Устройство и способ для кодирования/декодирования пространственно-временного блочного кода в системе мобильной связи, использующей схему с многими входами и многими выходами

Иллюстрации

Показать все

Изобретение относится к устройству и способу для кодирования/декодирования пространственно-временного блочного кода в системе мобильной связи, использующей схему с многими входами и многими выходами. В передатчике, применяющем множество передающих антенн, в системе мобильной связи, если вводится сигнал, который должен передаваться, передаваемый сигнал предварительно кодируется согласно заранее заданной схеме кодирования, предварительно кодированный сигнал пространственно-временным образом преобразуется согласно количеству передающих антенн для применения заранее заданной схемы пространственно-временного блочного кодирования, и пространственно-временным образом преобразованный сигнал передается через передающие антенны посредством применения заранее заданной схемы пространственно-временного блочного кодирования к пространственно-временным образом преобразованному сигналу. Технический результат - обеспечение с помощью матрицы предварительного кодирования возможности получения полного разнесения и полной скорости, при этом минимизируя сложность и объем вычислений в системе мобильной связи МИМО. 6 н. и 25 з.п. ф-лы, 11 ил.

Реферат

1. Область техники, к которой относится изобретение

Настоящее изобретение относится к устройству и способу для кодирования/декодирования кода и, более конкретно, к кодированию/декодированию пространственно-временного блочного кода, который максимизирует усиление разнесения и скорость передачи данных в системе мобильной связи, использующей схему с многими входами и многими выходами (MIMO).

2. Уровень техники

Основная задача, решаемая технологией передачи данных, - это эффективная и надежная передача данных через выбранные каналы. В системах мобильной передачи данных мультимедиа следующего поколения, в текущее время находящихся в разработке, является существенным усилить эффективность системы с помощью применения подходящих схем кодирования канала для систем согласно требованиям систем высокоскоростной связи для предоставления различных услуг, базирующихся на беспроводных данных, за пределами базовой передачи речи.

Однако в отличие от проводных каналов, условия беспроводных каналов в системах мобильной связи порождают неизбежные ошибки вследствие нескольких факторов, таких как помехи между компонентами многолучевого распространения, затенение, затухание распространения, изменяющиеся со временем шумы, помехи и замирание, тем самым, вызывая потерю информации.

Потеря информации вызывает серьезное искажение, которое может ухудшать общую производительность. В общем, для уменьшения этой потери информации применяется многообразие технологий управления ошибками согласно характеристикам канала, тем самым улучшая надежность систем. Наиболее базовой схемой в этих технологиях управления ошибками является схема применения кода с исправлением ошибок.

В дополнение, применяется схема разнесения для удаления неустойчивости связи вследствие замирания. Схема разнесения разделяется на схему разнесения по времени и схему пространственного разнесения, как схема частотного разнесения или схема разнесения антенн.

Здесь схема разнесения антенн представляет схему применения многочисленных антенн, разделенную на схему разнесения приемных антенн с множеством приемных антенн, схему разнесения передающих антенн с множеством передающих антенн и схему MIMO с множеством приемных антенн и множеством передающих антенн.

Схема MIMO обозначает тип схемы пространственно-временного кодирования (STC), которая является заранее заданной схемой кодирования, через которую кодированные сигналы передаются через многочисленные передающие антенны, так что кодирование во временной области расширяется до пространственной области, тем самым достигая более низкой частоты появления ошибок. Схема пространственно-временного блочного кодирования (STBC) (одна из схем, предложенных, чтобы эффективно применять схему разнесения антенн) была предложена Вахидом Тарохом (Vahid Tarokh) (ссылка; Vahid Tarokh, "Space Time Block Coding From Orthogonal Design", Institute of Electrical and Electronics Engineers(IEEE) Trans, on Info., Theory, Vol. 45, pp. 1456-1467, July 1999). Схема пространственно-временного блочного кодирования является схемой, расширенной так, что разнесение передающих антенн, предложенное С.М.Аламоути (S.M.Alamouti) (ссылка; S.M.Alamouti, "A Simple Transmitter Diversity Scheme For Wireless Communications", IEEE Journal on Selected Area in Communications, Vol. 16, pp. 1451-1458, Oct. 1998) может применяться к, по меньшей мере, двум передающим антеннам.

Ниже структура передатчика в системе мобильной связи MIMO, применяющей четыре передающие антенны (Tx.ANT) и схему STBC, предложенную Вахидом Тарохом, будет описываться со ссылкой на фиг.1.

Фиг.1 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, использующей четыре передающие антенны (Tx.ANT) и схему STBC, предложенную Вахидом Тарохом.

Передатчик включает в себя модулятор 100, последовательно-параллельный (S/P) конвертер 102, пространственно-временной блочный кодировщик 104 и четыре передающие антенны, которые являются первой передающей антенной (Tx.ANT 1) 106 по четвертую передающую антенну (Tx. ANT 4) 112.

Когда биты данных информации вводятся в модулятор 100, модулятор 100 создает модулированные символы посредством модулирования вводимых битов данных информации с помощью заранее заданной схемы модуляции и затем выводит модулированные символы в S/P конвертер 102. Здесь, схема модуляции может быть одной из: схемой двоичной фазовой манипуляции (BPSK), схемой четвертичной фазовой манипуляции (QPSK), схемой квадратурной амплитудной модуляции (QAM), схемой амплитудно-импульсной модуляции (PAM), схемой фазовой манипуляции (PSK) и т.д.

S/P конвертер 102 принимает последовательные модулированные символы, выводимые из модулятора 100, преобразует последовательные модулированные символы в параллельные модулированные символы и затем выводит преобразованные символы в пространственно-временной блочный кодировщик 104. Здесь, предполагается, что последовательные модулированные символы, выводимые из модулятора 100, - это 's1s2s3s4'. Пространственно-временной блочный кодировщик 104 выводит модулированные символы в уравнении (1) посредством пространственно-временного кодирования четырех модулированных символов (s1, s2, s3, s4), принятых из S/P конвертера 102:

В уравнении (1) G4 обозначает матрицу кодирования для символов, передаваемых через четыре передающие антенны. В матрице из уравнения (1) каждый элемент каждой строки соответствует интервалу времени, и каждый элемент каждого столбца соответствует каждой передающей антенне в соответствующий интервал времени.

То есть в первый интервал времени символы s1, s2, s3 и s4 передаются через первую передающую антенну 106 по четвертую передающую антенну 112, соответственно. Аналогично, в восьмом интервале времени символы , , и передаются через первую передающую антенну 106 по четвертую передающую антенну 112, соответственно.

Как описывается со ссылкой на уравнение (1), пространственно-временной блочный кодировщик 104 управляет вводимыми модулированными символами, которые должны передаваться через четыре передающие антенны в восьми интервалах времени, посредством выполнения операции отрицания и операции сопряжения по отношению к вводимым модулированным символам. Здесь, усиления разнесения, соответствующие порядкам разнесения, могут быть достигнуты, так как символы, передаваемые через четыре передающие антенны, являются ортогональными друг другу.

Структура передатчика в системе мобильной связи MIMO, применяющей четыре передающие антенны (Tx.ANT) и схему STBC, предложенную Вахидом Тарохом, описывается со ссылкой на фиг.1. Ниже, структура приемника, соответствующего структуре передатчика, показанной на фиг.1, будет описываться со ссылкой на фиг.2.

На фиг.2 приемник включает в себя многочисленные приемные антенны (например, количество P приемных антенн; первую приемная антенна (Rx. ANT 1) 200 по P-ю приемную антенну (Rx. ANT P) 202), модуль 204 оценивания канала, комбинатор 206 сигналов, детектор 208, параллельно-последовательный (P/S) конвертер 210 и демодулятор 212. Хотя предполагается, что количество приемных антенн в приемнике отличается от количества передающих антенн в передатчике, соответствующем приемнику на фиг.2, ожидается, что количество приемных антенн может быть равным количеству передающих антенн.

Как описывается со ссылкой на фиг.1, сигналы, переданные через четыре передающие антенны в передатчике, принимаются через первую приемную антенну 200 по P-ю приемную антенну 202, соответственно. Каждая из первой приемной антенны 200 по P-ю приемную антенну 202 выводит каждый из принятых сигналов в модуль 204 оценивания канала и комбинатор 206 сигналов.

Модуль 204 оценивания канала принимает сигналы, вводимые через первую приемную антенну 200 по P-ю приемную антенну 202, оценивает коэффициенты канала, представляющие усиления канала, и выводит сигналы в детектор 208 и комбинатор 206 сигналов. Комбинатор 206 сигналов принимает сигналы, вводимые через первую приемную антенну 200 по P-ю приемную антенну 202, и сигналы, выводимые из модуля 204 оценивания канала, комбинирует эти сигналы, чтобы создать принимаемые символы, и затем выводит принимаемые символы в детектор 208.

Детектор 208 генерирует символы гипотез посредством умножения принимаемых символов, выводимых из комбинатора 206 сигналов, на коэффициенты канала, выведенные из модуля 204 оценивания канала, вычисляет статистику решения по отношению ко всем символам, передаваемым в передатчике, используя символы гипотез, и обнаруживает модулированные символы, переданные в передатчике, через обнаружение порога так, чтобы вывести модулированные символы в параллельный/последовательный конвертер 210.

P/S конвертер 210 принимает и преобразует параллельные модулированные символы, выведенные из детектора 208, в последовательные модулированные символы и затем выводит преобразованные символы в демодулятор 212. Демодулятор 212 принимает последовательные модулированные символы, выведенные из P/S конвертера 210, и восстанавливает начальные биты данных информации посредством демодуляции последовательных модулированных символов с помощью схемы демодуляции, соответствующей схеме модуляции, примененной для модулятора 100 в передатчике.

Как описано выше, схема пространственно-временного блочного кодирования, предложенная С.М.Аламоути, не генерирует потери скорости передачи данных и может предоставлять максимальный порядок разнесения, идентичный количеству передающих антенн, даже когда передатчик передает сложные символы через две передающие антенны.

Структуры как передатчика, так и приемника (описанные со ссылкой на фиг.1 и 2), предложенные Вахидом Тарохом через расширение схемы пространственно-временного блочного кодирования, предложенной С.М.Аламоути, могут предоставлять максимальный порядок разнесения, используя пространственно-временной блочный код в типе матрицы, имеющей взаимно ортогональные столбцы. В дополнение, структуры как передатчика, так и приемника, описанные со ссылкой на фиг.1 и 2, уменьшают скорость передачи данных на половину, так как четыре сложные символа передаются в восьми интервалах времени. В дополнение, упомянутые структуры ухудшают производительность приема в состоянии быстрого замирания, так как восемь интервалов времени требуются для передачи одного блока сигналов (т.е. четырех символов).

Когда сигналы передаются через, по меньшей мере, четыре передающие антенны, базируясь на схеме пространственно-временного блочного кодирования, как описано выше, передача N символов требует 2×n количества интервалов времени, тем самым увеличивая задержку и генерируя потерю скорости передачи данных.

Чтобы спроектировать схему, имеющую полную скорость в системе связи с многочисленными антеннами, передающей сигналы через, по меньшей мере, три передающие антенны, группа Гианнакиса (Giannakis) предлагает схему STBC с полным разнесением и полной скоростью (FDFR), использующую четыре передающие антенны, базируясь на вращении дозового созвездия в комплексной плоскости.

Ниже со ссылкой на фиг.3 будет описываться структура передатчика в системе мобильной связи MIMO, использующей четыре передающие антенны и схему STBC, предложенную группой Гианнакиса.

На фиг.3 передатчик включает в себя модулятор 300, предварительный кодировщик 302, пространственно-временной преобразователь 304 и четыре передающие антенны (первая передающая антенна (Tx.ANT 1) 306 по четвертую передающую антенну (Tx. ANT 4) 312). Если вводятся биты данных информации, модулятор 300 генерирует модулированные символы посредством модулирования битов данных информации, базируясь на заранее заданной схеме модуляции, и затем выводит модулированные символы в предварительный кодировщик 302. Здесь, схема модуляции может применяться как одна из: схема BPSK, схема QPSK, схема QAM, схема PAM и схема PSK.

Предварительный кодировщик 302 принимает четыре модулированных символа (т.е. d1, d2, d3, d4), выведенные из модулятора 300, кодирует символы так, что вращение сигнала может происходить в пространстве сигнала, и выводит кодированные сигналы в пространственно-временной преобразователь 304. Здесь предполагается, что поток вводимых модулированных символов, включающий в себя четыре модулированных символа, выведенные из модулятора 300, указывается как 'd'. Предварительный кодировщик 302 генерирует комплексный вектор 'r' посредством выполнения операции из уравнения (2) по отношению к потоку d вводимых модулированных символов и выводит вектор r в пространственно-временной преобразователь 304:

В уравнении 2 Θ обозначает матрицу предварительного кодирования. Схема пространственно-временного блочного кодирования, предложенная группой Гианнакиса, применяет матрицу Вандермонда (Vandermonde) (унитарную матрицу) в качестве матрицы предварительного кодирования. В дополнение, αi в уравнении (2) выражается как уравнение (3):

αI = exp(j2(i+1/4)/4), I = 0, 1, 2, 3...(3)

Схема STBC, предложенная группой Гианнакиса, является не только подходящей для случая использования четырех передающих антенн, как описано выше, но также может быть легкоприменима к случаю использования более чем четырех передающих антенн. Пространственно-временной преобразователь 304 принимает и пространственно-временным образом кодирует сигналы, выведенные из предварительного кодировщика 302, и затем выводит сигналы как модулированные символы в уравнении (4):

В уравнении (4) S обозначает матрицу кодирования для символов, передаваемых через четыре передающие антенны. В матрице из уравнения (4) каждый элемент каждой строки соответствует интервалу времени, и каждый элемент каждого столбца соответствует каждой передающей антенне в соответствующем интервале времени.

Другими словами, в первом интервале времени, символ r1 передается через первую передающую антенну 306, и никакой сигнал не передается через оставшиеся передающие антенны (т.е. вторую передающую антенну 308 по четвертую передающую антенну 312). Аналогично, в четвертом интервале времени символ r4 передается через четвертую передающую антенну 312, и никакой сигнал не передается через оставшиеся передающие антенны (т.е. первую передающую антенну 308 по третью передающую антенну 310).

Символы в уравнении (4) принимаются в приемнике (не показан) через беспроводной канал. Приемник восстанавливает поток d модулированных символов с помощью схемы декодирования максимального правдоподобия (ML). Как результат, приемник восстанавливает биты данных информации.

Исследовательская команда Тая Джина Джеонга (Tae Jin Jeong) и Гиунга Хоона Джеона (Gyung Hoon Jeon) предложила конкатенированный код и предварительный кодировщик, имеющий эффективность кодирования, превосходящее эффективность кодирования схемы пространственно-временного блочного кодирования, предложенной группой Гианнакиса в 2003. Исследовательская команда Тая Джина Джеонга и Гиунга Хоона Джеона осуществила значительное улучшение посредством выполнения конкатенации по отношению к пространственно-временному блочному коду, предложенному С.М.Аламоути, вместо использования диагональной матрицы, предложенной группой Гианнакиса.

Ниже структура передатчика в системе мобильной связи MIMO, использующей четыре передающие антенны и схему STBC, предложенную исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, будет описываться со ссылкой на фиг.4.

Фиг.4 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, использующей четыре передающие антенны и схему STBC, предложенную исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона.

Передатчик включает в себя предварительный кодировщик 400, преобразователь 402, модуль 404 задержки, кодировщики 406 и 408 Аламоути и первую передающую антенну (Tx.ANT 1) 410 по четвертую передающую антенну (Tx.ANT 4) 416. Если вводятся биты данных информации, предварительный кодировщик 400 принимает четыре модулированных символа, кодирует модулированные символы, так что вращение сигнала может происходить в пространстве сигнала, и затем выводит кодированные символы в преобразователь 402. Здесь предполагается, что поток вводимых модулированных символов, включающий в себя четыре модулированных символа, указывается как 'd'. Предварительный кодировщик 400 принимает поток d вводимых модулированных символов и может предварительно кодировать поток d вводимых модулированных символов, как показано в уравнении (5):

В уравнении (5) αi равняется 'αI = exp(j2(i+1/4)/4), I = 0, 1, 2, 3'. Преобразователь 402 принимает сигналы, выведенные из предварительного кодировщика 400, и выводит векторы, сформированные, базируясь на двух элементах ([r1,r2], [r3,r4]). Другими словами, преобразователь 402 выводит([r1,r2]T) и ([r3,r4]T).

([r1,r2]T) вводится в кодировщик 406 Аламоути, и ([r3,r4]T) вводится в модуль 404 задержки. Модуль 404 задержки задерживает ([r3,r4]T) на один временной интервал и затем выводит задержанный ([r3,r4]T) в кодировщик 408 Аламоути. Здесь, кодировщик Аламоути представляет кодировщик, применяющий схему пространственно-временного блочного кодирования, предложенную С.М.Аламоути.

Кодировщик 406 Аламоути управляет выводом ([r1,r2]T) из преобразователя 402, который должен передаваться через первую передающую антенну 410 и вторую передающую антенну 412 в первом интервале времени. Кодировщик 408 Аламоути управляет выводом ([r1,r2]T) из преобразователя 402, который должен передаваться через третью передающую антенну 414 и четвертую передающую антенну 416 во второй интервал времени. Матрица кодирования, используемая для передачи выходных сигналов кодировщиков 406 и 408 Аламоути через многочисленные антенны, выражается как уравнение (6):

Матрица кодирования, показанная в уравнении (6), отличается от матрицы кодирования, показанной в уравнении (4), в том, что матрица кодирования, показанная в уравнении (6), не является диагональной матрицей, а реализована посредством схемы Аламоути. Схема пространственно-временного блочного кодирования, предложенная исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, увеличивает эффективность кодирования по сравнению с эффективностью схемы пространственно-временного блочного кодирования, предложенной группой Гианнакиса, посредством применения типа передачи, базирующегося на схеме Аламоути.

Однако, когда применяется схема пространственно-временного блочного кодирования, предложенная исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, приемник должен выполнять некоторую операцию по отношению ко всем возможным элементам, выводимым из предварительного кодировщика, для восстановления битов данных информации, переданных в передатчике. Например, когда количество передающих антенн равно четырем, эта операция должна выполняться по отношению ко всем 16 элементам, и нет элементов, имеющих значение нуль. То есть в приемнике, увеличиваются нагрузки вследствие объема вычислений, так как биты данных информации, переданные в передатчике, восстанавливаются посредством ML схемы декодирования.

Соответственно, желательно предоставить устройство и способ для пространственно-временного блочного кодирования, которые минимизируют сложность и вычисления с полным разнесением и полной скоростью.

Сущность изобретения

Соответственно, настоящее изобретение было создано для решения вышеупомянутых проблем, встречающихся в предшествующем уровне техники, и цель настоящего изобретения - предоставление устройства и способа для декодирования/кодирования пространственно-временного блочного кода, имеющего полное разнесение и полную скорость в системе мобильной связи MIMO.

Другая цель настоящего изобретения - предоставление устройства и способа для декодирования/кодирования пространственно-временного блочного кода при минимизации сложности и объема вычислений в системе мобильной связи MIMO.

Для достижения вышеперечисленных целей предоставляется устройство для кодирования пространственно-временного блочного кода в передатчике, применяющем множество передающих антенн, причем устройство включает в себя предварительный кодировщик для предварительного кодирования передаваемого сигнала, согласно заранее заданной схеме кодирования, если вводится сигнал, который должен передаваться; пространственно-временной преобразователь для пространственно-временного преобразования предварительно кодированного сигнала согласно количеству передающих антенн для применения заранее заданной схемы пространственно-временного блочного кодирования; и множество кодировщиков для передачи пространственно-временным образом преобразованного сигнала через передающие антенны посредством применения заранее заданной схемы пространственно-временного блочного кодирования в пространственно-временным образом преобразованный сигнал.

Согласно другому аспекту настоящего изобретения предоставляется устройство для кодирования пространственно-временного блочного кода в передатчике, применяющем четыре передающие антенны, включающие в себя первую передающую антенну, вторую передающую антенну, третью передающую антенну и четвертую передающую антенну, причем устройство включает в себя предварительный кодировщик для предварительного кодирования потока 'd1 d2 d3 d4' вводимых символов, согласно заранее заданной матрице предварительного кодирования, если вводится поток 'd1 d2 d3 d4' символов, который должен передаваться с тем, чтобы сгенерировать поток 'r1 r2 r3 r4' предварительно кодированных символов; преобразователь для пространственно-временного преобразования потока 'r1 r2 r3 r4' предварительно кодированных символов для применения заранее заданной схемы пространственно-временного блочного кодирования для генерирования потоков 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов; и два кодировщика для передачи потоков 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов через передающие антенны посредством применения заранее заданной схемы пространственно-временного блочного кодирования к потокам 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов.

Согласно другому аспекту настоящего изобретения предоставляется устройство для декодирования пространственно-временного блочного кода в приемнике, применяющем, по меньшей мере, одну приемную антенну, причем пространственно-временной блочный код передается через множество передающих антенн посредством использования заранее заданной матрицы предварительного кодирования в передатчике, причем устройство включает в себя генератор матрицы отклика канала для генерирования матрицы отклика канала посредством выполнения оценивания канала по отношению к принятым сигналам при приеме сигналов через приемные антенны; комбинатор сигналов для комбинирования принятых сигналов, с учетом матрицы отклика канала; и множество модулей определения сигналов для восстановления пространственно-временного блочного кода, переданного в передатчике, как символов информации, базируясь на комбинированных сигналах, с учетом матрицы отклика канала.

Согласно другому аспекту настоящего изобретения предоставляется способ для кодирования пространственно-временного блочного кода в передатчике, применяющем множество передающих антенн, причем способ включает в себя этапы: предварительное кодирование передаваемого сигнала согласно заранее заданной схеме кодирования, при вводе сигнала, который должен передаваться; пространственно-временное преобразование предварительно кодированного сигнала согласно количеству передающих антенн для применения заранее заданной схемы пространственно-временного блочного кодирования; и передачу пространственно-временным образом преобразованного сигнала через передающие антенны посредством применения заранее заданной схемы пространственно-временного блочного кодирования к пространственно-временным образом преобразованному сигналу.

Согласно другому аспекту настоящего изобретения предоставляется способ для кодирования пространственно-временного блочного кода в передатчике, применяющем четыре передающие антенны, включающие в себя первую передающую антенну, вторую передающую антенну, третью передающую антенну и четвертую передающую антенну, причем способ включает в себя этапы: предварительное кодирование потока 'd1 d2 d3 d4' вводимых символов, согласно заранее заданной матрице предварительного кодирования при вводе потока 'd1 d2 d3 d4' вводимых символов, который должен передаваться для генерирования потока 'r1 r2 r3 r4' предварительно кодированных символов, пространственно-временное преобразование потока 'r1 r2 r3 r4' предварительно кодированных символов для применения заранее заданной схемы пространственно-временного блочного кодирования для генерирования потоков 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов, и передачу потоков 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов через передающие антенны посредством применения заранее заданной схемы пространственно-временного блочного кодирования к потокам 'r1 r2' и 'r3 r4' пространственно-временным образом преобразованных символов.

Согласно другому аспекту настоящего изобретения предоставляется способ для декодирования пространственно-временного блочного кода в приемнике, применяющем, по меньшей мере, одну приемную антенну, причем пространственно-временной блочный код передается через множество передающих антенн посредством использования заранее заданной матрицы предварительного кодирования в передатчике, причем способ включает в себя этапы: генерирование матрицы отклика канала посредством выполнения оценивания канала по отношению к принятым сигналам при приеме сигналов через приемные антенны; комбинирование принятых сигналов, принимая во внимание матрицу отклика канала, и восстановление пространственно-временного блочного кода, переданного в передатчике, как символов информации, базируясь на комбинированных сигналах, принимая во внимание матрицу отклика канала.

Краткое описание чертежей

Вышеописанные и другие цели, признаки и преимущества настоящего изобретения будут более очевидны из последующего подробного описания, взятого в соединении с сопровождающими чертежами, на которых:

Фиг.1 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, применяющей 4 антенны Tx. ANTS и схему STBC, предложенную Вахидом Тарохом;

Фиг.2 - это блок-схема, показывающая структуру приемника, соответствующую структуре передатчика, показанной на фиг.1;

Фиг.3 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, применяющей 4 антенны Tx. ANTS и схему STBC, предложенную группой Гианнакиса;

Фиг.4 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, применяющей 4 антенны Tx. ANTS и схему STBC, предложенную исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона;

Фиг.5 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, применяющей 4 антенны Tx. ANTS и схему STBC, для выполнения функций согласно одному варианту осуществления настоящего изобретения;

Фиг.6 - это блок-схема, показывающая внутреннюю структуру генератора матрицы предварительного кодирования в предварительном кодировщике фиг.5;

Фиг.7 - это блок-схема последовательности операций, показывающая рабочую процедуру передатчика из фиг.5;

Фиг.8 - это блок-схема, показывающая структуру приемника, соответствующую структуре передатчика из фиг.5;

Фиг.9 - это блок-схема последовательности операций, показывающая рабочую процедуру приемника из фиг.8;

Фиг.10 - это график, показывающий результат моделирования усиления кодирования, когда θ0 и θ1 изменяются по единичным градусам внутри диапазона от 0 градусов до 360 градусов по отношению к α0=exp и α1=exp (0 ≤ θ0, θ1 ≤ 2) матрицы предварительного кодирования согласно одному варианту осуществления настоящего изобретения; и

Фиг.11 - это график, показывающий производительность для схемы STBC согласно одному варианту осуществления настоящего изобретения и производительность для обычных схем STBC.

Осуществление изобретения

Ниже будет подробно описываться предпочтительный вариант осуществления настоящего изобретения со ссылкой на сопровождающие чертежи. Отметим, что одинаковые или аналогичные компоненты на чертежах обозначаются одинаковыми ссылочными позициями, насколько это возможно, хотя они показываются на разных чертежах. В последующем описании настоящего изобретения подробное описание известных функций и конфигураций, включенных сюда, будет опускаться, когда это может сделать предмет обсуждения настоящего изобретения неясным.

Настоящее изобретение предлагает схему пространственно-временного блочного кодирования, имеющую полное разнесение и полную скорость (FDFR) в системе мобильной связи, использующей схему с многими входами и многими выходами (MIMO). В частности настоящее изобретение предлагает устройство и способ для пространственно-временного блочного кодирования/декодирования, который минимизирует сложность и объем вычислений с FDFR.

Фиг.5 - это блок-схема, показывающая структуру передатчика в системе мобильной связи MIMO, применяющей четыре передающие антенны и схему пространственно-временного блочного кодирования для выполнения функций согласно одному варианту осуществления настоящего изобретения.

До подробного описания из фиг.5, в общем, описывается структура передатчика в системе мобильной связи MIMO, применяющей четыре передающие антенны и схему пространственно-временного блочного кодирования, предложенную согласно одному варианту осуществления настоящего изобретения. Система сконструирована таким образом, что сложность и объем вычислений минимизируются с усилением разнесения и скоростью передачи данных, идентичными полученным с помощью структуры передатчика в системе мобильной связи MIMO, применяющей четыре передающие антенны и схему пространственно-временного блочного кодирования, предложенную исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, описанную в стандартной технологии.

Другими словами, передатчик согласно одному варианту осуществления настоящего изобретения имеет такую же аппаратную структуру, что и передатчик в системе мобильной связи MIMO, предложенной исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона. Однако настоящее изобретение предлагает новую операцию предварительного кодировщика, тем самым минимизируя сложность и объем вычислений.

Ссылаясь на фиг.5, передатчик согласно одному варианту осуществления настоящего изобретения включает в себя предварительный кодировщик 500, преобразователь 502, модуль 504 задержки, кодировщики 506 и 508 Аламоути, и первую передающую антенну (Tx.ANT 1) 510 по четвертую передающую антенну (Tx. ANT 4) 516. Если вводятся биты данных информации, предварительный кодировщик 500 принимает четыре модулированных символа, кодирует модулированные символы, так что вращение сигнала может происходить в пространстве сигнала, и затем выводит кодированные символы в преобразователь 502.

Здесь предполагается, что четыре модулированных символа, вводимых в предварительный кодировщик 500, это d1, d2, d3 и d4, и поток вводимых модулированных символов, включающий в себя четыре модулированных символа, указывается как 'd'. Предварительный кодировщик 500 принимает поток d вводимых модулированных символов и генерирует комплексный вектор r посредством предварительного кодирования потока d введенных модулированных символов, базируясь на новой матрице предварительного кодирования согласно одному варианту осуществления настоящего изобретения. Описание новой матрицы предварительного кодирования будет дано ниже.

До введения новой матрицы предварительного кодирования согласно одному варианту осуществления настоящего изобретения, описана операция, базирующаяся на матрице предварительного кодирования, предложенной исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона.

В структуре передатчика в системе мобильной связи MIMO, предложенной исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, предварительный кодировщик 400 генерирует комплексный вектор r посредством выполнения предварительного кодирования, как показано в уравнении (7), базируясь на матрице Вандермонда, как описано со ссылкой на фиг.4:

В уравнении 7 Θ обозначает матрицу предварительного кодирования.

Схема пространственно-временного блочного кодирования, предложенная исследовательской командой Тая Джина Джеонга и Гиунга Хоона Джеона, применяет матрицу Вандермонда (унитарную матрицу) в качестве матрицы предварительного кодирования. В дополнение, αi в уравнении (7) выражается как уравнение (8):

Преобразователь 402 принимает сигналы, выведенные из предварительного кодировщика 400, и выводит векторы, сформированные, базируясь на двух элементах ([r1,r2], [r3,r4]). Другими словами, преобразователь 402 выводит ([r1,r2]T) и ([r3,r4]T).

([r1,r2]T) вводится в кодировщик 406 Аламоути, и ([r3,r4]T) вводится в модуль 404 задержки. Модуль 404 задержки задерживает ([r3,r4]T) на один час и затем выводит задержанный ([r3,r4]T) в кодировщик 408 Аламоути. Здесь кодировщик Аламоути представляет кодировщик, применяющий схему пространственно-временного блочного кодирования, предложенную С.М.Аламоути. Кодировщик 406 Аламоути управляет выводом ([r1,r2]T) из преобразователя 402, который должен передаваться через первую передающую антенну 410 и вторую передающую антенну 412 в первый интервал времени. Кодировщик 408 Аламоути управляет выводом ([r1,r2]T) из преобразователя 402, который должен передаваться через третью передающую антенну 414 и четвертую передающую антенну 416 во второй интервал времени. Матрица кодирования S, используемая для передачи выходных сигналов кодировщиков 406 и 408 Аламоути через многочисленные антенны, выражается в уравнении (9):

В уравнении (9) iая строка матрицы S кодирования передается в iый интервал времени, и jый столбец передается через jую передающую антенну.

Другими словами, в первый интервал времени символы r1 и r2 передаются через первую передающую антенну 410 и вторую передающую антенну 412, соответственно, и никакой сигнал не передается через оставшиеся передающие антенны (т.е. третью передающую антенну 414 и четвертую передающую антенну 416). Во втором интервале времени символы и передаются через первую передающую антенну 410 и вторую передающую антенну 412, соответственно, и никакой сигнал не передается через ос