Многопользовательская переадресация с разнесением

Иллюстрации

Показать все

Изобретение относится к технике связи. Технический результат состоит в предоставлении эффективного механизма переадресации информации в многоинтервальной сети. Основной аспект изобретения основан на той идее, что более высокая степень свободы в процессе переадресации может быть получена посредством анализа того, какие адресаты и/или потоки представлены в передающем узле, и выбора направления ретрансляции посредством разумного выбора адресата и/или потока. В действительности, алгоритм переадресации, предлагаемый изобретением, совместно выбирает узел ретрансляции из нескольких возможных узлов ретрансляции и, по меньшей мере, один поток из нескольких потоков и один адресат из нескольких адресатов. После этого передающий узел выбирает набор информации, направляемый к выбранному адресату и/или принадлежащий выбранному потоку, из очереди на передачу и, в конце концов, передает выбранную информацию выбранному узлу ретрансляции. 4 н. и 50 з.п. ф-лы, 9 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, относится к сетям передачи данных и, более конкретно, к многоинтервальным сетям и механизму маршрутизации для этих сетей.

Предшествующий уровень техники

Протоколы для эффективного совместного использования беспроводной среды передачи обычно называют протоколами множественного доступа, схемами доступа к линиям или схемами доступа к среде передачи. Протоколы множественного доступа, как описано в [1], могут быть разделены на две основные категории: бесконфликтные протоколы и протоколы, основывающиеся на конкуренции.

Бесконфликтные протоколы - это протоколы, обеспечивающие возможность того, чтобы передача данных, когда бы она не осуществлялась, была успешной, т.е. была не подверженной влиянию помех от других передач данных. Бесконфликтная передача данных может быть достигнута посредством выделения линии пользователям статически или динамически. Это часто называют фиксированным или динамическим планированием соответственно. Преимущество точной координации между станциями состоит в том, что она, как считается, предоставляет высокую эффективность, но достигается за счет сложности и обмена иногда большими объемами управляющего трафика.

Основывающиеся на конкуренции протоколы принципиально отличаются от бесконфликтных протоколов тем, что не гарантируется, что передача данных будет успешной. Поэтому протокол должен назначать процедуру, чтобы разрешать конфликты, когда они возникают, чтобы все сообщения в итоге передавались успешно.

Протоколы множественного доступа также могут быть поделены на группы на основе сценария или приложения, для которого они предназначены. Некоторые протоколы подходят для осуществления доступа к/от одной станции, к примеру базовой станции в системе сотовой связи, тогда как другие протоколы предназначены, чтобы работать в распределенном окружении. Важное отличие случая распределенного окружения состоит в том, что протокол либо предназначен главным образом для одноинтервального случая, т.е. обмена данными только с назначенным соседним узлом в пределах досягаемости, либо он конкретно предназначен для многоинтервального сценария.

В многоинтервальном сценарии информация может передаваться по нескольким интервалам связи между источником и адресатом вместо непосредственной передачи в одноинтервальной сети. В общем, многоинтервальный подход предлагает несколько преимуществ, например более низкое энергопотребление и более высокую пропускную способность линии по сравнению с прямым одноинтервальным подходом. В многоинтервальной сети узлы вне пределов досягаемости друг от друга могут получать выгоду от расположенных между ними узлов, которые могут переадресовывать их сообщения от источника к адресату. Многоинтервальными сетями могут быть так называемые одноранговые сети с произвольной структурой (самоорганизующиеся) (сети ad hoc), в которых узлы по большей части мобильные и отсутствует централизованная координирующая архитектура, но идея организации многоинтервальных сетей также может быть применена, когда узлы стационарные.

В предшествующем уровне техники методики маршрутизации, основанные на базовом протоколе маршрутизации по кратчайшему направлению (например, основанной на подходе Беллмана-Форда (Bellman-Ford) маршрутизации), четко определенном многоинтервальном маршруте от источника к месту назначения определяются на основе информации о стоимости маршрутизации, передаваемой по системе. Упрощенно, каждый узел или станция знает затраты на свои исходящие линии связи и передает эту информацию широковещательным образом каждому из соседних узлов. Эта информация о затратах линии связи в типичном случае хранится в локальной базе данных каждого узла, и на основе информации в базе данных рассчитывается таблица маршрутизации с помощью соответствующего алгоритма выбора маршрута. В общем, методики маршрутизации по кратчайшему направлению и аналогичные им методики приводят к существованию одного маршрута для каждой пары источник-адресат. Очень простая схема основанной на кратчайшем направлении маршрутизации, хотя и не самая эффективная, может, например, использовать общеизвестный основывающийся на конкуренции протокол множественного доступа ALOHA.

Существуют используемые протоколы (которые могут использовать базовый протокол кратчайшего направления), основанные на концепции использования нескольких узлов в процессе переадресации с вариантом более или менее активной маршрутизации. Например, протокол, называемый EIGRP (усовершенствованный внутренний протокол маршрутизации) [2], - это протокол маршрутизации, используемый главным образом в фиксированной сети, который дает возможность произвольной переадресации на один из нескольких маршрутизаторов. Маршрутизация по методу "произвольно-но-вперед" [3] от Сильвестра (Sylvester) и Кляйнрока (Kleinrock) аналогична EIGRP, т.е. произвольной переадресации пакетов одному из нескольких маршрутизаторов сетей пакетной радиосвязи, но она также включает в себя важную поправку: гарантируется, что пакет всегда направляется в общем корректном направлении. Маршрутизация по альтернативному направлению [4] от DARPA (Управление перспективного планирования оборонных научно-исследовательских работ) предоставляет возможность пакету, который повторно передается по линии связи, быть дублированным при групповой передаче нескольким узлам, из которых пакет снова следует согласно подходу маршрутизации по кратчайшему направлению. Первичная N/M-переадресация основана на идее [5], что узел пытается отправить пакет узлу не более чем N раз, а затем, если попытки были неудачными, он пытается отправить следующему узлу не более N раз. Процедура повторяется для не более чем M узлов до сброса пакета. Преимущество маршрутизации по альтернативному направлению и первичной N/M-переадресации состоит в том, что они могут быть адаптированы к состоянию локального обмена данными, включая перегруженность и временно плохую связь вследствие, к примеру, замирания или флуктуаций помех.

Изменения или флуктуации в системе с течением времени могут создавать окна или пики возможностей, которые дают возможность передачам данных быть более успешными, чем в другое время и при других условиях. Методики простого кратчайшего направления и ассоциированные методики маршрутизации предыдущего уровня техники не имеют возможности распознавать эти удобные возможности, поскольку отсутствует относительная информация, сохраняемая каждым узлом или станцией. Наоборот, своевременная маршрутизация [6, 7] использует до некоторой степени возможности, которые предоставляют изменения и флуктуации в системе. В контексте беспроводной маршрутизации, в частности, общая производительность системы падает, когда качество линии связи быстро изменяется во времени (к примеру, вследствие рэлеевского замирания). Тем не менее, своевременная маршрутизация частично смягчает это падение производительности посредством использования окон возможностей, которые предоставляют эти флуктуации. При своевременной маршрутизации нет одного маршрута для каждой пары "источник-адресат", т.е. аналогично EIGRP, маршрутизации по методу "произвольно-но-вперед" и до некоторой степени маршрутизации по альтернативному направлению и первичной N/M-переадресации. Вместо этого пакеты данных следуют по маршруту, который является отчасти произвольным, но одновременно приводящим от источника к адресату. Следовательно, когда используется процедура кратчайшего направления, последовательные пакеты, в общем, будут отправляться по одному и тому же маршруту, тогда как когда используется своевременная маршрутизация, последовательные пакеты могут маршрутизироваться по различным путям, но в одном и том же направлении.

Тем не менее, общий мониторинг в [6, 7] - это медленный процесс. Мониторинг обрабатывается либо посредством прослушивания обходящих сообщений, либо посредством периодической отправки так называемых тестовых сообщений. Когда отправляется тестовое сообщение, в обратном направлении ожидается ответ, который включает в себя информацию, например о потерях на трассе. Когда имеется задержка между тестовым сообщением и передачей данных, то возвращенная входная информация для алгоритма переадресации может стать устаревшей к моменту времени, когда передаются данные. Особенно нежелательное последствие состоит в том, что существующие методики своевременной маршрутизации, а также основанной на простом кратчайшем направлении маршрутизации не обрабатывают вероятные эффекты разнесения эффективно.

Выборная переадресация с разнесением (SDF) [8] - это методика эффективной обработки эффектов разнесения практически оптимальным способом. Этот новейший подход основан на направлении передачи от инсценирующей станции к группе близлежащих получателей или ретрансляционных узлов. Когда один или более принимающих узлов ответил, выбирается один из отвечающих узлов и передается командное сообщение выбранному ретрансляционному узлу, инструктирующее его принять на себя ответственность за переадресацию информационного сообщения. Процесс повторяется для всех последующих отвечающих узлов до тех пор, пока информация не достигает адресата. При следовании этому подходу эффекты как разнесения по каналам разнесенного приема, так и захвата частоты могут быть использованы в процессе переадресации данных. В частности, разнесение по каналам разнесенного приема уменьшает необходимость использовать перемежающиеся данные вместе с кодированием каналов с компенсацией замираний, что, в свою очередь, означает меньшую задержку и, следовательно, более высокую пропускную способность. Эффект захвата частоты относится к такому феномену, когда демодулируется только более сильный из двух сигналов, которые имеют одинаковую или почти одинаковую частоту, тогда как более слабый сигнал гасится и отклоняется как шум. В сочетании с несколькими принимающими станциями эффект захвата частоты предоставляет высокую степень надежности, когда передачи данных конфликтуют. SDF использует медленный базовый протокол на основе затрат, но дает возможность мгновенной адаптации к быстрым флуктуациям в канале как таковым.

Аналогичные идеи по использованию флуктуаций, но для обычных сетей сотовой связи с одним интервалом, можно найти в [9, 10 и 11], которые относятся к высокоскоростному пакетному доступу по нисходящей линии связи (HSDPA), стандарту высокоскоростной передачи данных (HDR) и адаптивному формированию диаграммы направленности (OB) соответственно. HSDPA и HDR очень похожи друг на друга. Адаптивное формирование диаграммы направленности, однако, отличается с функциональной точки зрения тем, что OB произвольно указывает или непрерывно качает луч антенны в различных направлениях, тогда как HSDPA и HDR не используют понятие формирования диаграммы направленности. В частности, адаптивное формирование диаграммы направленности [11] применяет идею адаптивности и, следовательно, использует адаптивный подход в отношении формирования диаграммы направленности, чтобы повысить пропускную способность в системе сотовой связи или в базовой станции. Тем не менее, концепция HSDPA, HDR и OB по существу не относится к многоинтервальным сетям. OB по сути является расширением быстрого планирования в базовой станции, учитывающего быстрые флуктуации в канале, которая была предложена для HDR стандарта CDMA 2000 и HSDPA стандарта WCDMA.

Сущность изобретения

Настоящее изобретение преодолевает эти и другие недостатки архитектур предыдущего уровня техники.

Общая задача настоящего изобретения - предоставить эффективный механизм переадресации информации в многоинтервальной сети.

Задача изобретения - повысить производительность многоинтервальной сети в отношении пропускной способности, характеристик задержки и/или энергопотребления.

Также задача изобретения - улучшить поддержку сети по показателю качества обслуживания (QoS).

Еще одна задача изобретения касается усовершенствований в отношении распределения нагрузки.

Конкретная задача настоящего изобретения - предоставить способ и систему для эффективной переадресации информации в многоинтервальной сети.

Также задача настоящего изобретения - предоставить узел обмена данными, поддерживающий эффективную переадресацию информации в пакетной многоинтервальной радиосети.

Еще одна задача настоящего изобретения - предоставить управляющий узел, поддерживающий эффективную переадресацию информации в пакетной многоинтервальной радиосети.

Эти и другие задачи решаются посредством изобретения, как оно определено в прилагаемой формуле изобретения.

Основной аспект изобретения основан на той идее, что более высокая степень свободы в процессе переадресации может быть получена посредством анализа того, какие адресаты и/или потоки представлены в передающем узле, и выбора направления ретрансляции посредством разумного выбора адресата и/или потока. В действительности, алгоритм переадресации, предлагаемый изобретением, совместно выбирает i) узел ретрансляции из нескольких возможных узлов ретрансляции (узлов-кандидатов) и ii) по меньшей мере, один из a) потока из нескольких потоков и b) адресата из нескольких адресатов. После этого передающий узел выбирает набор информации, предназначенный для выбранного адресата и/или принадлежащий выбранному потоку, из очереди на передачу и в конце концов передает выбранную информацию на выбранный узел ретрансляции.

Таким способом изобретение дает возможность эффективного выбора из большего числа узлов ретрансляции по сравнению с ситуацией просто выбора подходящего узла ретрансляции для первого пакета в голове очереди на передачу. Основная причина этой дополнительной степени свободы заключается в том факте, что различные пакеты или, более обобщенно, различные наборы данных могут направляться в различных направлениях от передающего узла, тем самым давая возможность выбора узла ретрансляции в нескольких общих направлениях переадресации. Выбор зачастую основан на эволюции затрат и, может быть, даже прогрессе продвижения в географическом расстоянии. Также можно рассматривать аспекты QoS (качества обслуживания) в процессе выбора, поскольку, например, различные потоки могут иметь различные требования к QoS. В качестве примера, поток со строгими требованиями к задержке может в таком случае иметь более высокий приоритет, чем поток с более слабыми требованиями в отношении задержки. Равноправие между адресатами и/или потоками - еще один аспект, который может быть рассмотрен в процессе выбора. В любом случае, выбор адресата/потока в конечном счете преобразуется в выбор информации, которая должна быть передана из очереди на передачу.

В целях дополнительного совершенствования предлагается совместно выбирать сочетание адресата/потока, узла ретрансляции, а также один или более параметров линии связи для передачи/приема данных. Это означает, что изобретение дает возможность выбора из ретрансляторов для нескольких пакетов, одновременно адаптируя параметры линии связи, такие как режим линии связи, частотные каналы или вспомогательные несущие частоты, мощность передачи и/или веса антенн для оптимального обмена данными. Параметры линии связи, в общем, могут быть выбраны из параметров DLC (управления передачей данных) на уровне управления передачей данных, а также параметров лежащего в основе физического уровня PHY.

Процесс выбора, в котором различные адресаты/потоки, узлы ретрансляции и в необязательном порядке также параметры линии связи рассматриваются одновременно, обычно основан на информации, представляющей производительность линии связи между рассматриваемым передающим узлом и каждым из возможных узлов ретрансляции. По этой причине обмен данными предпочтительно делится на три или четыре фазы, фазу запроса, фазу ответа, информационную фазу и необязательную фазу подтверждения приема. Две первоначальные фазы в типичном случае предназначены для того, чтобы запрашивать и извлекать информацию о производительности линии связи, такую как информация о канале и передаче в отношении каждого из возможных узлов ретрансляции, к примеру посредством сообщения о предполагаемом соотношении "сигнал-шум" (SNR) или "сигнал-шум+помехи" (SINR), либо альтернативно посредством указания поддерживаемой скорости передачи данных. Соотношение SINR включает в себя и помехи, и шумы и поэтому зачастую является предпочтительным. После того как выбор адресата/потока, узла ретрансляции и подходящего набора данных из очереди на передачу завершен с или без интегрированной адаптации линии связи, данные передаются на узел ретрансляции в информационной фазе. Если требуется, выбранный узел ретрансляции может подтвердить прием данных в фазе подтверждения приема. Предпочтительно, вышеперечисленные три или четыре фазы выполняются за период времени, который имеет меньшую длительность, чем время когерентности линии, чтобы дать возможность быстрой адаптации. Другие схемы подтверждения приема сообщения также могут быть использованы. Например, подтверждения приема могут преднамеренно быть задержанными и собранными в итоговом сообщении подтверждения приема, которое посылается менее часто (подтверждение необязательно должно быть в рамках периода когерентности).

Желательно совместно выбирать адресат/поток, узел ретрансляции и необязательные параметры линии связи, которые оптимальны в некотором смысле. Чтобы иметь возможность определенно говорить об оптимальности, целевая функция, основанная на эволюции затрат на качество или эволюции информационных затрат, предпочтительно вводится и оптимизируется относительно адресата/потока, узла ретрансляции и необязательных параметров линии связи. Например, вышеупомянутая схема позволяет задать и оптимизировать целевую функцию для мгновенных состояний соотношений SNR/SINR, к примеру, чтобы предоставлять максимизацию пропускной способности и минимизацию задержки.

Если несколько потоков поддерживаются для некоторого адресата (некоторых адресатов), в таком случае выбор может быть сочетанием потока и адресата. Если адресат используется в качестве переменной оптимизации вместо потока, результат выбора может включать в себя выбранный узел ретрансляции и адресат. Тем не менее, может быть несколько потоков к выбранному адресату, и, следовательно, по-прежнему является открытым вопрос, какой поток выбирать. Разумеется, может быть выполнен дополнительный отдельный выбор из этих потоков, к примеру на основе требований к QoS или даже произвольно. Тем не менее, посредством использования потока в качестве переменной оптимизации аспекты QoS могут быть интегрированы непосредственно в процесс совместной оптимизации, приводя в результате к выбору оптимального потока и с точки зрения точки направления адресата, и с точки зрения QoS.

Следует понимать, что процесс совместного выбора может быть выполнен непосредственно рассматриваемым передающим узлом или ассоциированным управляющим узлом, отвечающим за один или более передающих узлов.

В предпочтительной реализации передающий узел передает сообщение запроса нескольким возможным узлам ретрансляции в сети. Возможные узлы ретрансляции могут быть выбраны, например, на основе информации о затратах на многоинтервальную передачу, полученной от базового протокола определения маршрута, возможно, вместе с дополнительной информацией. Затем каждый возможный узел ретрансляции отвечает в ответ на сообщение запроса (при условии, что оно было принято) с помощью ответного сообщения либо самому передающему узлу, либо управляющему узлу, отвечающему за этот передающий узел. После этого выполняется процесс совместного выбора либо самим передающим узлом, либо управляющим узлом на основе ответных сообщений от возможных узлов ретрансляции. Предпочтительно, каждый возможный вариант узел ретрансляции определяет производительность линии связи, представляющую информацию для соответствующей линии связи между передающим узлом и возможным узлом ретрансляции, на основе принятого сообщения запроса, и отвечает информацией о производительности линии связи. Альтернативно, сам передающий узел определяет информацию о производительности линии связи на основе принятого ответного сообщения от узла-кандидата, при условии обратимости линии связи (и имея определенное представление о характеристиках шумов и помех в этом узле ретрансляции).

В полностью централизованной архитектуре информация о затратах, информация о том, какие адресаты/потоки представлены в соответствующих передающих узлах, а также важная информация о производительности линии связи передается в центральный управляющий узел, который затем может осуществлять выбор адресата/потока, узла ретрансляции и необязательных параметров линии связи для каждого из передающих узлов в многоинтервальной сети. Несомненно, центральный управляющий узел должен передавать информацию о выбранном адресате/потоке и узле ретрансляции и дополнительных параметрах соответствующим передающим узлам.

Обычно, передающие узлы в многоинтервальной сети или, по меньшей мере, поднабор передающих узлов эксплуатируются для синхронизированной по времени передачи сообщений запроса, а также синхронизированной по времени передачи данных. Также важно, чтобы соотношение SNR/SINR или другой показатель производительности линии связи, сообщаемый в ходе фазы ответа на запрос, оставался неизменным (или улучшался) в течение всей информационной фазы.

Поэтому каждое сообщение запроса предпочтительно передается с использованием одного или более заранее определенных параметров передачи, таких как уровень мощности передачи и/или веса антенн. В ходе последующей информационной фазы по большей части тот же самый параметр или параметры передачи затем в типичном случае повторно используются для передачи выбранных данных. Таким образом, соотношение SNR/SINR может, к примеру, быть улучшено, если определенный узел решит не передавать, но, в общем, не может быть ухудшено.

Общепризнанно, что изобретение также может быть объединено и адаптировано, чтобы обрабатывать многопользовательское распознавание на принимающей стороне. В этом случае принимающий узел, который принимает сообщения запросов от нескольких передающих узлов, в общем определяет информацию о производительности линии связи, например соотношение SNR/SINR или информацию о скорости передачи данных для каждой линии связи. В практически осуществимой реализации принимающий узел просто отвечает только узлам, которые ассоциированы с линией (линиями) связи с высокой производительностью.

Изобретение предлагает следующие преимущества:

- эффективная многоинтервальная переадресация;

- повышенная производительность сети;

- повышенная пропускная способность и/или уменьшенная задержка;

- возможность переносить более высокую нагрузку трафика при сохранении критериев производительности, таких как пропускная способность и задержка, на постоянном уровне;

- пониженное энергопотребление для одного и того же уровня производительности по сравнению с другими схемами;

- повышенная степень свободы, предоставляемая благодаря совместному выбору узла ретрансляции, адресата/потока и также возможно, параметров линии связи;

- в частности, повышенная степень свободы приводит к относительно большему числу потенциальных узлов ретрансляции или переадресации, из которых можно выбирать;

- каждый раз, когда включены аспекты QoS, можно ожидать повышенной производительности QoS благодаря повышенной степени свободы, чтобы выполнять назначение приоритетов по QoS;

- сниженный риск перегруженности и переполнения буфера;

- улучшенное управление потоками данных; и

- высокий рост затрат.

Другие преимущества, предлагаемые настоящим изобретением, будут приняты во внимание при прочтении нижеприведенного описания вариантов осуществления изобретения.

Перечень фигур чертежей

Изобретение вместе со своими дополнительными задачами и преимуществами будет лучше всего понято посредством обращения к последующему описанию, рассматриваемому вместе с прилагаемыми чертежами, из которых:

фиг.1 - схематическое представление, иллюстрирующее типичный четырехфазный обмен данными согласно предпочтительному варианту осуществления изобретения;

фиг.2 - схематическое представление, иллюстрирующее пример четырехфазной схемы с синхронизированной передачей элементарных интервалов (слотов) времени в многоинтервальной сети согласно предпочтительному варианту осуществления изобретения;

фиг.3A-B - схематические блок-схемы последовательности операций типичного способа переадресации согласно предпочтительному варианту осуществления изобретения на передающей стороне и принимающей стороне соответственно;

фиг.4A - иллюстрация выбора узла ретрансляции согласно предшествующему уровню техники;

фиг.4B - иллюстрация выбора адресата/потока и узла ретрансляции согласно типичному варианту осуществления изобретения;

фиг.5 - схематичное представление, иллюстрирующее различные кривые прогресса продвижения информации при различных уровнях мощности передачи;

фиг.6 - схематичное представление, иллюстрирующее преимущества разнесения в отношении прогресса продвижения информации;

фиг.7 - блок-схема важных частей передающей стороны согласно типичному варианту осуществления изобретения;

фиг.8 - блок-схема важных частей принимающей стороны согласно типичному варианту осуществления изобретения;

фиг.9 - иллюстрация информационного потока для управляющего узла, отвечающего за процесс выбора для одного или более передающих узлов.

Подробное описание вариантов осуществления изобретения

На чертежах одинаковые символы ссылок используются для соответствующих или аналогичных элементов.

Изобретение относится к многоинтервальным сетям, таким как пакетные многоинтервальные радиосети и, более конкретно, к новой схеме переадресации в многоинтервальных сетях, называемой многопользовательской переадресацией с разнесением (обозначается MDF).

Схема MDF, предлагаемая изобретением, может быть использована вместе с любым базовым протоколом определения маршрута, например протоколом кратчайшего направления, который генерирует таблицы стоимости маршрутизации, или протоколом определения маршрута, в большей степени настроенным под потребности переадресации с разнесением. Естественно, изобретение может быть систематизировано в ассоциативной связи с другими связанными с сетью функциями, например механизмами контроля топологии.

Схема многопользовательской переадресации с разнесением (MDF), предлагаемая изобретением, интегрирует аспекты на, по меньшей мере, двух из трех самых низких уровнях протоколов. В типичном случае, эти три уровня относятся к модели OSI (взаимодействие открытых систем) и включают в себя физический уровень, канальный уровень и сетевой уровень.

По сути, мы предлагаем алгоритм переадресации, который анализирует какие адресаты/потоки представлены в передающем узле, и релейное направление ретрансляции посредством разумного выбора адресата/потока. Алгоритм переадресации совместно выбирает i) узел ретрансляции из нескольких возможных узлов ретрансляции и ii) в зависимости от приложения и требуемой степени гибкости при оптимизации, по меньшей мере, один из a) адресата из нескольких адресатов и b) поток из нескольких потоков, предпочтительно вместе с iii) одним или более параметрами линии связи. В сочетании с этим набор информации для передачи, например пакет данных, выбирается из очереди на передачу на основе выбранного адресата и/или потока. Это может быть набор информации, предназначенный для выбранного адресата, и/или набор информации, принадлежащий выбранному потоку. Выбранные данные в итоге передаются выбранному узлу ретрансляции, который берет на себя ответственность за дополнительную переадресацию данных в многоинтервальной сети (если это не адресат). Естественно, если выбранный возможный узел является узлом-адресатом, узел-адресат не переадресует информацию куда-либо дополнительно. В своей наиболее законченной форме изобретение, таким образом, предоставляет возможность выбора из ретрансляторов для нескольких пакетов, одновременно адаптируя параметры линии связи для оптимального обмена данными.

Изобретение далее описано посредством примера. Помимо информации о том, какие потоки и/или адресаты представлены в передающем узле, и информации о затратах от базового протокола определения маршрута/стоимости, процесс выбора обычно основан на информации, представляющей производительность линии связи между рассматриваемым передающим узлом и каждым из возможных узлов ретрансляции. По этой причине обмен данными предпочтительно делится на три или четыре фазы, фазу запроса, фазу ответа, информационную фазу и необязательную фазу подтверждения приема, как схематично проиллюстрировано на фиг.1 и 2.

Вышеперечисленные три или четыре фазы предпочтительно осуществляются в пределах слота времени или другого периода времени, который имеет меньшую длительность, чем время когерентности линии, и слоты времени повторяются последовательно друг за другом. Заметим, что фазы могут, в необязательном порядке, быть упорядочены, чтобы охватывать структуры, отличные от одного слота времени. В этом случае, тем не менее, по меньшей мере, первая фаза и третья фаза должны предпочтительно испытывать стабильный канал (т.е. в пределах времени когерентности линии) и одну и ту же (или очень похожую) ситуацию с помехами. Основное внимание далее, тем не менее, будет уделяться четырехфазному протоколу в рамках слота времени, но не в ограничительном смысле.

Две первоначальные фазы в типичном случае предназначены, чтобы запрашивать и извлекать информацию о производительности линии связи, такую как информация о каналах и передачи, в отношении каждого из возможных узлов ретрансляции, к примеру посредством сообщения о предполагаемом соотношении SNR/SINR, либо альтернативно посредством указания поддерживаемой скорости передачи данных. После того как выбор адресата/потока, узла ретрансляции и подходящего набора данных из очереди на передачу завершен с или без интегрированной адаптации линии связи, информация передается на узел ретрансляции в информационной фазе. Если используется адаптация линии связи, надлежащий режим линии связи и/или другие параметры линии связи выбираются на основе сообщенного соотношения SNR/SINR или скорости передачи данных до передачи данных. Если требуется, выбранный узел ретрансляции может подтвердить прием данных в необязательной фазе подтверждения приема. Вместо информирования о соотношении SNR/SINR оптимальная скорость передачи данных (режим линии связи) альтернативно может быть сообщена непосредственно, как упоминалось ранее.

Фиг.2 иллюстрирует пример четырехфазной схемы, задействующей ряд передающих узлов и ряд потенциальных принимающих узлов. Эта схема проиллюстрирована для ряда передающих узлов TX1-TXN, где каждый передающий узел передает сообщение запроса ряду потенциальных принимающих узлов. Для простоты только принимающие узлы RX1,1, RX1,2 и RX1,3 для передающего узла TX1 проиллюстрированы на фиг.2. Каждый принимающий узел оценивает соотношение SNR/SINR и сообщает примерное соотношение SNR/SINR соответствующему передающему узлу, который затем выбирает сочетание адресата/потока, узла ретрансляции и необязательного режима линии связи для передачи данных выбранному узлу ретрансляции. На основе выбранного адресата/потока передающий узел извлекает набор информации из очереди на передачу и окончательно передает данные в информационной фазе.

Чтобы гарантировать по существу одинаковую ситуацию с помехами в ходе фазы запроса и последующей информационной фазы, передающие узлы должны предпочтительно передавать свои кадры синхронизированно по времени, и в течение обоих фаз должен быть использован по существу один и тот же уровень мощности передачи и/или веса антенн. Как показано на фиг.2, передающие узлы TX1-TXN передают свои кадры таким образом, чтобы слоты времени были выровнены по времени. Это обеспечивает основу для корреляции между фазой запроса и информационной фазой. Помимо этого один или более параметров передачи, таких как уровень мощности передачи и/или веса антенн первоначально определяются и используются и в ходе фазы запроса и в ходе информационной фазы, так чтобы соотношение SNR/SINR, сообщенное в ходе фазы ответа на запрос, оставалось неизменным (или улучшалось) в течение всей информационной фазы.

Например, если узел TXi в многоинтервальной сети решил передавать данные в слоте времени n, он может выбрать мощность передачи Pi для последующей передачи данных. Мощности передачи может быть разрешено или нет, в зависимости от выбранного варианта, варьироваться от передачи к передаче (при этом случай без варьирования интерпретируется как особый случай случая с варьированием). Например, Pi может и предпочтительно должен отражать изменения топологии и зависеть от содержимого буфера передачи, ранее завершившихся неудачно передач и/или показателей QoS. Также можно дать возможность некоторым узлам принимать подход с низкой или, альтернативно, высокой мощностью, в зависимости от того, является ли наиболее важным фактором для рассматриваемого узла энергопотребление или производительность. Помимо этого другие параметры передачи, не считая мощность передачи, могут быть выбраны, например веса антенн, давая возможность определенным наборам потенциальных узлов ретрансляции быть целями. Информация о потенциальных узлах ретрансляции может быть получена из ранее полученной информации о топологии, но также на нее могут повлиять содержимое буфера передачи, ранее завершившиеся неудачно передачи и/или показатели QoS. Решение передавать требует, чтобы пакеты ожидали в буфере передачи, и может также зависеть от принципа доступа к среде передачи, который был принят, к примеру, квантованный по времени ALOHA с произвольно направляемыми экземплярами передачи.

Чтобы дать возможность принимающим узлам-кандидатам идентифицировать, какой узел отправил сообщение запроса, явный адрес может быть прикреплен к сообщению или локально уникальному слову (используемому для корреляции принимающим устройством).

Фаза запроса может задействовать различные способы, при этом первый типичный способ основан на идее, что каждая передающая станция или узел передает сообщение запроса на мощности передачи Pi. Принимающий узел RXi,j в таком случае может определить узел, который отправил сообщение запроса, и то, при каком уровне мощности оно было принято.

Во втором типичном способе фазы запроса адрес передающей стороны включен в сообщение запроса. Сообщения запроса от различных передающих узлов далее передаются таким образом, чтобы они предпочтительно (локально) не были конфликтующими, к примеру посредством поддержки подходящего бесконфликтного протокола. Помимо этого каждое сообщение передает информацию об уровне мощности передачи Pi, которая должна быть использована для последующей передачи данных. На основе этой информации, аналогично первому способу фазы запроса, принимающий узел RXi,j может идентифицировать, какой узел отправил сообщение запроса и при каком уровне мощности, как ожидается, должен быть принят следующий пакет данных. Если требуется, сообщения запроса второго способа могут также содержать информацию о желательных принимающих узлах или станциях.

Заметим, что сообщение запроса во втором способе может быть отправлено с другим (в общем, более высоким) уровнем мощности по сравнению с уровнем мощности информационного сообщения при условии, что соответствующее указание о смещении включено в сообщение запроса или что смещение неявно известно заранее. Это обеспечивает увеличение соотношения SNR для фазы сообщения запроса, а также предоставляет большую гибкость.

Далее мы уделим основное внимание втором