Плазменный источник проникающего излучения
Изобретение относится к плазменной технике, к устройствам для генерирования нейтронных пучков, в частности к генераторам разовых импульсов нейтронного и рентгеновского излучения, и предназначено для проведения ядерно-физических исследований, изучения радиационной стойкости элементов электронной аппаратуры. Плазменный источник проникающего излучения состоит из газоразрядной камеры и источника электрического тока. Газоразрядная камера заполнена изотопами водорода и содержит газоразрядные электроды. Газоразрядные электроды газоразрядной камеры герметично закреплены в изоляторе. В состав газоразрядной камеры введен генератор газа. Последний герметично установлен в отверстии корпуса газоразрядной камеры. Рабочий элемент генератора газа насыщен изотопами водорода. Нагревательный элемент подключен через ключ к источнику электрического тока и обеспечивает при включенном состоянии разогрев рабочего элемента генератора газа. Генератор газа выделяет изотопы водорода в объем разрядной камеры. При выключенном источнике электрического тока холодный рабочий элемент поглощает изотопы водорода и примеси, которые выделяются при разряде с поверхностей электродов и изолятора. Изобретение направлено на увеличение ресурса плазменного источника проникающего излучения. 1 ил.
Реферат
Изобретение относится к плазменной технике, к устройствам для генерирования нейтронных пучков, в частности к генераторам разовых импульсов нейтронного и рентгеновского излучения, и может быть использовано для проведения ядерно-физических исследований, изучения радиационной стойкости, например, элементов электронной аппаратуры, калибровки детекторов ионизирующих излучений.
Известен плазменный источник проникающего излучения (см., например, патент США №6297594, М. Кл. Н05Н 1/46, публ. 2001), выполненный в виде плазменной разрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды. Электроды разрядной камеры известного плазменного источника выполняются цилиндрическими или плоскими. При определенных условиях разряда, когда осуществляется кумуляция прямого Z-пинча, из разрядной камеры может быть получен нейтронный выход до 3·1010 нейтронов в импульсе при длительности импульса около 0,2 мкс.
Известный источник характеризуется недостаточным удельным выходом излучения на единицу затраченной энергии и небольшим ресурсом работы (10-100 кумуляций Z-пинча с генерацией нейтронного и рентгеновского излучений). Кроме того, известный источник обладает значительными размерами, затрудняющими в ряде случаев его использование.
В качестве прототипа по наибольшему количеству совпадающих конструктивных признаков принят плазменный источник проникающего излучения (см. патент РФ №347006, кл. Н05Н 1/06, 1970 г.), состоящий из газоразрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды, и источника электрического питания. Газоразрядная камера состоит из изолятора, выполненного из алунда, и газоразрядных электродов в виде коаксиально расположенных один в другом электропроводных тел вращения с криволинейной образующей, ввод внутреннего электрода имеет диаметр, меньший диаметра рабочей части электрода.
Известный источник характеризуется небольшим ресурсом работы (10-100 кумуляций Z-пинча с генерацией нейтронного и рентгеновского излучений).
Предлагаемое изобретение направлено на увеличение ресурса плазменного источника проникающего излучения.
Для увеличения ресурса в плазменном источнике проникающего излучения, состоящем из газоразрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды, и источника электрического тока, газоразрядные электроды газоразрядной камеры герметично закреплены в изоляторе, в состав газоразрядной камеры введен генератор газа, герметично установленный в отверстии корпуса газоразрядной камеры, рабочий элемент генератора газа насыщен изотопами водорода, а нагревательный элемент подключен через ключ к источнику электрического тока, обеспечивая при включенном состоянии разогрев рабочего элемента генератора газа, выделяющего изотопы водорода в объем разрядной камеры, а при выключенном источнике электрического тока холодный рабочий элемент поглощает изотопы водорода, а также примеси, которые выделяются при разряде с поверхностей электродов и изолятора.
Схема плазменного источника проникающего излучения приведена на чертеже.
Плазменный источник проникающего излучения содержит газоразрядную камеру, состоящую из двух коаксиально расположенных металлических электродов: внутренний электрод 1 является анодом, а внешний электрод 2 - катодом, генератор газа 3. Анод 1 и катод 2 герметично соединены с изолятором 4. На катоде 2 в непосредственной близости от изолятора 4 выполнены цилиндрические углубления 5 (зенковка). Цилиндрические углубления 5 расположены равномерно по окружности, центр которой находится на оси камеры. Разрядная камера через коаксиальные или плоские проводники соединена с малоиндуктивным разрядным контуром, который состоит из конденсаторной батареи 6, высоковольтного коммутатора 7, зарядного резистора 8, резистора 9, задающего потенциал на аноде 1, источник электрического тока 10 через ключ 11 соединен с нагревательным элементом генератора газа 3.
Цилиндрические углубления 5, выполненные на катоде 2 разрядной камеры, необходимы для равномерного распределения тока в разрядной камере.
Объем разрядной камеры заполнен изотопами водорода (дейтерием, смесью дейтерия и трития или тритием).
Работает плазменный источник следующим образом.
При срабатывании высоковольтного коммутатора 7 заряженные конденсаторы конденсаторной батареи 6 разряжаются на разрядную камеру, в которой формируется разряд типа «плазменный фокус». В результате вблизи изолятора 4 происходит разряд с образованием цилиндрической плазменной оболочки. Под действием электродинамических сил плазменная оболочка отходит от изолятора 4 и движется с ускорением по межэлектродному зазору к области фокусировки 12 («плазменный фокус»), которая находится на оси разрядной камеры вблизи поверхности анода 1. Формирующийся «плазменный фокус» является источником нейтронов и рентгеновских лучей.
В нерабочем состоянии плазменного источника проникающего излучения изотопы водорода содержатся в генераторе газа 3. Рабочий элемент генератора газа 3 представляет собой, например, мелкодисперсный порошок титана, спрессованный в виде тонкостенного цилиндра. Внутри цилиндра располагается нагревательный элемент, выполненный в виде нити накала, состоящей, например, из сплава Re (20%) и W (80%), покрытого слоем алунда. Если насытить рабочий элемент генератора газа 3 изотопами водорода до степени насыщения <1, а затем подогревать его, пропуская ток от источника электрического тока 10 через нить накала, то возможно выделение газа в объем разрядной камеры. Насыщение более единицы нежелательно из-за возможности разрушения рабочего элемента. При выключенном токе рабочий элемент генератора газа 3 охлаждается и поглощает изотопы водорода, а также примеси, которые выделяются при разряде с поверхностей электродов и изолятора. При следующем подключении источника электрического тока 10 к нагревательному элементу генератора газа 3 с его рабочего элемента выделяются только изотопы водорода, т.к. тяжелые примеси газа при заданном режиме нагрева генератора газа при повторном нагревании остаются в рабочем элементе в связанном состоянии.
В результате происходит увеличение ресурса работы камеры. Ресурс камеры с генератором газа, как показали исследования, составляет 103 включений, что в 3-4 раза больше ресурса плазменного источника проникающего излучения без генератора газа.
Плазменный источник проникающего излучения, состоящий из газоразрядной камеры, заполненной изотопами водорода и содержащей газоразрядные электроды, и источника электрического тока, отличающийся тем, что газоразрядные электроды газоразрядной камеры герметично закреплены в изоляторе, в состав газоразрядной камеры введен генератор газа, герметично установленный в отверстии корпуса газоразрядной камеры, рабочий элемент генератора газа насыщен изотопами водорода, а нагревательный элемент подключен через ключ к источнику электрического тока, обеспечивая при включенном состоянии разогрев рабочего элемента генератора газа, выделяющего изотопы водорода в объем разрядной камеры, а при выключенном источнике электрического тока холодный рабочий элемент поглощает изотопы водорода, а также примеси, которые выделяются при разряде с поверхностей электродов и изолятора.