Способ и трубопровод для передачи сигналов
Иллюстрации
Показать всеИзобретение относится к области электротехники, в частности к скважинным телеметрическим системам для передачи сигналов между наземным устройством и скважинным прибором, размещенным в стволе скважины. Предложена проводная бурильная труба для бурильной колонны скважинного прибора, размещенного в стволе скважины, проникающем в геологический пласт. Проводная бурильная труба включает в себя бурильную трубу, кабель и держатель провода. Бурильная труба имеет прорезь на своем конце. Прорези способны принимать, по меньшей мере, один трансформатор. Бурильная труба имеет внутреннюю поверхность, образующую канал для потока бурового раствора через него. Кабель проходит от трансформатора в канал бурильной трубы. Держатель провода находится на внутренней поверхности бурильной трубы. Держатель провода предназначен для крепления кабеля в ней. Техническим результатом изобретения является снижение вероятности электрических неисправностей и/или сбоев за счет хорошего контакта между соседними трубами. 7 н. и 30 з.п. ф-лы, 51 ил.
Реферат
Уровень техники изобретения
Эта заявка испрашивает приоритет на основе предварительной заявки США № 60/749546, поданной 12 декабря 2005 г. и озаглавленной "Method and Conduit for Transmitting Signals."
1. Область техники, к которой относится изобретение
Настоящее изобретение относится к телеметрическим системам для использования в скважинных операциях. В частности, настоящее изобретение относится к скважинным телеметрическим системам, например, телеметрии проводной бурильной трубы, для передачи сигналов между наземным устройством и скважинным прибором, размещенным в стволе скважины, проникающем в геологический пласт.
2. Предшествующий уровень техники
Скважины бурят для разведки и добычи углеводородов. Скважинный буровой инструмент с долотом на конце углубляется в землю для формирования ствола скважины. По мере продвижения бурового инструмента буровой раствор нагнетается из наземного амбара для бурового раствора, через буровой инструмент и выходит из бурового долота для охлаждения бурового инструмента и удаления обломков. Флюид выходит из бурового долота и течет вверх к поверхности для рециркуляции через инструмент. Буровой раствор также используется для формирования глинистой корки для облицовки ствола скважины.
В ходе операции бурения желательно обеспечивать связь между поверхностью и скважинным прибором. Скважинные телеметрические устройства обычно используются для обеспечения распространения, например, питания, команд и/или сигналов связи между наземным устройством и скважинным прибором. Эти сигналы используются для управления работой и/или запитывания скважинного прибора и передачи скважинной информации на поверхность.
Было разработано несколько разных типов телеметрических систем для передачи сигналов между наземным устройством и скважинным прибором. Например, телеметрические системы на основе импульсов давления в буровом растворе используют изменения в потоке бурового раствора, идущего из амбара для бурового раствора в скважинный прибор и обратно на поверхность, для передачи декодируемых сигналов. Примеры таких телеметрических приборов на основе импульсов давления в буровом растворе приведены в патентах США №№ 5375098 и 5517464. Помимо скважинных телеметрических систем на основе импульсов давления в буровом растворе, для установления нужных средств связи можно использовать другие скважинные телеметрические системы. Примеры таких систем могут включать в себя скважинную телеметрическую систему бурильной трубы, описанную в патенте США № 6641434, электромагнитную скважинную телеметрическую систему, описанную в патенте США № 5624051, акустическую скважинную телеметрическую систему, описанную в патентной заявке РСТ № WO2004085796. Другие устройства передачи данных или связи, например, приемопередатчики, подключенные к датчикам, также используются для передачи мощности и/или данных. В зависимости от условий в стволе скважины, скоростей передачи данных и/или других факторов, может быть предпочтительно использовать определенные типы телеметрии для определенных операций.
В частности, телеметрия бурильной трубы используется для обеспечения проводной линии связи между наземным устройством и скважинным прибором. Идея укладки провода на соединенных между собой секциях бурильной трубы предложена, например, в патенте США № 4126848 Денисона; патенте США № 3957118 Бэрри и др.; и в патенте США № 3807502 Хейлхекера и др.; и в публикациях, например "Four Different Systems Used for MWD", W. J. McDonald, The Oil and Gas Journal, стр. 115-124, 3 апреля, 1978 г. Ряд более поздних патентов и публикаций посвящен использованию индуктивных соединителей с гальванической связью в проводной бурильной трубе (WDP), описанных, например, в патентах США №№ 4605268; 21405375,052,941; 4806928; 4901,069; 5531592; 5278550; 5971072; 6866306 и 6641434; опубликованной патентной заявке РФ № 2040691; и заявке PCT № WO 90/14497. Ряд других патентных ссылок раскрывают или предлагают конкретные решения для передачи данных вдоль аксиальных отрезков скважинного трубопровода или на секциях трубы, например патенты/заявки США №№ 2000716; 2096359; 4095865; 472402; 4953636; 6392317; 6799632 и US 2004/0119607; и заявки PCT №№ WO 2004/033847 и WO 0206716. Некоторые методы предусматривают размещение проводов в трубе и размещение их в воротнике бура, как показано, например, в патенте США № 4126848.
Несмотря на эти преимущества в технологии телеметрии проводной бурильной трубы, остается необходимость в обеспечении надежной телеметрической системы. Желательно, чтобы такая система обеспечивала методы защиты электрических компонентов. Желательно также, чтобы такая система была проста в изготовлении, механической обработке и/или модификации. Такая система, предпочтительно, имеет, помимо прочего, одну или более особенностей: снижение вероятности электрических неисправностей и/или сбоев, хороший контакт между соседними трубами, избыточные компоненты, и/или дублирующие системы.
Определения
Некоторые термины определены в этом описании, поскольку они используются впервые, тогда как некоторые другие термины, используемые в этом описании, определены ниже.
"Коммуникативный" значит способный проводить, индуцировать, переносить или иным образом передавать сигнал.
"Коммуникативный соединитель" означает устройство или структуру, которая служит для соединения соответствующих концов двух соседних трубчатых деталей, например охватывающего конца /охватываемого конца на соседних секциях трубы, через которую можно передавать сигнал.
"Линия связи" означает совокупность коммуникативно соединенных трубчатых деталей, например, в соединенных между собой секциях WDP для передачи сигналов на расстояние.
"Телеметрическая система" означает, по меньшей мере, одну линию связи плюс другие компоненты, например наземный компьютер, инструменты MWD/LWD, переходники для связи, и/или маршрутизаторы, необходимые для измерения, передачи и индикации/регистрации данных, полученных из ствола скважины или через него.
"Проводная линия связи" означает канал, который является, по меньшей мере, частично проводным вдоль или на протяжении секции WDP для передачи сигналов.
"Проводная бурильная труба" или "WDP" означает одну или несколько трубчатых деталей, включая бурильную трубу, воротники бура, обсадную колонну, насосно-компрессорную колонну и другие трубопроводы, которые предназначены для использования в бурильной колонне, причем каждая трубчатая деталь содержит проводную линию связи. Проводная бурильная труба может содержать потайную колонну или вкладыш, и может расширяться, помимо прочих изменений.
Сущность изобретения
Настоящее изобретение относится к проводной бурильной трубе для бурильной колонны скважинного прибора, находящейся в стволе скважины, проникающем в геологический пласт. Проводная бурильная труба включает в себя бурильную трубу, кабель и держатель провода. Бурильная труба имеет прорезь на каждом своем конце. Прорези способны принимать, по меньшей мере, один трансформатор. Бурильная труба имеет внутреннюю поверхность, образующую канал, по которому течет буровой раствор. Кабель проходит из трансформатора в канал бурильной трубы. Держатель провода находится на внутренней поверхности бурильной трубы. Держатель провода предназначен для крепления кабеля внутри себя.
Краткое описание чертежей
Чтобы можно было детально разобраться в вышеупомянутых признаках и преимуществах настоящего изобретения, более подробное описание изобретения, кратко описанного выше, приведено со ссылкой на варианты его осуществления, которые проиллюстрированы в прилагаемых чертежах. Заметим, однако, что прилагаемые чертежи иллюстрируют только типичные варианты осуществления этого изобретения и поэтому не призваны ограничивать его объем, поскольку изобретение допускает другие, столь же эффективные варианты осуществления.
Фиг.1 - схема буровой площадки, включающей в себя буровую установку, в которой скважинный прибор погружается от нее в ствол скважины посредством бурильной колонны, бурильную колонну, имеющую совокупность проводных бурильных труб, образующую телеметрическую систему бурильной колонны.
Фиг.2 - вид в разрезе нескольких проводных бурильных труб, несущих в себе проводной трубопровод.
Фиг.3 - частично разобранный вид в перспективе стыковочной пары коммуникативных соединителей в соответствии с проводным трубопроводом, показанным на Фиг.2.
Фиг.4 - подробный вид в разрезе стыковочной пары коммуникативных соединителей, показанных на Фиг.3, скрепленных друг с другом как часть колонны рабочего трубопровода.
Фиг.5A - трубопровод, аналогичный показанному на Фиг.2, но использующий расширяемый трубчатый рукав для крепления и защиты одного или нескольких проводящих проводов между коммуникативными соединителями пары.
Фиг.5B - трубопровод, аналогичный показанному на Фиг.5A, за исключением того, что проводящий(е) провод(а) проходит(ят) через трубопровод по спирали.
Фиг.6A-6D - различные средства предварительной формовки расширяемого рукава, показанного на Фиг.5, для предварительного размещения участка рукава для инициирования его расширения под действием внутреннего давления флюида, например посредством гидроформинга.
Фиг.7 - взрывчатка, находящая в расширяемом трубчатом рукаве наподобие показанного на Фиг.5 для расширения рукава под действием детонации.
Фиг.8A - вид в разрезе трубопровода, аналогичного показанному на Фиг.5, но использующего удлиненную подушку совместно с расширяемым трубчатым рукавом для крепления и защиты одного или нескольких проводящих проводов.
Фиг.8B - вид в перспективе трубопровода, показанного на Фиг.8A, после расширения расширяемого трубчатого рукава со сцеплением с удлиненной подушкой и внутренней стенкой трубопровода.
Фиг.9A - вид в поперечном разрезе трубопровода, показанного на Фиг.8A, в котором альтернативный U-образный расширяемый трубчатый рукав также показан пунктирными линиями.
Фиг.9B - подробный вид в поперечном разрезе трубопровода, показанного на Фиг.8B, в котором рукав расширен для сцепления с удлиненной подушкой и внутренней стенкой трубопровода.
Фиг.10A - трубопровод, аналогичный показанному на Фиг.5, но использующий сварную, канавчатую удлиненную подушку для крепления одного или нескольких проводящих проводов.
Фиг.10B - вид в поперечном разрезе трубопровода, показанного на Фиг.10A, взятый по линии сечения 10B-10B на Фиг.10A.
Фиг.11A - расширяемый трубчатый рукав, снабженный аксиально ориентированными прорезями для облегчения его расширения.
Фиг.11B - рукав, показанный на Фиг.11A, после его расширения.
Фиг.11С - оправка, используемая для механического расширения рукава, показанного на Фиг.11A.
Фиг.12 - подробный вид в поперечном разрезе, аналогичный показанному на Фиг.9B, но в котором удлиненная подушка используется независимо от расширяемого трубчатого рукава, и прикреплена ко внутренней стенке трубопровода.
Фиг.13A-B - виды в поперечном разрезе альтернативного расширяемого трубчатого рукава, в соответствующих сжатом и расширенном состояниях, используемого для крепления удлиненной подушки.
Фиг.14A - вид в поперечном разрезе трубопровода, использующего канавку в своей внутренней стенке для крепления одного или нескольких проводящих проводов.
Фиг.14B - канавчатый трубопровод, показанный на Фиг.14A, снабженный покровной пластиной.
Фиг.15 - вид в поперечном разрезе трубопровода, использующего канавку на своей внешней стенке и внешнюю потайную колонну для крепления одного или нескольких проводящих проводов.
Фиг.16A и 16B - подробные виды участка трубопровода, имеющего держатель провода в несформованном и сформованном положениях, соответственно, причем держателем провода является подушка.
Фиг.17A и 17B - подробные виды участка, имеющего держатель провода в несформованном и сформованном положениях, соответственно, причем держателем провода является подушка с канавкой.
Фиг.18A - подробный вид участка трубопровода, имеющего держатель провода, причем держателем провода является металлическая полоска.
Фиг.18B - подробный вид участка трубопровода, имеющего держатель провода, причем держателем провода является металлическая подушка.
Фиг.19A - вид в продольном разрезе трубопровода, где показан шпоночный паз для приема держателя провода.
Фиг.19B1 - подробный вид в разрезе участка трубопровода, показанного на Фиг.19A, взятый по линии 19B1-19B1 и изображающий шпоночный паз.
Фиг.19B2 - подробный вид в разрезе участка трубопровода, имеющего альтернативный шпоночный паз.
Фиг.19C - подробный вид в разрезе участка трубопровода, показанного на Фиг.19A, взятый по линии 19C-19C.
Фиг.20A - вид в продольном разрезе трубопровода, изображающий шпоночный паз для приема держателя провода и рукав.
Фиг.20B - подробный вид в разрезе участка трубопровода, показанного на Фиг.20A, взятый по линии 20B1-20B1 и изображающий шпоночный паз.
Фиг.20B - подробный вид в разрезе участка трубопровода без шпоночного паза.
Фиг.20C - подробный вид в разрезе участка трубопровода, показанного на Фиг.20A, взятый по линии 20C-20C.
Фиг.21A - схема проводной линии связи в соответствии с трубопроводами, показанными на Фиг.2-4.
Фиг.21B - схема пары независимых проводных линий связи, используемых в трубопроводе.
Фиг.22A-D - подробные виды участка трубопровода, в котором трансформатор закреплен, держателем трансформатора с использованием различных конфигураций прорези.
Фиг.23A-D - подробные виды участка трубопровода, в котором трансформатор закреплен так, что его конец может быть подвергнут механической обработке.
Фиг.24 - подробный вид соседних секций WDP с прокладкой между ними.
Подробное описание изобретения
На Фиг.1 показаны традиционная буровая установка и бурильная колонна, в которых можно выгодно использовать настоящее изобретение. Согласно Фиг.1, платформа и буровая вышка в сборе 10 находятся над стволом скважины 11, проникающим в геологический пласт F. Бурильная колонна 12 подвешена в стволе скважины 11 и включает в себя буровое долото 15 и его нижний конец. Бурильная колонна 12 вращается буровым ротором 16, снабжается энергией непоказанным средством, которое приводит в действие ведущую бурильную трубу 17 на верхнем конце бурильной колонны. Бурильная колонна 12 подвешена на крюке 18, присоединена к талевому блоку (не показан), через ведущую бурильную трубу 17 и вертлюг 19, который позволяет бурильной колонне вращаться относительно крюка.
Буровой раствор 26 хранится в амбаре 27, сформированном на буровой площадке. Буровой насос 29 подает буровой раствор 26 внутрь бурильной колонны 12 через канал (не пронумерован) в вертлюге 19, в результате чего буровой раствор течет вниз по бурильной колонне 12, как указано стрелкой 9. Затем буровой раствор выходит из бурильной колонны 12 через каналы в буровом долоте 15, после чего циркулирует вверх по области между внешней стенкой бурильной колонны и стенкой ствола скважины, так называемому кольцевому пространству, как указано стрелками 32. Таким образом, буровой раствор смазывает буровое долото 15 и переносит обломки породы на поверхность, когда буровой раствор возвращается в амбар 27 для очистки и рециркуляции.
Бурильная колонна 12 также включает в себя оборудование низа бурильной колонны (BHA) 20, размещенное вблизи бурового долота 15. BHA 20 может включать в себя средства для измерения, обработки и сохранения информации, а также для связи с поверхностью (например, с приборами MWD/LWD). Пример устройства связи, которое можно использовать в BHA, подробно описан в патенте США № 5339037.
Сигнал связи от BHA может приниматься на поверхности преобразователем 31, который подключен к наземной приемной подсистеме 90. Выходной сигнал приемной подсистемы 90 поступает на процессор 85 и устройство 45 записи. Наземная система может также включать в себя передающую систему 95 для связи со скважинными инструментами. Линия связи между скважинными инструментами и наземной системой может содержать, помимо прочего, телеметрическую систему 100 бурильной колонны, которая содержит совокупность секций 210 проводной бурильной трубы (WDP).
Бурильная колонна 12 может альтернативно использовать конфигурацию верхнего привода (также известную), в которой бурильную колонну вращает силовой вертлюг, а не ведущая секция бурильной трубы и буровой ротор. Специалистам в данной области очевидно, что "скользящие" операции бурения можно альтернативно проводить с использованием общеизвестного забойного турбинного двигателя типа Муану, который преобразует гидравлическую энергию бурового раствора 26, нагнетаемого из амбара 27 для бурового раствора вниз по бурильной колонне 12 в крутящий момент для вращения бурового долота. Кроме того, бурение можно проводить с помощью так называемых "вращательно-управляемых" систем, известных из уровня техники. Различные аспекты настоящего изобретения предусматривают использование в каждой из этих конфигураций бурения и не ограничиваются традиционными вращательными операциями бурения.
Бурильная колонна 12 использует проводную телеметрическую систему, в которой несколько секций 210 WDP соединены между собой в бурильной колонне с образованием линии связи (не пронумерована). Один тип секции WDP, раскрытый в патенте США № 6641434 Бойля и др. и присвоенном правообладателю настоящего изобретения, все содержание которого включено посредством ссылки, использует коммуникативные соединители, в частности, индуктивные соединители для передачи сигналов по секциям WDP. Индуктивный соединитель в секциях WDP, согласно Бойлю и др., содержит трансформатор, который имеет тороидальный сердечник, выполненный из материала с высокой проницаемостью и низкими потерями, например, супермаллоя (который представляет собой сплав никеля и железа, обработанный для исключительно высокой начальной проницаемости и пригодный для использования в трансформаторах низкоуровневых сигналов). Обмотка, состоящая из множественных витков изолированного провода, намотана на тороидальный сердечник с образованием тороидального трансформатора. В одной конфигурации тороидальный трансформатор загерметизирован в резину или другие изоляционные материалы, и трансформатор в сборе утоплен в канавку, находящуюся в соединении бурильных труб.
На Фиг.2-4 показан участок бурильной колонны 12, показанной на Фиг.1, изображена секция 210 проводной бурильной трубы (WDP), примыкающая к секциям WDP 9a и 9b. Показано, что секция WDP 210 имеет коммуникативные соединители 221, 231, в частности, элементы индуктивной связи на или вблизи ее соответствующего конца 241, охватывающего конца 222 и конца 234, охватываемого конца 232. Первый кабель 214 проходит через трубопровод 213 для соединения коммуникативных соединителей, 221, 231 способом, который дополнительно описан ниже.
Секция WDP 210 снабжена удлиненным трубчатым корпусом 211, имеющим осевой канал 212, охватывающий конец 222, охватываемый конец 232 и первый кабель 214, идущий от охватывающего конца 222 к охватываемому концу 232. Первый элемент 221 индуктивной связи с петлей тока (например, тороидальный трансформатор) и аналогичный второй элемент 231 индуктивной связи с петлей тока размещены на охватывающем конце 222 и на охватываемом конце 232 соответственно.
Первый элемент 221 индуктивной связи с петлей тока, второй элемент 231 индуктивной связи с петлей тока и первый кабель 214 совместно обеспечивают коммуникативный трубопровод на протяжении длины каждой секции WDP. Показано, что индуктивный соединитель (или коммуникативное соединение) 220 на связанном интерфейсе между двумя секциями WDP образован первым элементом 221 индуктивной связи из секции WDP 210 и вторым элементом 231' индуктивной связи с петлей тока из следующей трубчатой детали, которая может быть другой секцией WDP. Специалистам в данной области очевидно, что в некоторых вариантах осуществления настоящего изобретения элементы индуктивной связи можно заменить другими коммуникативными соединителями, выполняющими аналогичную коммуникативную функцию, например непосредственные соединения с электрическим контактом наподобие раскрытого в патенте США № 4126848 Денисона.
На Фиг.4 более подробно показан индуктивный соединитель или коммуникативное соединение 220, изображенный на Фиг.3. Охватывающий конец 222 включает в себя внутреннюю резьбу 223 и внутренний кольцевой контактный буртик 224, имеющий первую прорезь 225, в которой размещенный первый тороидальный трансформатор 226. Тороидальный трансформатор 226 подключен к кабелю 214. Аналогично, охватываемый конец 232' соседней проводной трубчатой детали (например, другой секции WDP) включает в себя наружную резьбу 233' и внутренний кольцевой контактный трубчатый конец 234', имеющий вторую прорезь 235', в которой размещен второй тороидальный трансформатор 236'. Второй тороидальный трансформатор 236' подключен ко второму кабелю 214' соседней трубчатой детали 9a. Согласно Фиг.2 охватываемый конец 232' имеет внешний контактный буртик 251', который контактирует с концом 241 охватывающего конца 222.
Прорези 225 и 235' могут быть плакированы материалом с высокой электропроводностью и низкой проницаемостью (например, медью) для повышения эффективности индуктивного соединения. Когда охватывающий конец 222 одной секции WDP соединен с охватываемым концом 232' соседней трубчатой детали (например, другой секции WDP), образуется коммуникативное соединение. На Фиг.4 показан в разрезе участок полученного интерфейса, в котором стыковочная пара элементов индуктивной связи (т.е. тороидальных трансформаторов 226, 236') связана воедино для формирования коммуникативного соединения в рабочей линии связи. Этот вид в разрезе также демонстрирует, что замкнутые тороидальные пути 240 и 240' охватывают тороидальные трансформаторы 226 и 236' соответственно, и что трубопроводы 213 и 213' образуют каналы для внутренних электрических кабелей 214 и 214', которые соединяют два элемента индуктивной связи, размещенные на двух концах каждой секции WDP.
Вышеописанные индуктивные соединители включают в себя электрический соединитель, выполненный в виде двойного тороида. Двухтороидальный соединитель использует внутренние буртики охватываемого и охватывающего концов в качестве электрических контактов. Внутренние буртики приводятся в контакт под внешним давлением, когда охватываемый и охватывающий концы закончены, что гарантирует электрическое соединение между охватываемым и охватывающим концами. Токи наводятся в металле соединения посредством тороидальных трансформаторов, размещенных в прорезях. На данной частоте (например, 100 kHz), эти токи удерживаются на поверхности прорезей за счет скин-эффекта. Охватываемый и охватывающий концы образуют вторичные цепи соответствующих трансформаторов, и две вторичные цепи образуют непосредственное соединение благодаря сопряжению поверхностей внутренних буртиков.
Хотя на Фиг.2-4 показаны определенные типы коммуникативного соединителя, специалистам в данной области очевидно, что для передачи сигнала через соединенные между собой трубчатые детали можно использовать различные соединители. Например, такие системы могут включать в себя магнитные соединители, например, описанные в международной патентной заявке № WO 02/06716 Холла и др. Также можно предложить другие системы и/или соединители.
На Фиг.5A-21B показаны различные варианты осуществления держателя провода для установки и защиты проводящего провода или кабеля, например, электрического кабеля 214 и/или 214', показанных на Фиг.2-4, в секции WDP или трубопроводе. На Фиг.5A показан трубопровод 510, аналогичный секции WDP, показанной на Фиг.2. Соответственно, трубопровод 510 образован трубчатым корпусом 502, снабженным парой коммуникативных соединителей 521, 531 (которые могут быть аналогичны соединителям 221 и 231, показанным на Фиг.2-4) на или вблизи соответствующих охватывающего и охватываемого концов 522, 532 трубчатого корпуса.
Трубопровод, предназначенный для использования в скважине, например стальная бурильная труба, обычно состоит из прямолинейного участка трубы (см. трубчатый корпус 502) с нижним охватываемым соединением (см. охватываемый конец 532) и верхним охватывающим соединением (см. охватывающий конец 522). В случае стандартной бурильной трубы, внутренний диаметр (ВД), предпочтительно, варьируется так, что наименьший ВД лежит на концевых соединениях (см. ВД1), и наибольший ВД лежит вдоль среднеосевого участка корпуса трубы (см. ВД2). Типичные разности между ВД концевого соединения и ВД корпуса трубы составляют от 0,5 до 0,75 дюймов, но в некоторых случаях могут быть больше (например, 1,25 дюймов или более). Однако следует понимать, что другие скважинные трубопроводы (даже некоторые бурильные трубы) не имеют такого конического ВД, но используют постоянный ВД на протяжении концевых соединений и корпуса. Один пример бурильной трубы с постоянным ВД это бурильная труба HiTorque™ от Grant Prideco. Настоящее изобретение применимо к скважинным трубопроводам, имеющим многочисленные конфигурации (с переменным или постоянным) ВД.
Коммуникативные соединители 521, 531 могут быть элементами индуктивной связи, каждый из которых включает в себя тороидальный трансформатор (не показан), и соединены одним или несколькими проводящими проводами 514 (также именуемыми здесь просто "кабелем") для передачи сигналов между ними. Концы кабеля обычно прокладываются через "осаженные" концы трубопровода посредством отверстия, проделанного "ружейным сверлом" или механически обработанной канавки в каждом из осаженных концов, и достигают, например, соответствующих тороидальных трансформаторов. Таким образом, коммуникативные соединители 521, 531 и кабель 514 совместно обеспечивают линию связи вдоль каждого трубопровода 510 (например, вдоль каждой секции WDP).
Предпочтительно, трубопровод 510 способен крепить и защищать электропроводящие провода или пару проводящих проводов (также известных как проводники), например кабель 514, который идет от одного конца секции трубопровода к другому. Если используется только один проводящий провод, сам трубопровод может выступать в качестве второго проводника для завершения цепи. Обычно используется конфигурация из, по меньшей мере, двух проводящих проводов, например витая пара проводов или коаксиальный кабель. По меньшей мере, один из проводников обычно электрически изолирован от другого(их) проводника(ов). В некоторых обстоятельствах может быть желательно использовать более двух проводников для избыточности или в других целях. Примеры такой избыточной прокладки проводов описан ниже со ссылкой на Фиг.21A-B.
Согласно Фиг.5A проводник(и) закреплены и защищены расширяемым трубчатым рукавом 550, показанным размещенным (и расширенным) в трубчатом корпусе 502. Рукав 550 сконструирован так, что будет помещаться в нерасширенном состоянии в участке наименьшего диаметра, ВД1, трубопровода 510. Таким образом, например, расширяемый трубчатый рукав 550 может первоначально иметь цилиндрическую форму и иметь наружный диаметр (НД), который слегка меньше, чем ВД трубопровода на участке ВД1. Очевидно, что расширяемый трубчатый рукав не обязан первоначально быть цилиндрическим, и можно выгодно использовать различные конфигурации (например, U-образную, как описано ниже).
В конкретных вариантах осуществления, расширяемый трубчатый рукав имеет участок, который предварительно размещен для инициирования его расширения под действием внутреннего давления флюида, например, давления газа или флюида, и, в частности, посредством гидроформинга (описанного ниже). Когда рукав, например, рукав 550 размещен в трубопроводе 510, кабель 514, подключенный между коммуникативными соединителями 521, 531 для установления проводной линии связи, проходит вдоль трубчатого корпуса 502 трубопровода между внутренней стенкой трубчатого корпуса и (нерасширенным) трубчатым рукавом 550. Трубчатый рукав 550 затем расширяется в трубчатом корпусе 502 под действием давления флюида на внутреннюю стенку трубчатого рукава, и расширение инициируется в заранее определенном месте (например, в или вблизи центра корпуса 502). В результате такого расширения кабель 514 надежно закрепляется между трубчатым корпусом 502 и трубчатым рукавом 550.
Согласно Фиг.5A кабель 514 проходит линейно по длине трубчатого корпуса 502 трубопровода. Однако, согласно Фиг.5B, кабель 514 может размещаться в трубопроводе 510 в любой конфигурации, например по спирали, как показано. Согласно дополнительно описанному здесь провод может быть закреплен на месте с использованием различных методов. Примеры таких методов гидроформинга, сварки, связывания и/или иного закрепления кабеля на месте показаны на Фиг.6A-22B.
На Фиг.6A-6D показаны различные средства предварительного формования (т.е. формования до размещения трубчатого рукава в трубчатом корпусе трубопровода) расширяемого рукава наподобие рукава 550, показанного на Фиг.5, для предварительного размещения участка рукава для инициирования его расширения под действием внутреннего давления флюида. Предварительно размещенный участок трубчатого рукава может быть предварительно сформован локализованным приложением механической силы ко внутренней стенке трубчатого рукава (см. расширенный кольцевой участок 652 рукава 650 на Фиг.6A); локализованным приложением механической силы ко внешней стенке трубчатого рукава (см. сжатый кольцевой участок 652' рукава 650' на Фиг.6B); сокращением толщины стенки участка трубчатого рукава (см. утоненный кольцевой участок 652" рукава 650" на Фиг.6C); избирательным усилением трубчатого рукав (см. неусиленный кольцевой участок 652'" рукава 650"' на Фиг.6D); изменение свойств материала участка трубчатого рукава (например, путем локализованной тепловой обработки - не показана); и/или комбинированными средствами.
Конкретный способ расширения расширяемого трубчатого рукава в трубопроводе, например бурильной трубе, использует воду под высоким давлением в известном процессе, именуемом гидроформингом, процессе гидравлического трехмерного расширения, который можно проводить при температуре окружающей среды для крепления рукава в трубопроводе. Трубчатый корпус трубопровода может удерживаться в закрытой пресс-форме в то время, как рукав, размещенный в трубопроводе, наполняется (например, 5000-10,000 psig) рабочей жидкостью, например водой, под высоким давлением (например, 5000-10,000 psig). Установка для гидроформинга может состоять из, например, совокупности уплотняющих поршней и гидравлических насосов, что, в целом, известно из уровня техники. Может быть желательно аксиально подавать рукав, прилагая толкающую силу сжатия (пропорциональную гидравлическому давлению, например, в несколько тысяч psig) к концам, в то время, как гидравлическое давление действует на ВД рукава.
Процесс гидроформинга вызывает пластическое расширение рукава, пока рукав не войдет в контакт и не примет форму, соответствующую внутреннему профилю трубопровода (см., например, рукав 550 в ВД корпуса 502 трубопровода на Фиг.5). Можно использовать особые смазочные материалы для формовки металла для минимизации трения между НД рукава и ВД трубопровода. По завершении гидравлического расширения избыток материала рукава, который проходит по оси за пределы двух концов трубопровода можно обрезать до нужной длины.
После снятия внутреннего гидравлического давления рукав испытывает небольшое упругое сжатие в трубопроводе, в результате чего между рукавом и ВД трубопровода остается небольшой кольцевой зазор. Этот зазор можно заполнить полимером, например эпоксидной смолой с использованием известного процесса вакуумного наполнения. Его также можно заполнить ингибитором коррозии, например смолой и/или смазкой (например, маслом или консистентной смазкой). Материал наполнителя используется для минимизации проникновения коррозионно-активной жидкости в кольцевой зазор и для минимизации любого относительного перемещения рукава в трубопроводе.
Расширяемый трубчатый рукав может иметь тонкостенный трубчатый корпус, выполненный из металла или полимера, и имеет диаметр, чуть меньший наименьшего ВД бурильной трубы для облегчения ввода рукава в трубопровод. Кабель проходит между рукавом и внутренней стенкой трубопровода. В некоторых случаях, например при использовании полимерного рукава, кабель может быть внедрен в стенку рукава. При металлическом рукаве защитные прокладки (например, металлические стержни или удлиненная подушка, описанная ниже) находятся вблизи или около кабеля для предохранения его от разрушения в ходе расширения рукава. Помимо защиты кабеля расширенный трубчатый рукав может также предохранять трубопровод (в частности, бурильную трубу) от коррозии, эрозии и другого повреждения. В некоторых случаях рукав может устранять необходимость в каком-либо покрытии ВД бурильной трубы и, таким образом, снижать общую стоимость.
В одном примере секция бурильной трубы имеет ВД 3,00 дюймов на концевых соединениях и ВД 4,276 дюймов в средней части корпуса трубчатого рукава. При такой геометрии металлический трубчатый рукав может расширяться от первоначального НД чуть меньше 3,00 дюймов до НД 4,276 дюймов для согласования с профилем ВД бурильной трубы. Это приводит к расширению примерно на 43% и предполагает использование пластичного материала трубы, например полностью отожженного 304 трубопровода из нержавеющей стали (НД 3,00" × толщина стенки 0,065") для гидроформинга. Предположительно, такой рукав также может претерпевать существенное удлинение (например, 55-60%) в ходе гидроформинга.
Целью процесса гидроформинга является достижение окончательного состояния напряжения (во всех точках трубы) в определяемых безопасных зонах с достаточными запасами прочности. Уровень истончения стенки рукава и результирующие запасы прочности, которых можно достигнуть в процессе гидроформинга, можно получить из соответствующих экспериментов.
Согласно Фиг.7 другой способ расширения трубчатого рукава, обозначенного 750, для крепления и защиты кабеля 714 в трубопроводе 710 предусматривает использование заряда 754 взрывчатого вещества. По аналогии с гидроформингом относительно тонкостенный рукав 750 помещен в трубопровод, например бурильную трубу 710. Заряд(ы) 754 взрывчатого вещества детонируют внутри рукава 750, приводя к его быстрому расширению и согласованию с ВД бурильной трубы. Для защиты кабеля 714 от повреждения при взрыве можно использовать металлические прокладки (не показаны). В идеале, рукав будет металлургически присоединен к ВД бурильной трубы силой взрыва. Однако, во избежание повреждения кабеля 714, может быть достаточно, чтобы рукав расширялся с использованием сравнительно малого количества взрывчатки, чтобы потайная колонна не присоединялась к ВД бурильной трубы, но примерно соответствовала ВД по размеру и форме (т.е., чтобы оставался узкий кольцевой зазор). Аналогично гидроформованному рукаву, смолу или иной защитный материал можно помещать между рукавом 750 и бурильной трубой 712 для заполнения любых пустот и обеспечения защиты от коррозии.
На Фиг.8A показан вид в разрезе трубопровода 810, аналогичного трубопроводу 510, показанному на Фиг.5, но с использованием удлиненной подушки 856 совместно с расширяемым трубчатым рукавом 850 для крепления одного или нескольких проводящих проводов (также известных как кабель) 814 согласно настоящему изобретению. На Фиг.8B показан вид в перспективе трубопровода 810, показанного на Фиг.8A, после расширения расширяемого трубчатого рукава 850 со вхождением в контакт с удлиненной подушкой 856 и внутренней стенкой трубопровода 810. Трубчатый корпус 802 трубопровода 810 снабжен парой коммуникативных соединителей 821, 831 на или вблизи соответствующих охватывающего и охватываемого концов 822, 832 трубчатого корпуса 802. Удлиненная подушка 856 находится на или вблизи внутренней стенки трубчатого корпуса 802 для защиты и крепления кабеля 814, проходящего между коммуникативными соединителями 821, 831, ко внутренней стенке трубчатого корпуса 802, и, таким образом, установления защищенной проводной линии связи. Удлиненная подушка может быть выполнена из металла, что позволяет ей изгибаться в соответствии с профилем ВД трубопровода 810. Особенности шпоночного паза (не показаны), выполненные путем механической обработки на ВД соединительных концов трубопровода, можно использовать для крепления в нем подушки. Очевидно, что подушку можно прикреплять ко внутренней стенке трубопровода иными средствами, например, с применением подходящего клея. Такое прикрепление препятствует переме