Система для изготовления имеющего модульную конструкцию устройства для определения физической величины в технологическом процессе и унифицированные компоненты

Иллюстрации

Показать все

Изобретение относится к системе для изготовления имеющего модульную конструкцию устройства для определения физической величины в технологическом процессе. Согласно изобретению система содержит несколько измерительных преобразователей физической величины в электрический сигнал. По меньшей мере два измерительных преобразователя из всего их числа различаются между собой принципом измерения. Система содержит далее по меньшей мере один унифицированный блок обработки измерительного сигнала, который может быть соединен с одним или несколькими измерительными преобразователями. В системе имеется также по меньшей мере один унифицированный блок и по меньшей мере один унифицированный блок электропитания. Система содержит, кроме того, по меньшей мере один унифицированный корпус для размещения в нем по меньшей мере нескольких блоков из группы, включающей по меньшей мере блок обработки, блок связи и блок электропитания. В состав системы входит также несколько крепежных блоков, которые предназначены для закрепления устройства для определения физической величины на емкости или стенке и которые различаются между собой своим исполнением, учитывающим заданные условия закрепления устройства. 2 н. и 32 з.п. ф-лы, 16 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе, которая предназначена для изготовления имеющего модульную конструкцию устройства для определения физической величины в технологическом процессе и работа по меньшей мере двух компонуемых из входящих в состав которой модулей устройств основана на различных принципах измерения. Изобретение относится также к устройству для определения физической величины среды в технологическом процессе, имеющему по меньшей мере один блок, который выполнен унифицированным для возможности его использования по меньшей мере в двух различных устройствах для определения физической величины среды, которыми физическая величина определяется на основе двух различающихся между собой принципов измерения. Изобретение относится далее к отдельным унифицированным блокам или компонентам либо модулям для компоновки подобного устройства.

Предпосылки создания изобретения

Устройство для определения физической величины среды в технологическом процессе обычно называют также датчиком. Подобные датчики широко используются в различных технологических процессах для получения информации о них. При этом в зависимости от конкретной физической величины, соответственно получаемой информации используют различные принципы измерения.

В этом отношении необходимо отметить, что под "физической величиной" согласно настоящему изобретению подразумевается, например, уровень некоторой среды в емкости, давление некоторой среды в емкости, расход некоторой среды в трубопроводе, температура, плотность либо влажность или любой иной параметр некоторой среды, зависящий от ее свойств и характеризующий их. Однако настоящее изобретение не ограничено определением конкретно указанных выше физических величин, а относится к устройствам для определения и других физических величин в технологическом процессе.

Принципы измерения можно согласно настоящему изобретению подразделить в основном на методы непрерывного измерения и методы измерения предельного значения, в частности, предельного уровня.

К методам непрерывного измерения относятся основанные на использовании ультразвуковых волн или микроволн, емкостные и основанные на определении давления методы измерения. К методам измерения предельного значения относятся вибрационные и емкостные методы измерения. Получаемая при измерениях этими известными как таковыми методами информация используются в основном для контроля технологического процесса, управления им и его регулирования. Так, например, уровень материала, соответственно содержимого емкости можно определять емкостным измерением уровня, гидростатическим измерением уровня, ультразвуковым измерением уровня, радиолокационным измерением уровня, измерением уровня с помощью пропускаемых по волноводу микроволн, вибрационным измерением уровня и кондуктометрическим измерением уровня.

При емкостном измерении уровня содержимое емкости и сама емкость образуют совместно с измерительным зондом электрический конденсатор. Уровень заполнения емкости определяется измерением электрической емкости такого конденсатора.

Гидростатическое измерение уровня заключается в следующем. Гидростатическое давление повышается с увеличением высоты столба жидкости. Измеренная величина давления используется измерительным преобразователем давления для определения уровня заполнения емкости. Для выполнения измерений этим методом наиболее пригодны измерительные преобразователи давления со способными выдерживать перегрузку металлическими или керамическими измерительными ячейками.

При бесконтактном ультразвуковом измерении уровня формируют ультразвуковые импульсы. При этом пьезокерамический ультразвуковой преобразователь периодически излучает звуковые импульсы, отражающиеся от поверхности содержимого емкости. Уровень заполнения определяется комбинированной приемной и передающей системой на основе измеренного времени задержки между излученной и принятой отраженной звуковой волной.

При измерении уровня с помощью пропускаемых по волноводу микроволн высокочастотные микроволновые импульсы или электрические импульсы пропускают по стальному тросу. Достигнув поверхности содержимого емкости, импульсы отражаются от поверхности содержимого емкости. Время задержки между излученным и принятым отраженным импульсом анализируется интегральной электроникой и пересчитывается в уровень заполнения емкости. Измерение, выполняемое подобным методом, часто называют также динамической рефлектометрией (ДРМ).

При радиолокационном измерении уровня определяют время задержки между излучением и приемом очень коротких микроволновых импульсов. Это время является мерой уровня заполнения емкости. Отражателем при этом служит поверхность содержимого емкости.

При измерении уровня с помощью вибрации вибродатчик пьезоэлектрически приводят в колебания. В момент касания с содержимым емкости колебания затухают. На основе этого измерительная электроника фиксирует достижение предельного уровня.

При кондуктометрическом измерении уровня в момент контакта содержимого емкости с измерительным зондом замыкается электрическая цепь и выдается соответствующая команда, свидетельствующая о срабатывании измерительного зонда. Принцип кондуктометрического измерения используется для экономичного определения момента достижения предельного уровня электропроводными жидкостями.

В качестве примера основанных на измерении давления методов можно назвать метод измерения абсолютного давления среды в технологическом процессе или метод измерения разности давлений. При измерении абсолютного давления давление в трубопроводах или емкостях измеряют с помощью безмасляной металлической или керамической измерительной ячейки и результат измерения преобразуют, например, в сигнал тока силой от 4 до 20 мА. При измерении разности давлений ее определяют с помощью измерительных ячеек из керамики или элементарного кремния и преобразуют в сигнал тока силой предпочтительно от 4 до 20 мА.

Резюмируя сказанное выше, методы измерения по лежащим в их основе принципам измерения можно в контексте настоящего описания классифицировать, например, следующим образом: а) измерение времени задержки между свободно излучаемыми или пропускаемыми по волноводу и принимаемыми отраженными от содержимого емкости электромагнитными волнами, например, микроволнами или ультразвуковыми волнами, б) измерение электрической емкости содержимого емкости, в) измерение гидростатического давления или гидростатического перепада давлений, г) определение предельного уровня с помощью вибрации или кондуктометрическим путем, д) измерение температуры и е) измерение расхода.

Подобный датчик для выполнения специальных задач, а также с учетом условий его применения должен удовлетворять определенным требованиям, соответственно отвечать определенным промышленным стандартам. Такими стандартами определяются требования к стойкости датчиков к тяжелым окружающим условиям, преобладающим на производстве, соответственно к анализируемым средам. Другое требование, предъявляемое к датчикам, состоит в легкости и простоте их монтажа и возможности их легкой и простой адаптации к конкретному технологическому процессу. Помимо этого существуют также требования, относящиеся к электрическому подключению датчиков, выводу полученной информации и соблюдению определенных норм безопасности, например, норм взрывозащиты.

Необходимостью соответствия этим и другим стандартам обусловлена определенная принципиальная функциональная конструкция датчика каждого конкретного типа, характеризующаяся наличием определенных функциональных блоков. К подобным функциональным блокам в каждом случае относятся помимо прочего (первичный) измерительный преобразователь, электронный блок, блок обработки, блок связи, блок электропитания, крепежный блок, называемый также присоединением (обеспечивающим сопряжение датчика с объектом измерения в технологическом процессе), а также корпус.

Измерительный преобразователь, работа которого основана на механическом или электромеханическом принципе, соответственно содержащийся в нем чувствительный элемент, непосредственно или опосредованно контактируя с анализируемой средой, преобразует физическую измеряемую величину в электрическую. Полученный таким путем электрический измерительный сигнал, характеризующий конкретную измеряемую физическую величину, соответственно пропорциональный ей, подвергается затем дальнейшей обработке в электронном блоке. Такой электронный блок представляет собой специфический для конкретного типа датчиков схемный блок, который поэтому требуется согласовывать с каждым конкретным типом чувствительных элементов. Выполняемая электронным блоком обработка пропорционального измеряемой физической величине электрического сигнала может заключаться, например, в его усилении, фильтрации или преобразовании в цифровой измерительный сигнал.

К выходу электронного блока подключен блок обработки, который на основе подготовленного электронным блоком измерительного сигнала формирует необходимую информацию о физической величине, характеризующей анализируемую среду. Полученное таким путем измеренное значение передается от датчика через подключенный к выходу блока обработки блок связи в систему управления процессом, например, по полевой шине или двухпроводному контуру. Измерительный преобразователь, электронный блок, блок обработки и блок связи часто размещены в общем корпусе и запитываются от размещенного в этом же корпусе блока электропитания. Корпус, соответственно все устройство можно с помощью крепежного блока, называемого также присоединением, закреплять на емкости или стенке.

Каждый датчик должен, как уже говорилось выше, соответствовать определенной концепции безопасности, охватывающей все эти функциональные блоки. Поэтому для каждого датчика требуется разрабатывать концепцию безопасности, учитывающую особенности различных компонентов датчика, соответственно их исполнение.

Большим разнообразием измеряемых физических величин и, как следствие, используемых для их измерения методов, обеспечивающих преобразование физических величин в электрические данные, обусловлена обычная на сегодняшний день практика разработки и изготовления специального, предназначенного для решения каждой конкретной задачи измерения датчика, имеющего индивидуальную конструкцию и оснащенного специально рассчитанными на решение конкретной задачи измерения функциональными блоками и механическими компонентами. Подобный индивидуальный и узкоспециализированный подход к разработке и изготовлению измерительных приборов позволяет создавать датчики, оптимально приспособленные к решению стоящей перед ними задачи измерения и к условиям их применения.

Существенный недостаток, который может быть связан с таким подходом, состоит в высоких затратах на разработку каждого датчика и в отчасти очень большом количестве различных компонентов и функциональных блоков, появление которых влечет за собой разработка каждого нового поколения датчиков. Однако из-за этих высоких расходов на разработку датчиков изготовителям, которые специализируются на выпуске не одного единственного датчика, а целой гаммы возможно сходных по назначению, но все же различающихся между собой датчиков, приходится сталкиваться с проблемой слишком высоких издержек. Большое разнообразие отдельных компонентов и функциональных блоков может привести к увеличению расходов и со стороны потребителей подобного рода продукции, когда, например, для каждого датчика требуется его обслуживание по индивидуальной схеме или индивидуальная система крепления.

В этом отношении можно было бы сослаться на патент US 6295874 В1 или соответствующую ему публикацию WO 01/18502 А1, из которых известно устройство для определения физической величины методом, основанным на измерении времени задержки между излученным и принятым отраженным сигналами. Описанное в этих публикациях устройство может содержать блок обработки, который по существу должен быть не зависимым от используемого датчика. Из этого документа со всей очевидностью следует, что лежащий в основе работы предлагаемого в нем датчика принцип основан исключительно на измерении времени задержки между излученным и принятым отраженным сигналами. Помимо этого в указанной публикации предлагается также не зависимый от конкретно используемого датчика блок связи для обмена данными с удаленной системой управления процессом. Однако и в этом случае можно со всей очевидностью констатировать, что подобный блок связи предназначен для работы в сочетании с датчиком одного единственного типа, лежащий в основе работы которого принцип основан на измерении времени задержки между излученным и принятым отраженным сигналами.

В проспекте фирмы Krohne, Германия, представлен радиолокационный датчик уровня, конструкцию которого можно было бы рассматривать как модульную. У такого радиолокационного датчика уровня различные измерительные преобразователи, такие как рупорная антенна, волновод или стержневой излучатель, можно комбинировать с использованием промежуточной детали с двумя различными корпусами с соответствующей электроникой. Однако и в этом случае согласно пониманию авторами настоящего изобретения технического существа вопроса возможна лишь некоторая гибкость в компоновке радиолокационного датчика уровня.

Помимо этого из статьи автора Rolf Hauser, озаглавленной "Lego fur Erwachsene" и опубликованной в журнале "Messtek, Steuern, Regein, Automatisieren, Messen" за август 1999 г., известна связанная с повышением удобства пользования интеллектуальной системой управления интеграция полностью безмасляных измерительных ячеек в модульную систему, состоящую из присоединений (крепежных блоков), корпусов, различного типа устройств передачи сигналов и согласующих звеньев. В указанной статье описаны различные датчики давления, которые можно комбинировать с различными корпусами. Однако и в этом случае все говорит о том, что модульный принцип построения датчиков ограничивается только датчиками, в основе работы которых лежит один единственный принцип измерения.

Краткое изложение сущности изобретения

Первым объектом настоящего изобретения является предлагаемая в нем система, которая предназначена для изготовления различных версий имеющего модульную конструкцию устройства для определения физической величины в технологическом процессе и работа по меньшей мере двух компонуемых из входящих в состав которой модулей устройств основана на различных принципах измерения. Такая система может содержать несколько измерительных преобразователей, каждый из которых предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал и по меньшей мере два из которых различаются между собой лежащим в основе их работы принципом измерения, по меньшей мере один блок обработки, который предназначен для обработки и формирования характеризующего физическую величину сигнала на основе измерительного сигнала, выдаваемого измерительным преобразователем, и который выполнен унифицированным для возможности соединения с одним или несколькими измерительными преобразователями, по меньшей мере один блок связи, который предназначен для выдачи характеризующего физическую величину сигнала и выполнен унифицированным для возможности соединения с одним или несколькими блоками обработки, по меньшей мере один блок электропитания, который служит для запитывания устройства для определения физической величины и который выполнен унифицированным для возможности запитывания по меньшей мере двух версий имеющего модульную конструкцию устройства, по меньшей мере один корпус, который выполнен унифицированным для возможности размещения в нем по меньшей мере нескольких блоков из группы, включающей по меньшей мере блок обработки, блок связи и блок электропитания, и несколько крепежных блоков, которые предназначены для закрепления устройства для определения физической величины на емкости или стенке и которые различаются между собой своим исполнением, учитывающим заданные условия закрепления устройства для определения физической величины на емкости или стенке.

В одном из вариантов выполнения предлагаемой в настоящем изобретении системы она содержит также по меньшей мере один электронный блок, предназначенный для электронного преобразования электрического измерительного сигнала, выдаваемого измерительным преобразователем, в цифровой измерительный сигнал. При этом по меньшей мере один из электронных блоков может быть выполнен унифицированным для возможности соединения по меньшей мере с двумя различающимися между собой, прежде всего лежащими в основе их работы принципами измерения, измерительными преобразователями.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы электронный блок и блок обработки объединены в один модуль.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы электронный блок и блок обработки размещены на одной или нескольких платах.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы по меньшей мере один корпус выполнен унифицированным для возможности размещения в нем по меньшей мере нескольких блоков из группы, включающей по меньшей мере электронный блок, блок обработки, блок связи и блок электропитания.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы среди различающихся между собой измерительных преобразователей, предназначенных для определения физической величины, имеется по меньшей мере два различающихся между собой измерительных преобразователя, в основе работы каждого из которых лежат разные принципы измерения, как, например, измерение времени задержки между свободно излученными или распространяющимися по волноводу и отраженными от содержимого емкости электромагнитными волнами, такими как микроволны или ультразвуковые волны, измерение электрической емкости содержимого емкости, измерение гидростатического давления или гидростатического перепада давлений, измерение предельного уровня, измерение температуры, измерение расхода.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы она содержит несколько корпусов, каждый из которых имеет индивидуальное исполнение, зависящее от конкретного назначения, но выполнен унифицированным для возможности соединения с любым из измерительных преобразователей.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы корпуса различаются между собой материалом, из которого они изготовлены.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы корпуса различаются между собой исполнением присоединительных частей (разъемов) для дистанционной передачи данных.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы отдельные измерительные преобразователи среди всего их числа имеют индивидуальное исполнение, зависящее от конкретного назначения, но выполнены унифицированными для возможности соединения с любым из блоков обработки.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы несколько измерительных преобразователей выбираются из группы, включающей несколько следующих измерительных преобразователей:

а) рупорную антенну с соответствующей электроникой для излучения и приема ультразвуковых волн или микроволн,

б) штыревую антенну с соответствующей электроникой для излучения и приема ультразвуковых волн или микроволн,

в) стержневой или тросовый зонд с соответствующей электроникой,

г) колебательную вилку с соответствующей электроникой,

д) емкостной измерительный зонд с соответствующей электроникой,

е) измерительный преобразователь температуры с соответствующей электроникой и

ж) измерительный преобразователь давления с соответствующей электроникой.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы блок связи выполнен с возможностью обеспечения цифровой связи с шинной системой.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы блок связи выполнен с возможностью обеспечения цифровой связи по двухпроводному контуру.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы она содержит несколько блоков электропитания, которые имеют индивидуальное исполнение для подсоединения к двухпроводному контуру, четырехпроводному контуру или цифровой шинной системе и имеют унифицированные размеры для подсоединения к одной из версий имеющих модульную конструкцию устройств.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы один из блоков электропитания выполнен с возможностью подачи на подключенные к его выходу блоки напряжения величиной 3, 5 или 15 вольт.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы она содержит также блок индикации и ручного управления, выполненный с возможностью его съемного закрепления по меньшей мере на нескольких различающихся между собой корпусах и имеющий для этого соответствующее унифицированное исполнение.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы блок индикации и управления имеет крепежное устройство, выполненное с возможностью его соединения с ответным унифицированным крепежным устройством на корпусах, и электрическое соединительное устройство, выполненное с возможностью его подсоединения к соответствующему ему ответному электрическому соединительному устройству на корпусах.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы блок индикации и управления выполнен с возможностью его съемного закрепления в различных положениях или в различной ориентации на корпусах.

В следующем варианте выполнения предлагаемой в настоящем изобретении системы один или несколько программных модулей, предназначенных для управления одним из блоков из группы, включающей по меньшей мере электронный блок, блок обработки, блок связи и блок электропитания, унифицированы для применения по меньшей мере в двух различных версиях имеющего модульную конструкцию устройства для определения физической величины.

Вторым объектом настоящего изобретения является предлагаемое в нем устройство для определения физической величины в технологическом процессе, содержащее измерительный преобразователь, предназначенный для регистрации определяемой физической величины и ее преобразования в электрический измерительный сигнал, блок обработки, предназначенный для обработки и формирования характеризующего физическую величину сигнала на основе электрического измерительного сигнала, выдаваемого измерительным преобразователем, блок связи, предназначенный для выдачи характеризующего физическую величину сигнала, блок электропитания, служащий для запитывания устройства для определения физической величины, корпус, предназначенный для размещения в нем по меньшей мере нескольких блоков из группы, включающей блок обработки, блок связи и блок электропитания, и крепежный блок, предназначенный для закрепления устройства для определения физической величины на емкости или стенке. При этом по меньшей мере один блок из группы, включающей блок обработки, блок связи, блок электропитания, корпус и крепежный блок, выполнен унифицированным для возможности его применения в устройствах для определения физической величины, имеющих разные измерительные преобразователи, различающиеся между собой лежащим в основе их работы принципом измерения.

В одном из вариантов выполнения предлагаемого в настоящем изобретении устройства в цепь между измерительным преобразователем и блоком обработки включен электронный блок, предназначенный для электронного преобразования электрического измерительного сигнала, выдаваемого измерительным преобразователем, в цифровой измерительный сигнал.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства унификация различных его блоков заключается в унификации их механических присоединительных частей между собой.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства унификация различных его блоков заключается в унификации их электрических присоединительных частей (разъемов) между собой.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства предусмотрена возможность выбора блока электропитания из группы унифицированных блоков электропитания, включающей по меньшей мере один блок электропитания для подключения к двухпроводному контуру, один блок электропитания для подключения к четырехпроводному контуру и один блок электропитания для подключения к цифровой шинной системе, при этом такие различные блоки электропитания имеют унифицированные размеры для подсоединения к одной из версий имеющих модульную конструкцию устройств.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства его корпус имеет разъем с электрическими и механическими соединительными элементами, в котором съемно закрепляется блок индикации и управления.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства его блок обработки выполнен унифицированным для возможности его работы с измерительными преобразователями, в основе работы которых лежат различные принципы измерения.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства его блок связи выполнен унифицированным для возможности его работы с измерительными преобразователями, в основе работы которых лежат различные принципы измерения.

В следующем варианте выполнения предлагаемого в настоящем изобретении устройства его блок связи имеет по меньшей мере один интерфейс шины IIC (обозначаемой также I2С) для возможности подключения к нему блока индикации и управления или компьютера.

Следующим объектом настоящего изобретения является предлагаемый в нем корпус устройства для определения физической величины в технологическом процессе, выполненный унифицированным для возможности его соединения с первым измерительным преобразователем и со вторым измерительным преобразователем. Первый измерительный преобразователь предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе первого принципа измерения, тогда как второй измерительный преобразователь предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе второго принципа измерения, отличного от первого принципа измерения.

Предлагаемый в изобретении корпус может быть рассчитан на размещение в нем, например, всех электрических функциональных элементов и их защиты от возможного влияния внешних факторов и воздействия окружающей среды.

В одном из вариантов выполнения предлагаемого в настоящем изобретении корпуса в нем размещено по меньшей мере несколько блоков из группы, включающей по меньшей мере блок обработки, блок связи и блок электропитания.

В следующем варианте выполнения предлагаемого в настоящем изобретении корпуса он имеет крепежное устройство для съемного закрепления блока индикации и управления.

В следующем варианте выполнения предлагаемого в настоящем изобретении корпуса его крепежное устройство выполнено с возможностью съемного закрепления блока индикации и управления в различных положениях на корпусе.

Следующим объектом настоящего изобретения является предлагаемый в нем блок обработки для устройства для определения физической величины в технологическом процессе, выполненный унифицированным для возможности его соединения с первым измерительным преобразователем и со вторым измерительным преобразователем. Первый измерительный преобразователь и в этом случае предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе первого принципа измерения, тогда как второй измерительный преобразователь предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе второго принципа измерения. При этом первый и второй принципы измерения, как указано выше, различаются между собой.

Следующим объектом настоящего изобретения является предлагаемый в нем блок связи для устройства для определения физической величины в технологическом процессе, выполненный унифицированным для возможности его соединения с первым измерительным преобразователем и со вторым измерительным преобразователем. Первый измерительный преобразователь и в этом случае предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе первого принципа измерения, а второй измерительный преобразователь предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе второго принципа измерения. Аналогичным образом первый и второй принципы измерения, как указано выше, различаются между собой.

Следующим объектом настоящего изобретения является предлагаемый в нем блок электропитания для устройства для определения физической величины в технологическом процессе, выполненный унифицированным для возможности его соединения с первым измерительным преобразователем и со вторым измерительным преобразователем. В этом случае первый измерительный преобразователь также предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе первого принципа измерения, тогда как второй измерительный преобразователь предназначен для регистрации определенной физической величины и ее преобразования в электрический измерительный сигнал на основе второго принципа измерения. Аналогичным образом первый и второй принципы измерения, как указано выше, различаются между собой.

В соответствии с первым, основным объектом настоящего изобретения в нем, таким образом, впервые предлагается универсальный, не зависящий от принципа измерения подход к модульному построению устройства для определения физической величины. В соответствии с этим предлагаемое в изобретении решение позволяет создать своего рода единую платформу для изготовления на ее основе подобных устройств, упрощающую разработку и производство самых разнообразных датчиков и их компонентов. Тем самым разработчикам и эксплуатационникам предоставляется возможность оптимально комбинировать между собой определенные блоки и модули по типу "модульной системы" в зависимости от задачи измерения, области применения, окружающих условий, а также иных граничных условий без привязки к собственно принципу измерения в отличие от существовавшей ранее практики. При этом разделение функций между отдельными блоками и модулями не обязательно должно коррелировать с делением на соответствующие программные модули.

Одно из преимуществ настоящего изобретения состоит в возможности сократить время и снизить расходы на разработку новых датчиков, что позволило бы минимизировать также издержки, связанные с изготовлением устройств для определения физической величины, в основе работы которых лежат различные принципы измерения.

Крепежный блок или присоединение может представлять собой, например, фланец или резьбу. При использовании фланца весь датчик привинчивается к соответствующему сопряженному фланцу, предусмотренному у емкости. Другим примером присоединения является наружная резьба, которой датчик ввинчивается во внутреннюю резьбу, предусмотренную у емкости, и таким путем крепится к ней. Поскольку присоединение обычно тесно взаимосвязано с корпусом, согласно настоящему изобретению впервые появляется возможность согласования между собой и унификации механических мест сопряжения или стыка обоих блоков. Однако присоединение может также являться частью корпуса или может быть прочно соединено с ним.

В или на корпусе можно разместить механический или электромеханический чувствительный элемент, который взаимодействует с анализируемой средой, характеризующую которую физическую величину требуется определять. Чувствительный элемент обычно также можно комбинировать с присоединением таким образом, чтобы он после установки датчика на емкости выступал в нее или прилегал к ее стенке. Чувствительный элемент преобразует измеряемую физическую величину анализируемой среды в электрическую измеряемую величину.

Полученный описанным выше путем измерительный сигнал, характеризующий измеряемую физическую величину и пропорциональный ей, можно передавать, например, через унифицированный интерфейс электронного блока датчика в блок обработки. Электронный блок датчика представляет собой специфический для конкретного датчика схемный компонент, и поэтому его требуется согласовывать с конкретным чувствительным элементом. Электронный блок содержит аппаратные, а также при необходимости программные средства для преобразования первичного электрического сигнала, пропорционального измеряемой величине, в унифицированный электрический измерительный сигнал, пропорциональный измеренному значению.

Для подобного преобразования первичного измерительного сигнала в унифицированный измерительный сигнал электронный блок может иметь, например, микропроцессор с соответствующей периферией (оперативным запоминающим устройством (ОЗУ), постоянным запоминающим устройством (ПЗУ), электрически стираемым программируемым ПЗУ (ЭСППЗУ), аналого-цифровым преобразователем (АЦП)), различные фильтры или усилитель. Обработка сигналов и их унификация может осуществляться, как указывалось выше, исключительно аппаратными компонентами или же - после аналого-цифрового преобразования - на цифровом уровне программными средствами, выполняемыми микропроцессором.

Поскольку большинство чувствительных элементов выдает электрический сигнал только после получения на это соответствующей команды, электронный модуль датчика инициирует их срабатывание, выдавая в качестве такой команды запускающий сигнал. Для этой цели электронный блок содержит дополнительно, например, устройство формирования сигналов, в частности генератор или передатчик.

Приведенный электронным блоком датчика к унифицированному виду измерительный сигнал преобразуется затем в блоке обработки в требуемую информацию о физической величине, которая в виде электрического сигнала передается в блок связи. Для этого в ЭСППЗУ блока обработки хранятся специфические для конкретного датчика поправочные и настроечные значения, с помощью которых микропроцессор вычисляет значение физической величины. В предпочтительном варианте такая обработка осуществляется с помощью программы, выполняемой аппаратными средствами микропроцессора.

Для калибровки датчика и его настройки под выполнение конкретной задачи измерения в него через блок связи передаются поправочные и настроечные значения, которые могут долговременно сохраняться в ЭСППЗУ.

Блок связи служит для вывода требуемых данных, регистрируемых датчиком, и для ввода указанных выше поправочных и настроечных значений, соответственно для параметрирования датчика. В простейшем случае блок связи имеет визуальный индикатор, а также клавиши для ввода информации и/или команд. Однако блок связи может также иметь интерфейсы для подключения датчика к обычной полевой шине. Подобной полевой шиной датчик соединяется, например, с системой управления процессом.

Назначение блока электропитания состоит в преобразовании напряжения питающей сети, подводимого к датчику, например, от в