наполнитель: ядро из феррит-граната иттрия, легированного гадолинием (Y-Gd феррит-гранат), размер частиц 40-60 мкм, оболочка из полианилина толщиной 200 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Получен аналогично примеру 1. Часть образцов депротонируют 1 М раствором гидроокиси аммония. Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов, полученных прессованием ферритовых частиц, покрытых полианилиновой пленкой с σPANI˜0,2 Сим/см область магнитной дисперсии 106-109 Гц, наблюдается широкий максимум магнитных потерь μ''max≅2,5÷3, перекрывающий область частот от 2×107 Гц до 3×108 Гц;

(2) для депротонированных композитов: σPANI˜10-7 Сим/см, область магнитной дисперсии 107-5×109 Гц, μ''max≅2÷2,7 в области частот от 2×107 Гц до 109 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (непокрытого полианилином) Y-Gd феррита-граната того же элементного состава и размера частиц в полиуретане (50 об.%) имеют μ''max≅0,7 в области частот от 107 Гц до 108 Гц.

Пример 11.

Магнитомягкий наполнитель: ядро из феррит-граната иттрия, легированного гадолинием, алюминием, марганцем, самарием (Y-Gd-Al-Mn-Sm феррит-гранат), размер частиц 40-60 мкм, оболочка из полианилина толщиной 200 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Получен аналогично примеру 1. Часть образцов депротонируют 1 М раствором гидроокиси аммония. Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов, полученных прессованием ферритовых частиц, покрытых полианилиновой пленкой с σPANI˜0,2 Сим/см область магнитной дисперсии 107-2×109 Гц, наблюдается широкий максимум магнитных потерь μ''max≅2÷2,5, перекрывающий область частот от 108 Гц до 3×109 Гц;

(2) для депротонированных композитов: σPANI˜10-7 Сим/см, область магнитной дисперсии 106-109 Гц, μ''max≅3 в области частот от 2×10 Гц до 3×10 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (непокрытого полианилином) Y-Gd-Al-Mn-Sm феррита-граната того же элементного состава и размера частиц в полиуретане (50 об.%) имеют μ''max≅1 в области частот от 107 Гц до 108 Гц.

Пример 12.

Магнитомягкий наполнитель: ядро из феррит-граната иттрия, легированного гадолинием, алюминием, индием, кобальтом, германием (Y-Gd-Al-hi-Co-Ge феррит-гранат), размер частиц 40-60 мкм, оболочка из полианилина толщиной 200 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Получен аналогично примеру 1. Часть образцов депротонируют 1 М раствором гидроокиси аммония. Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов, полученных прессованием ферритовых частиц, покрытых полианилиновой пленкой с σPANI˜0,2 Сим/см область магнитной дисперсии 5×107-4×109 Гц, наблюдается широкий максимум магнитных потерь μ''max≅3, перекрывающий область частот от 5×108 Гц до 3×109 Гц;

(2) для депротонированных композитов: σPANI˜10-7 Сим/см, область магнитной дисперсии 5×107-4×109 Гц, μ''max≅4 в области частот от 7×108 Гц до 3×10 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (непокрытого полианилином) Y-Gd-Al-In-Co-Ge феррита-граната того же элементного состава в полиуретане (50 об.%) имеют μ''max≅1,7 в области частот от 107 Гц до 108 Гц.

Пример 13.

Магнитомягкий наполнитель: ядро из кобальтового гексаферрита Z структуры (Co2Z), размер частиц 10 мкм, оболочка из полианилина толщиной 200 нм.

Композиционный магнитный материал: прессованный магнитомягкий наполнитель.

Получен аналогично примеру 1. Часть образцов депротонируют 1 М раствором гидроокиси аммония. Образцы композиционных магнитных материалов характеризуются следующими параметрами:

(1) для композитов Co2Z-полианилин, проводимость полианилиновой пленки σPANI составляет 4 Сим/см, область магнитной дисперсии распространяется на диапазон от 108 до 6×109 Гц; максимумом магнитных потерь μ''max=4 на резонансной частоте fres=2,5×109 Гц;

(2) для депротонированных композитов: σPANI˜10-8 Сим/см; область магнитной дисперсии 3×108-3×109 Гц, μ''max=2 на fres=3,5×109 Гц.

Для сравнения полимерные композиты с максимальным содержанием чистого (не покрытого полианилином) Co2Z феррита того же элементного состава и размера частиц в полиуретане (50 об.%) имеют область магнитной дисперсии 108-6×109 Гц; μ''max˜1,8 на fres=5×109 Гц.

Пример 14.

Магнитомягкий наполнитель: ядро из MnZn