Способ улучшения температуры потери подвижности углеводородного сырья, полученного в процессе фишера-тропша, использующий катализатор на основе смеси цеолитов

Настоящее изобретение относится к способу улучшения температуры потери подвижности углеводородного сырья, полученного в процессе Фишера-Тропша, в частности для превращения с хорошим выходом сырья, имеющего повышенные температуры потери подвижности, в котором, по крайней мере, одну фракцию, имеющую низкую температуру потери подвижности и высокий индекс вязкости для базовых масел. Способ использует катализатор депарафинизации, содержащий, по крайней мере, один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, ISI-1, NU-10 и KZ-2), и, по крайней мере, один цеолит ZBM-30, по крайней мере одну неорганическую пористую матрицу, по крайней мере, один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов. 2 н. и 12 з.п. ф-лы, 1 ил., 3 табл.

Реферат

Изобретение относится к способу улучшения температуры потери подвижности углеводородного сырья, полученного в процессе Фишера-Тропша, в частности для превращения с хорошим выходом сырья, имеющего повышенные температуры потери подвижности, в, по крайней мере, одну фракцию, имеющую низкую температуру потери подвижности и высокий индекс вязкости для базовых масел, путем пропускания через катализатор каталитической депарафинизации, содержащий, по крайней мере, один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, JSI-1, NU-10 и KZ-2), по крайней мере, один цеолит ZBM-30, синтезированный предпочтительно в присутствии особого структурирующего агента, такого как триэтилентетрамин, по крайней мере, одну неорганическую пористую матрицу, по крайней мере, один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов.

Предшествующий уровень техники

Смазочные материалы высокого качества имеют первостепенное значение для хорошей работы современных машин, автомобилей и грузовиков. Однако качество парафинов, получаемых непосредственно из нефти, необработанных и обладающих соответствующими свойствами для создания хороших смазочных материалов, очень низкое с точки зрения возрастающих требований в этой отрасли.

Чтобы получить базовые масла хорошего качества, необходима обработка тяжелых фракций нефти с большим содержанием линейных или слаборазветвленных парафинов, причем с наилучшими выходами с применением способа, имеющего целью удалить линейные или слаборазветвленные парафины из сырья, которое будет потом использоваться в качестве базовых масел, или в качестве керосина, или топлива для реактивных двигателей (jet fuel).

Действительно парафины с высокими молекулярными массами, которые линейны или очень слабо разветвлены и которые присутствуют в маслах, в керосине или реактивном топливе, ведут к высоким температурам потери подвижности и, таким образом, к явлениям загустевания при использовании при низкой температуре. Чтобы снизить значение температуры потери подвижности, эти линейные или слаборазветвленные парафины должны быть полностью или частично удалены.

Эта операция может осуществляться экстракцией растворителями, такими как пропан или метилэтилкетон (МЭК), тогда говорят о депарафинизации пропаном или метилэтилкетоном. Однако эти методы дорогостоящи, длительны и не всегда легко осуществимы.

Другим способом является селективный крекинг самых длинных линейных парафиновых цепей, который приводит к образованию соединений с более низкими молекулярными массами, часть которых может быть удалена перегонкой.

Учитывая селективность их формы, чаще других катализаторов используют цеолиты. Преобладающая причина для их использования - то, что существуют цеолитные структуры, у которых размеры пор таковы, что они позволяют войти в их микропоры длинным линейным или очень мало разветвленным парафинам, но исключают вход разветвленных, нафтеновых и ароматических парафинов. Таким образом, это явление ведет к избирательному крекингу линейных или очень малоразветвленных парафинов.

Применение в таких процессах катализаторов на основе цеолитов, имеющих промежуточный размер пор, таких, как ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35 и ZSM-38, описано, в частности, в патентах US 3,894,938; US 4,176,050; US 4,181,598; US 4,222,855; US 4,229,282 и US 4,247,388.

Смеси цеолитов с большими порами и этих же цеолитов с промежуточными порами, пригодные в процессе депарафинизации, описаны в патенте WO 02088279.

Кроме того, утверждается, что способы, использующие эти цеолиты (ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35 и ZSM-38), позволяют получить масла крекингом сырья, содержащего линейные или очень слаборазветвленные парафины в количестве менее 50 масс.%. Однако для сырья, содержащего большее количество этих соединений, оказалось, что их крекинг ведет к образованию большого количества продуктов с меньшими молекулярными массами, таких как бутан, пропан, этан и метан, что значительно снижает выход искомых продуктов.

Чтобы исправить эти недостатки, авторы направили исследовательские усилия на разработку способа улучшения температуры потери подвижности углеводородного сырья, полученного в процессе Фишера-Тропша, с использованием катализаторов, содержащих по крайней мере один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, ISI-1, NU-10 и KZ-2), и по крайней мере один цеолит, выбранный из группы, образованной цеолитами (ZSM-48, EU-2, EU-11 и ZBM-30), по крайней мере один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов. При этом авторы неожиданно обнаружили, что использование катализатора, содержащего по крайней мере один цеолит структурного типа TON и по крайней мере один цеолит ZBM-30, синтезированный предпочтительно с особым структурирующим агентом, таким как триэтилентетрамин, позволяет снизить температуру потери подвижности сырья, получая при этом высокий индекс вязкости (ИВ) и сохраняя хороший выход желаемых продуктов.

Настоящее изобретение предлагает каталитический процесс для снижения температуры потери подвижности сырья, полученного в процессе Фишера-Тропша, на основе таких катализаторов.

Объект изобретения

Более конкретно изобретение относится к способу улучшения температуры потери подвижности парафинового сырья, полученного синтезом Фишера-Тропша, в котором обрабатываемое сырье приводится в контакт с катализатором, содержащим по крайней мере один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, ISI-1, NU-10 и KZ-2), и по крайней мере один цеолит ZBM-30 (синтезированный с особым структурирующим агентом, таким как триэтилентетрамин), по крайней мере один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов, по крайней мере одну неорганическую пористую матрицу, причем способ осуществляется при температуре от 200 до 450°C, давлении от 0,1 до 25 МПа и удельном объемном часовом расходе от 0,05 до 30 ч-1, в присутствии водорода из расчета от 50 до 2000 нормальных литров водорода на литр сырья.

Цеолиты, содержащиеся в катализаторе, который может быть использован в способе согласно изобретению, являющиеся цеолитами структурного типа TON, описаны в работе "Atlas of Zeolit Structure Types", W.M. Meier, D.H. Olson and Ch. Baerlocher, 4th Revised édition, 1996, Elsevier.

Синтез цеолита ZBM-30 описан в патенте EP-A-46504.

Неожиданно оказалось, что указанный катализатор имеет более высокие активность и селективность в процессе депарафинизации (улучшение температуры потери подвижности сырья, полученного в процессе Фишера-Тропша), чем каталитические формы на основе цеолитов (молекулярное сито), известные из предшествующего уровня техники.

Итак, этот способ позволяет превратить сырье, имеющее высокую температуру потери подвижности, в продукт с более низкой температурой потери подвижности и позволяет получить базовые масла, имеющие хорошие низкотемпературные свойства и высокий индекс вязкости, и газойли хорошего качества.

Выгодно, если сырье, которое может быть обработано согласно способу изобретения, является фракциями, имеющими относительно высокие температуры потери подвижности, значения которых желательно снизить.

Типичное сырье, которое может быть с выгодой обработано согласно изобретению, имеет, как правило, температуру потери подвижности выше 0°C. Продукты, полученные в результате обработки согласно способу, имеют температуру потери подвижности ниже 0°C и предпочтительно ниже примерно -10°C.

Способ согласно изобретению в условиях, описанных выше, позволяет, в частности, получить продукты с низкой температурой потери подвижности при хорошем выходе и высоком индексе вязкости в случае самых тяжелых фракций, которые обработаны в целях получения базовых масел.

Детальное описание изобретения

Способ согласно изобретению использует катализатор, который содержит по крайней мере один цеолит, выбранный из группы, образованной цеолитами структурного типа TON, и по крайней мере один цеолит ZBM-30, синтезированный с особым структурирующим агентом, таким как триэтилентетрамин, по крайней мере один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов и по крайней мере одну неорганическую пористую матрицу.

Цеолит структурного типа TON, входящий в состав катализатора, выбран из группы, образованной цеолитами Theta-1, ISI-1, NU-10, KZ-2 и ZSM-22, описанными в работе "Atlas of Zeolite Structure Types", W.M. Meier, D.H. Olson and Ch. Baerlocher, 4th Revised édition, 1996, Elsevier, а также в патентах US 456477 и US 4902406 (в том, что касается цеолита ZSM-22) и в патентах EP-65400 и EP-77624 (о цеолите NU-10).

Синтез цеолита ZBM-30 описан в патенте EP-A-46504.

Предпочтительно цеолиты NU-10 или ZSM-22 используют с цеолитом ZBM-30. Цеолит ZBM-30 синтезирован предпочтительно согласно методам, описанным в патенте EP-A-46504, по методике, использующей структурирующий агент триэтилентетрамин.

Общее отношение Si/Al в цеолитах, входящих в состав катализаторов способа согласно изобретению, а также химический состав образцов определяли рентгеновской флуоресценцией и атомно-абсорбционной спектроскопией.

Отношения Si/Al цеолитов, описанных выше, являются отношениями, полученными при синтезе согласно методикам, описанным в различных названных документах, или также полученными после синтеза путем удаления алюминия - обработками, хорошо известными специалисту в данной области, такими как, без ограничения, гидро-термообработкой с или без последующего травления кислотой или также прямым травлением растворами неорганических или органических кислот.

Цеолиты, входящие в состав катализаторов способа согласно изобретению, могут быть прокалены и подвергнуты ионному обмену посредством по крайней мере одной обработки раствором по крайней мере одной соли аммония, чтобы получить аммонийную форму цеолитов, что при прокаливании ведет к водородной форме указанных цеолитов.

Цеолиты, входящие в состав катализатора способа согласно изобретению, находятся, по крайней мере частично, а предпочтительно практически полностью, в кислотной форме, то есть в водородной форме (H+). Атомное отношение Na/T обычно ниже 10%, предпочтительно ниже 5% и, еще более предпочтительно, ниже 1%.

С другой стороны, катализатор содержит по крайней мере один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII (то есть, металл или соединение) Периодической системы элементов, и по крайней мере одну неорганическую пористую матрицу.

В случае, когда элемент является по крайней мере одним металлом VIII группы, предпочтительно имеется в виду по крайней мере один благородный металл и, благоприятно, благородный металл, выбранный из группы, образованной платиной и палладием, он может быть введен в цеолиты, например, «сухой» пропиткой, ионным обменом или любым другим способом, известным специалисту, или также он может быть введен в матрицу.

Согласно первому варианту перед формованием по крайней мере на один из цеолитов, описанных ранее, осаждают по крайней мере один металл VIII группы, предпочтительно выбранный из группы, образованной платиной и палладием. Цеолиты, таким образом насыщенные металлами, смешивают. Смешение этих цеолитов, которые находятся в виде порошков, осуществляется любым методом, известным специалисту.

Когда смесь порошков цеолитов, насыщенных металлами, приготовлена, ей придают форму любым методом, известным специалисту в данной области. Она может, в частности, быть добавлена в матрицу, обычно аморфную, например во влажный порошок геля оксида алюминия. Затем смесь формуют, например, выдавливанием через фильеру.

Придание формы может проводиться с другими матрицами, отличными от оксида алюминия, такими, например, как оксид магния, аморфные алюмосиликаты, природные глины (каолин, бентонит, сепиолит, аттапульгит), оксид кремния, оксид титана, оксид бора, диоксид циркония, фосфаты алюминия, фосфаты титана, фосфаты циркония, уголь и их смеси. Предпочтительно использовать матрицы, содержащие оксид алюминия, во всех формах, известных специалисту, и еще более предпочтительно, оксид алюминия, например гамма-оксид алюминия. Также могут использоваться не только экструзия, но и другие способы, такие как таблетирование или дражирование.

Можно также с выгодой использовать смеси оксида алюминия и оксида кремния, смеси оксида алюминия и алюмосиликата.

Полученные катализаторы формуют в виде зерен различной формы и размеров. Они обычно используются в виде цилиндрических или многодольных экструдатов, таких как двудольные, трехдольные, многодольные в прямой или искривленной форме, но в известных случаях они могут быть произведены и использованы в виде дробленых порошков, таблеток, колец, шариков, колес.

После стадии формовки полученный продукт подвергают стадии сушки, а затем стадии прокаливания.

В случае, когда гидрирующий металл принадлежит к VIII группе и предпочтительно является платиной и/или палладием, он может быть также с выгодой нанесен на подложку после формовки цеолита, не содержащего металлы, любым способом, известным специалисту в данной области и допускающим нанесение металла на молекулярное сито. В этом случае подложка получена способом, аналогичным описанному ранее.

Далее в тексте термином «подложка» обозначают смесь цеолитов (не содержащую металлов) плюс матрица после формования, сушки и прокаливания, например такая, как полученная ранее.

Чтобы осадить металл на цеолите, можно использовать метод конкурентного катионного обмена, в котором конкурентом является предпочтительно нитрат аммония, причем отношение конкуренции равно по крайней мере около 20 и благоприятно составляет от примерно 30 до 200. В случае платины или палладия обычно используют комплекс тетрамина платины или комплекс тетрамина палладия: эти последние практически полностью осаждаются на цеолите. Этот метод катионного обмена может также применяться для прямого осаждения металла на порошок молекулярного сита, перед его возможным смешением с матрицей.

За осаждением металла (или металлов) VIII группы следует обычно прокаливание на воздухе или в атмосфере кислорода, обычно при температуре от 300 до 600°C в течение от 0,5 до 10 часов, предпочтительно от 350 до 550°C в течение от 1 до 4 часов. Затем можно проводить восстановление в атмосфере водорода, обычно при температуре от 300 до 600°C в течение от 1 до 10 часов, предпочтительно работают в интервале от 350 до 550°C в течение от 2 до 5 часов.

Можно также осаждать платину и/или палладий не непосредственно на молекулярные сита, а на матрицу (например, алюминиевое вяжущее) подложки, до или после стадии формовки, применяя анионный обмен с гексахлороплатиновой кислотой, гексахлоропалладиевой кислотой и/или хлоридом палладия в присутствии конкурирующего агента, например соляной кислоты. Обычно после осаждения платины и/или палладия катализатор, как и ранее, подвергают прокаливанию, затем восстанавливают в атмосфере водорода, как указано выше.

Подложка катализатора каталитической депарафинизации согласно настоящему изобретению содержит обычно следующие количества матрицы и цеолитов:

- от 5 до 95 масс.%, предпочтительно от 10 до 90 масс.%, еще более предпочтительно от 15 до 85 масс.% и очень предпочтительно от 20 до 80 масс.% цеолитов, таких, что по крайней мере один цеолит выбран из группы, образованной цеолитами структурного типа TON, такими, как Theta-1, ZSM-22, ISI-1, NU-10 и KZ-2, и по крайней мере один цеолит является цеолитом ZBM-30,

- от 5 до 95%, предпочтительно от 10 до 90%, еще более предпочтительно от 15 до 85% и очень предпочтительно от 20 до 80 масс.% по крайней мере одной неорганической пористой матрицы, аморфной или низкокристалличной, оксидного типа.

Распределение между двумя цеолитами каждой из групп, определенных ранее, таково, что количество цеолита(ов), выбранных из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, ISI-1, NU-10 и KZ-2) может меняться от 1 до 99%, предпочтительно от 5 до 95% и, еще более предпочтительно может меняться от 10 до 90% от полного количества цеолитов, введенных в катализатор. Также доля цеолита ZBM-30 меняется от 1 до 99%, предпочтительно от 5 до 95% и еще более предпочтительно от 10 до 90%, от полного количества цеолитов, введенных в катализатор.

Содержание благородного металла(ов), возможно, также введенного(ых), выраженное в масс.% от общей массы катализатора, обычно ниже 5% предпочтительно ниже 3%, еще более предпочтительно ниже 2% и обычно ниже 1 масс.%.

В предпочтительном случае, когда катализатор содержит гидрирующий металл VIII группы, предпочтительно благородный металл и, благоприятно, платину и/или палладий, катализатор обычно восстанавливают в реакторе в присутствии водорода в условиях, хорошо известных специалисту в данной области.

В случае, когда гидрирующий металл не является благородным металлом, элементы VIB и VIII групп, при необходимости введенные в катализатор согласно изобретению, могут присутствовать полностью или частично в виде металла и/или оксида и/или сернистого соединения.

Из элементов VIB группы предпочтительны молибден и вольфрам.

Источники элементов VIB группы, которые могут быть использованы, хорошо известны специалисту. Например, как источники молибдена и вольфрама могут использоваться оксиды и гидроксиды, молибденовая и вольфрамовая кислоты и их соли, в частности соли аммония, такие как молибдат аммония, гептамолибдат аммония, вольфрамат аммония, фосфоромолибденовая кислота, фосфоровольфрамовая кислота и их соли. Предпочтительно применяют оксиды и соли аммония, такие как молибдат аммония, гептамолибдат аммония и вольфрамат аммония.

Катализатор депарафинизации согласно настоящему изобретению может содержать неблагородный металл VIII группы, предпочтительно кобальт и никель. Благоприятно используют следующие сочетания неблагородных элементов VI и VIII групп: никель-молибден, кобальт-молибден, железо-молибден, железо-вольфрам, никель-вольфрам, кобальт-вольфрам, предпочтительны сочетания: никель-молибден, никель-вольфрам. Можно также использовать сочетания трех металлов, например, никель-кобальт-молибден.

Источники элементов VIII группы, которые могут применяться, хорошо известны специалисту. Например, используют нитраты, сульфаты, фосфаты, галогениды, например, хлориды, бромиды и фториды, карбоксилаты, например, ацетаты и карбонаты.

Когда гидрирующая функция обеспечивается неблагородным металлом VIII группы или сочетанием неблагородного металла VIII группы и металла группы VIB,

- состав подложки, образованной из по крайней мере одной матрицы и цеолитов, описанных в изобретении, такой же, как состав, описанный ранее, и

- относительное массовое содержание в катализаторе по крайней мере одного элемента, выбранного из неблагородных элементов группы VIB и группы VIII, составляет от 0,1 до 60%, предпочтительно от 1 до 50% и, еще более предпочтительно, от 2 до 40%.

Обычно, чтобы завершить приготовление катализатора, влажный твердый материал выдерживают во влажной атмосфере при температуре от 10 до 80°C, затем сушат полученный влажный материал при температуре от 60 до 150°C и, наконец, прокаливают полученное твердое тело при температуре от 150 до 800°C, обычно от 250 до 600°C.

Катализаторы способа настоящего изобретения могут при необходимости подвергаться сульфурации, позволяющей перевести, по крайней мере частично, металлические вещества в сернистые соединения перед тем, как привести их в контакт с обрабатываемым сырьем. Это активирование хорошо известно специалисту и может быть осуществлено любыми способами, уже описанными в литературе.

В случае неблагородных металлов классический метод сульфурации, хорошо известный специалисту, состоит в нагревании в присутствии или в потоке смеси водород/сероводород или также в чистом сероводороде, при температуре от 150 до 800°C, предпочтительно от 250 до 600°C, обычно в реакционной зоне пронизывающего слоя.

Сырье

Углеводородное сырье, обработанное согласно способу изобретения, является продуктом синтеза Фишера-Тропша, благоприятно фракциями, имеющими относительно высокие температуры потери подвижности, величину которых желательно снизить.

Вообще говоря, по крайней мере часть соединений, имеющих температуру кипения выше или равную 340°C, обрабатывается согласно изобретению.

В процессе Фишера-Тропша синтез-газ (CO+H2) каталитически превращают в кислородсодержащие продукты и практически линейные углеводороды в газообразной, жидкой или твердой форме. Эти продукты обычно не содержат гетероатомных примесей, таких, как, например, сера, азот или металлы. Они также практически не содержат или содержат очень мало ароматических соединений, нафтенов и вообще циклов, в частности, в случае кобальтовых катализаторов. Напротив, они могут содержать непренебрежимое количество кислородных продуктов, которое, считая на массовое содержание кислорода, обычно ниже 5 масс.%, а также непредельные соединения (обычно олефиновые продукты) в количестве обычно ниже 10 масс.%. Однако эти продукты, в основном состоящие из нормальных парафинов, не могут использоваться как есть, особенно из-за их низкотемпературных свойств, плохо совместимых с обычным использованием нефтяных фракций. Например, температура потери подвижности линейного углеводорода, содержащего 20 атомов углерода на молекулу (температура кипения около 340°C, который часто входит во фракцию средних дистиллятов), составляет около +37°C, что делает его использование невозможным, поскольку технические требования для газойля составляют -15°C. Углеводороды, получаемые способом Фишера-Тропша, в большинстве своем содержат н-парафины, которые нужно перевести в более ценные продукты, такие, как, например, газойль, керосин, которые получают, например, каталитическими реакциями гидроизомеризации.

Типичное сырье, которое может быть благоприятно обработано согласно изобретению, имеет обычно температуру потери подвижности выше 0°C. Продукты, получаемые после обработки согласно способу, имеют температуры потери подвижности ниже 0°C, предпочтительно ниже примерно -10°C.

В углеводородном сырье, вступающем в контакт с катализатором на основе ZBM-30 (с которым могут быть получены масла и, возможно, дистилляты высокого качества) предпочтительно по крайней мере 50 масс.% сырья имеет температуру кипения по крайней мере 340°C, еще более предпочтительно по крайней мере 60 масс.% и, еще лучше, по крайней мере 80 масс.% сырья имеет температуру кипения по крайней мере 340°C, предпочтительно выше по крайней мере 370°C и, еще более предпочтительно, выше по крайней мере 380°C. Это не означает, например, что температура кипения равна 380°C и более, но означает 380°C или более.

Таким образом, в большинстве своем сырье является нормальными парафинами.

Обычно сырье, подходящее для получения масел, имеет начальную температуру кипения выше по крайней мере 340°C, еще лучше, выше по крайней мере 370°C и, еще лучше, выше по крайней мере 380°C.

Использование катализатора согласно изобретению в условиях, описанных ниже, позволяет, в частности, получить продукты с низкой температурой потери подвижности при хорошем выходе и с высоким индексом вязкости в случае наиболее тяжелых фракций, которые обработаны в целях получения базовых масел.

Рабочий режим

Рабочий режим, в котором проводят процесс каталитической депарафинизации согласно изобретению, следующий:

- температура реакции составляет от 200 до 450°C, предпочтительно от 200 до 420°С, благоприятно 250-410°С;

- давление составляет от 0,1 до 25 МПа, предпочтительно от около 0,1 до 20 МПа;

- удельный объемный часовой расход (об.об.ч, выраженный как объем сырья, прошедший через единицу объема катализатора в час) составляет от примерно 0,05 до примерно 30, предпочтительно от примерно 0,1 до примерно 20 ч-1 и еще более предпочтительно, от примерно 0,1 до примерно 10 ч-1.

Контакт между сырьем и катализатором осуществляется в присутствии водорода. Доля используемого водорода, выраженная в литрах водорода на литр сырья, составляет от 50 до примерно 2000 литров водорода на литр сырья и предпочтительно от 100 до 1500 литров водорода на литр сырья.

Способы осуществления

В первом предпочтительном способе осуществления процессу каталитической депарафинизации согласно изобретению может предшествовать этап гидроизомеризации-гидроконверсии в присутствии катализатора, содержащего по крайней мере один благородный металл, нанесенный на кислотную аморфную подложку.

Этому этапу гидроизомеризации-гидроконверсии при необходимости предшествует этап гидроочистки для удаления гетероатомов (кислородных), причем за этапом гидроочистки может следовать промежуточное разделениее.

Этап гидроизомеризации-гидроконверсии проходит в присутствии водорода и в присутствии бифункционального катализатора, содержащего кислотную аморфную подложку (предпочтительно аморфный алюмосиликат), в котором функцию гидрирующего-дегидрирующего металла обеспечивает по крайней мере один благородный металл VIII группы.

Подложка, а также катализатор, называется аморфной, когда она не содержит молекулярных сит, и, в частности, цеолита. Кислотная аморфная подложка благоприятно является аморфным алюмосиликатом, но могут применяться и другие подложки. Когда говорится об алюмосиликате, катализатор обычно не содержит добавленных галогенов кроме тех, что могли быть введены при пропитке, например, благородным металлом. Алюмосиликат может быть получен любыми способами, известными специалисту в данной области, такими, как методы совместного осаждения, совместного гелеобразования и т.д.

На этапе гидроизомеризации-гидроконверсии молекулы обрабатываемого сырья, например н-парафины, в присутствии бифункционального катализатора подвергаются изомеризации, затем при необходимости гидрокрекингу, чтобы привести к образованию соответственно изопарафинов и более легких продуктов крекинга, таких, как газойли и керосин. Конверсия продуктов, имеющих температуры кипения выше или равные начальной температуре кипения сырья, которая равна по крайней мере 340°C, даже 370°C или, еще лучше, по крайней мере 380°C, в продукты с температурами кипения ниже начальной температуры кипения сырья, составляет обычно от 5 до 90%, предпочтительно от 5 до 80%, но обычно предпочтительно ниже 80% и, еще лучше, ниже 60%.

Более детально, характеристики катализатора гидроизомеризации-гидроконверсии таковы:

предпочтительная подложка, используемая для приготовления катализатора предварительной обработки гидроизомеризацией-гидроконверсией, описанная в рамках данной заявки, состоит из оксида кремния SiO2 и оксида алюминия Al2O3. Содержание оксида кремния в подложке, выраженное в массовых процентах, обычно составляет от 1 до 95%, благоприятно даже от 5 до 95%, предпочтительно от 10 до 80%, еще более предпочтительно, от 20 до 70% и от 22 до 45%. Такое содержание оксида кремния прекрасно измеряется с помощью рентгеновской флуоресценции.

Для этого частного типа реакции роль металла играет благородный металл VIII группы Периодической системы элементов и, более конкретно, платина и/или палладий.

Содержание благородного металла в катализаторе, выраженное в масс.% металла, составляет от 0,05 до 10 и, более предпочтительно, от 0,1 до 5.

Приготовление и формование подложки, в частности из алюмосиликата, проводится обычными методами, хорошо известными специалисту в данной области. Благоприятно перед пропиткой металлом подвергнуть подложку прокаливанию, как, например, термической обработкой при 300-750°C (предпочтительно 600°C) в течение 0,25-10 часов (предпочтительно 2 часа) при 0-30 об.% водяного пара (для алюмосиликата предпочтительно 7,5%).

Соль благородного металла вводят обычными способами, используемыми для осаждения металла (предпочтительно платины и/или палладия, причем платина предпочтительнее) на поверхности подложки. Одним из предпочтительных методов является «сухая» пропитка, которая состоит во введении соли металла в объем раствора, равный объему пор массы пропитываемого катализатора. Перед процедурой восстановления катализатор можно подвергать прокаливанию, как, например, обработкой в сухом воздухе при 300-750°C (предпочтительно 520°C) в течение 0,25-10 часов (предпочтительно 2 часа).

Перед использованием в реакции гидроизомеризации-гидроконверсии металл, содержащийся в катализаторе, должен быть восстановлен. Одним из предпочтительных методов проведения восстановления металла является обработка водородом при температуре от 150 до 650°C и полном давлении от 0,1 до 25 МПа. Например, восстановление проходит при плато 150°C в течение 2 часов, затем температура повышается до 450°C со скоростью 1°C/мин, затем плато в течение 2 часов при 450°C; в течение всего этого этапа восстановления расход водорода составляет 1000 литров водорода/литр катализатора. Отметим также, что пригодны все методы восстановления ex-situ.

Рабочий режим, в котором осуществляется этап гидроизомеризации-гидроконверсии, описан ниже.

Давление поддерживают на уровне от 2 до 25 МПа, предпочтительно от 3 до 20 МПа и благоприятно от 2 до 18 МПа, удельный объемный расход составляет от 0,1 до 10 ч-1, предпочтительно от 0,2 до 10 ч-1 и благоприятно от 0,5 до 5,0 ч-1. Доля водорода составляет от 100 до 2000 литров водорода на литр сырья, предпочтительно от 150 до 1500 литров водорода на литр сырья.

Температура, используемая на этом этапе, составляет от 200 до 450°C, предпочтительно от 250 до 450°C, благоприятно от 300 до 450°C, и еще более благоприятно, выше 340°C, например 320-450°C.

В случае, когда этап гидроочистки предшествует этапу гидроизомеризации-гидроконверсии, оба эти этапа гидроочистки и гидроизомеризации-гидроконверсии могут быть осуществлены на двух типах катализаторов в различных (двух или более) реакторах и/или по крайней мере на двух каталитических слоях, установленных в одном и том же реакторе.

Использование катализатора, описанного выше, на этапе гидроизомеризации-гидроконверсии имеет целью увеличить долю изомеризации тяжелой фракции (340°C+, или еще 370°C+ и, еще лучше, 380°C+) и снизить ее температуру потери подвижности. Обычно утверждают, что обработка на этапе гидроизомеризации-гидроконверсии позволит затем получить лучшие выходы депарафинизированных масляных фракций, которая будет получена на этапе каталитической депарафинизации, и получить желательные вискозиметрические свойства (вязкость и индекс вязкости ИВ).

В одном варианте исполнения, продукт, выходящий из этапа гидроизомеризации-гидроконверсии, может быть обработан целиком в процессе депарафинизации согласно изобретению. Этот вариант, вместе с подачей на каталитическую депарафинизацию всего продукта, полученного на этапе гидроконверсии-гидроизомеризации, представляет интерес с экономической точки зрения, потому что в конце процесса используется единственная установка перегонки. Более того, конечной перегонкой (после каталитической депарафинизации или последующих обработок) получают газойль с очень хорошими низкотемпературными свойствами.

В другом варианте поток, выходящий со стадии гидроизомеризации-гидроконверсии, может подвергаться разделению, по крайней мере части (а предпочтительно по крайней мере большей части) легких газов, которые содержат водород и возможно также углеводородные соединения с не более чем 4 атомами углерода. Водород может быть удален предварительно.

Благоприятно в другом варианте исполнения поток, выходящий из этапа гидроизомеризации-гидроконверсии, перегоняют, чтобы отделить легкие газы и также отделить по крайней мере одну остаточную фракцию, содержащую соединения с температурой кипения выше по крайней мере 340°C. Речь идет предпочтительно о перегонке при атмосферном давлении.

Можно благоприятно проводить перегонку, чтобы получить несколько фракций (например, бензин, керосин, газойль) с температурой кипения не более 340°C и одну фракцию (называемую остаточной) с начальной температурой кипения выше по крайней мере 340°C и, еще выше 350°C, и предпочтительно по крайней мере 370°C или 380°C.

Эту фракцию (остаточную) затем обрабатывают на этапе каталитической депарафинизации, то есть без перегонки в вакууме. Но в другом варианте можно использовать перегонку в вакууме.

Вообще говоря, средними дистиллятами в данном тексте называют фракцию(и) с начальной температурой кипения по крайней мере 150°C и конечной, доходящей до температуры кипения остаточной фракции, то есть обычно до 340, 350°C или предпочтительно ниже 370 или 380°C.

Поток, полученный на этапе гидроизомеризации-гидроконверсии, может подвергаться, до или после перегонки, другим видам обработки, таким, например, как экстракция по крайней мере части ароматических соединений.

Вообще говоря, по крайней мере часть продукта, полученного на этапе гидроизомеризации-гидроконверсии, продукта, который возможно был подвергнут разделению или обработкам, описанным выше, подвергается затем процессу каталитической депарафинизации согласно изобретению.

Отметим, что соединения, кипящие выше по крайней мере 340°С, всегда подвергают каталитической депарафинизации.

По окончании процесса каталитической депарафинизации согласно изобретению поток выгодно подавать на перегонку, которая предпочтительно объединяет перегонку при атмосферном давлении и перегонку под вакуумом, цель которых разделить продукты конверсии с температурой кипения ниже 340°C, предпочтительно ниже 370°C (включая, в частности, те, что образованы на стадии каталитической гидродепарафинизации), и отделить фракцию, содержащую базовое масло, начальная температура кипения которой выше по крайней мере 340°C и предпочтительно выше или равна 370°C.

Кроме того, эта секция перегонки под вакуумом позволяет разделить масла различного качества.

Предпочтительно, перед дистилляцией поток, выходящий со стадии каталитической депарафинизации, по крайней мере частично, а предпочтительно, полностью, подают на катализатор гидроочистки (hydrofinishing) в присутствии водорода, чтобы провести гидрирование под давлением ароматических соединений, возможно, еще присутствующих, которые ухудшают стабильность масел и дистиллятов. Однако кислотность катализатора должна быть достаточно малой, чтобы не привести к образованию продукта крекинга с температурой кипения ниже 340°C, чтобы не снизить конечные выходы, в частности, по маслам.

Катализатор, используемый на этом этапе гидроочистки, содержит по крайней мере один металл VIII группы и/или по крайней мере один элемент группы VIB Периодической системы. Обладающие ценными свойствами металлы: платина и/или палладий, или комбинация никель-вольфрам, никель-молибден, будут благоприятно использованы для осуществления гидрирования ароматических соединений под давлением.

Эти металлы осаждают и распределяют на подложке из аморфного или кристаллического оксида, такого как, например, оксид алюминия, оксид кремния, алюмосиликаты.

Катализатор гидроочистки (HDF) может также содержать по крайней мере один элемент группы VIIA Периодической системы элементов. Предпочтительно эти катализаторы содержат фтор и/или хлор.

Массовое содержание металлов составляет от 10 до 30% в случае неблагородных металлов и ниже 2%, предпочтительно от 0,1 до 1,5%, еще более предпочтительно от 0,1 до 1,0% в случае благородных металлов.

Полное количество галогена составляет от 0,02 до 30 масс.%, благоприятно от 0,01 до 15%, или еще более благоприятно от 0,01 до 10%, предпочтительно от 0,01 до 5%.

Из катализаторов, которые могут применяться на этом этапе гидроочистки и которые приводят к превосходным характеристикам, в частности, для получения медицинских масел, можно назвать катализаторы, содержащие по крайней мере один благородный металл VIII группы (например, платина и палладий) и по крайней мере один галоген (хлор и/или фтор), причем предпочтительна комбинация хлора и фтора.

Рабоч