Передача пилот-сигнала и оценивание канала для систем с множеством входов и одним выходом (miso) и множеством входов и множеством выходов (mimo)

Иллюстрации

Показать все

Изобретение относится к беспроводным системам связи, в частности к передаче пилот-сигнала и оцениванию канала в системе связи с множеством антенн. Передатчик генерирует множество составных пилот-сигналов. Каждый составной пилот-сигнал содержит множество обучающих пилот-сигналов, которые генерируются посредством множества столбцов обучающей матрицы и масштабируются посредством множества элементов усиления в столбце матрицы усилений. Передатчик передает каждый составной пилот-сигнал посредством множества передающих антенн. MISO-приемник получает принятые символы для множества составных пилот-сигналов и выводит оценку составного MISO-канала (множество входов и один выход). Для системы OFDM, MISO-приемник получает начальную оценку импульсного отклика для каждого составного пилот-сигнала, фильтрует начальные оценки импульсного отклика для всех составных пилот-сигналов и получает оценку частотного отклика для составного MISO-канала. MIMO-приемник получает и обрабатывает принятые символы для множества составных пилот-сигналов на основе обучающей матрицы и матрицы усилений и выводит оценки каналов для индивидуальных SISO-каналов (один вход и один выход) между множеством передающих антенн и множеством приемных антенн. 14 н. и 59 з.п. ф-лы, 12 ил.

Реферат

Описание

Настоящая заявка на патент испрашивает приоритет предварительной заявки № 60/550,893 на «Оценивание канала с использованием перекрытия пилот-сигналов для MISO/MIMO мультиплексирования» от 5 марта 2004, переуступленной заявителю настоящей заявки и включенной в настоящий документ посредством ссылки.

Область техники

Настоящее изобретение относится к беспроводным системам связи и, более конкретно, к передаче пилот-сигнала и оцениванию канала в беспроводной системе связи с множеством антенн.

Предшествующий уровень техники

Беспроводная система связи с множеством антенн поддерживает (1) передачу от множества (Т) передающих антенн к множеству приемных (R) антенн в режиме с множеством входов и множеством выходов (MIMO) и (2) передачу от множества передающих антенн к одной приемной антенне в режиме с множеством входов и одним выходом (MISO). MIMO-канал, образованный T передающими антеннами и R приемными антеннами, состоит из S пространственных каналов, где S≤min{T,R}. S пространственных каналов могут использоваться для передачи данных параллельно для обеспечения более высокой пропускной способности в целом и/или с избыточностью для обеспечения более высокой надежности. MISO-канал, образованный T передающими антеннами и одной приемной антенной, формирует один пространственный канал. Т передающих антенн могут использоваться для передачи данных с избыточностью для обеспечения более высокой надежности.

Точная оценка беспроводного канала между передатчиком и приемником обычно необходима для восстановления данных, переданных по беспроводному каналу. Оценивание канала в типовом случае выполняется путем передачи пилот-сигнала от передатчика и измерения пилот-сигнала в приемнике. Пилот-сигнал формируется из символов, которые априорно известны в передатчике и приемнике. Приемник может, таким образом, оценивать отклик канала на основе принятых символов и известных символов.

Система с множеством антенн может одновременно поддерживать как MISO-приемники (которые представляют собой приемники, снабженные одной антенной), так и MIMO-приемники (которые представляют собой приемники, снабженные множеством антенн). MISO- и MIMO-приемники в типовом случае требуют различных оценок канала и, таким образом, предъявляют разные требования к пилот-сигналу, как описано ниже. Поскольку передача пилот-сигнала представляет собой непроизводительную нагрузку в системе с множеством антенн, желательно по возможности минимизировать передачу пилот-сигнала. Однако передача пилот-сигнала должна быть такой, чтобы как MISO-, так и MIMO-приемники могли получать оценки канала достаточного качества.

Поэтому в технике существует потребность в способах эффективной передачи пилот-сигнала в системе с множеством антенн.

Сущность изобретения

Предложены способы для передачи пилот-сигнала для поддержки как MISO-, так и MIMO-приемников в системе с множеством антенн и для выполнения оценки канала в этих приемниках. Передатчик генерирует множество составных пилот-сигналов с помощью обучающей матрицы и матрицы усилений. Каждый составной пилот-сигнал содержит множество обучающих пилот-сигналов, которые генерируются посредством множества столбцов обучающей матрицы и далее масштабируются посредством множества элементов усиления в столбце матрицы усилений. Обучающая матрица может быть ортонормированной матрицей с ортогональными столбцами (например, матрицей Уолша или матрицей Фурье) или некоторой другой матрицей. Матрица усиления сформирована таким образом, чтобы MISO- и MIMO-приемники могли оценивать свои соответствующие MISO- и MIMO-каналы. Матрица усилений также управляет величиной мощности передачи, используемой для обучающего пилот-сигнала, посылаемого для MISO-приемника, и обучающих пилот-сигналов, посылаемых для MIMO-приемника. Передатчик передает каждый составной пилот-сигнал от множества (Т) передающих антенн.

MISO-приемник получает принятые символы для множества составных пилот-сигналов через одну приемную антенну и обрабатывает (например, фильтрует) эти принятые символы для получения оценки составного MISO-канала между Т передающими антеннами и одной приемной антенной. Для системы с множеством несущих, MISO-приемник может получить начальную оценку импульсного отклика для каждого составного пилот-сигнала на основе принимаемых символов, полученных из множества частотных поддиапазонов, используемых для данного составного пилот-сигнала. MISO-приемник затем фильтрует начальные оценки импульсного отклика для множества составных пилот-сигналов для получения оценки импульсного отклика для составного MISO-канала. MISO-приемник может выполнять пост-обработку (например, сравнение с порогом и/или усечение) для этой оценки импульсного отклика и затем выводить окончательную оценку частотного отклика для составного MISO-канала на основе прошедшей пост-обработку оценки импульсного отклика.

MIMO-приемник получает принятые символы для множества составных пилот-сигналов через множество (R) приемных антенн и обрабатывает эти принятые символы на основе обучающей матрицы и матрицы усилений для получения оценок множества каналов с одним входом и одним выходом (SISO) MIMO-канала между Т передающими антеннами и R приемными антеннами. Для системы с множеством несущих, MIMO-приемник может получить начальную оценку импульсного отклика для каждой комбинации составного пилот-сигнала и приемной антенны на основе принятых символов, полученных из множества частотных поддиапазонов, используемых для данной комбинации составного пилот-сигнала и приемной антенны. MIMO-приемник может затем обрабатывать начальные оценки импульсного отклика для всех комбинаций составного пилот-сигнала и приемной антенны на основе обучающей матрицы и матрицы усилений для получения оценок импульсных откликов для отдельных SISO-каналов. MIMO-приемник может затем выводить окончательную оценку частотного отклика для каждого SISO-канала на основе оценки импульсного отклика для данного SISO-канала.

MISO- и MIMO-приемники могут также выполнять оценивание канала другими способами и/или с использованием других методов оценивания каналов, как описано ниже. Различные аспекты и варианты осуществления изобретения описаны ниже более подробно.

Краткое описание чертежей

Признаки и характеристики настоящего описания поясняются в последующем подробном описании, иллюстрируемом чертежами, на которых одинаковыми ссылочными позициями обозначены соответствующие элементы на разных чертежах.

Фиг.1 - система с множеством антенн с передатчиком и двумя приемниками.

Фиг.2 - процесс передачи пилот-сигнала в системе с множеством антенн.

Фиг.3А и 3В - иллюстрации оценивания канала, выполняемого MISO-приемником и MIMO-приемником, соответственно, для четырех составных пилот-сигналов.

Фиг.4 - структура поддиапазона для системы мультиплексирования с ортогональным частотным разнесением (OFDM) с множеством антенн.

Фиг.5 - примерная схема передачи пилот-сигнала.

Фиг.6 - процесс оценивания канала для MISO-приемника.

Фиг.7 - процесс оценивания канала для MIMO-приемника.

Фиг.8 - блок-схема передатчика, MISO-приемника и MIMO-приемника.

Фиг.9 - блок-схема процессора пространственной обработки передачи (ТХ) и передающего блока в передатчике.

Фиг.10А и 10В - блок-схемы приемного блока и блока оценивания канала, соответственно, для MIMO-приемника.

Детальное описание

Термин «примерный» используется в настоящем описании в смысле «служащий в качестве примера, экземпляра или иллюстрации». Любой вариант осуществления, описанный как примерный, необязательно должен толковаться как предпочтительный или преимущественный по отношению к другим вариантам осуществления или структурам.

1. Система с множеством антенн с одной несущей

На фиг.1 представлена система 100 связи с одной антенной, содержащая передатчик 110 и два приемника 150а и 150b. Для простоты передатчик 110 имеет две передающие антенны, MISO-приемник 150а имеет одну приемную антенну, и MIMO-приемник 150b имеет две приемные антенны.

MISO-канал, образованный двумя антеннами в передатчике и одной антенной в MISO-приемнике, может характеризоваться 1х2-вектором-строкой отклика канала. Этот вектор может быть выражен следующим образом:

(1)

здесь hj для j=1,2, обозначает комплексное усиление канала между передающей антенной j и одной антенной в MISO-приемнике. Вектор часто выражается как столбец, а вектор-строка выражается как строка. SISO-канал существует между каждой парой передающей/приемной антенн. Два элемента записи в указывают на усиления канала для двух SISO-каналов одного MISO-канала.

MIMO-канал, формируемый двумя антеннами в передатчике и двумя антеннами в MIMO-приемнике, может быть охарактеризован 2х2-матрицей отклика канала. Матрица может быть выражена следующим образом:

(2)

здесь hi,j для i=1,2 и j=1,2 обозначает комплексное усиление канала между передающей антенной j и приемной антенной i в MIMO-приемнике. Матрица может также рассматриваться как содержащая один вектор-строку отклика канала для каждой приемной антенны i.

Передатчик передает пилот-сигнал от двух передающих антенн, обеспечивая возможность MISO-приемнику и MIMO-приемнику оценивать их соответствующие MISO-канал и MIMO-канал. Генератор 112 пилот-сигналов в передатчике может генерировать составной пилот-сигнал следующим образом:

(3)

где - 2х1-вектор усиления для составного пилот-сигнала m;

- обучающая 2х2-матрица с двумя столбцами и

- 2х1-вектор с двумя символами передачи для составного пилот-сигнала m.

Для простоты, символы модуляции 1+j0 используются для пилот-сигнала и могут, таким образом, быть опущены в уравнении (3). Символ передачи является символом, который передается от одной антенны в одном периоде символа пилот-сигнала. Период символа относится к интервалу времени, в котором символ передачи посылается от антенны.

Обучающая матрица содержит два вектора или столбца, которые должны быть ортогональны друг другу, и определяется следующим образом: = .

Каждый вектор для m=a,b называется обучающим вектором и используется для генерации обучающего пилот-сигнала, который направлен в конкретном пространственном направлении, определяемом элементами . Составной пилот-сигнал включает в себя два обучающих пилот-сигнала, которые генерируются с помощью двух обучающих векторов и . Вектор усиления содержит два элемента, которые определяют усиления двух обучающих пилот-сигналов. Два обучающих пилот-сигнала для составного пилот-сигнала, таким образом, масштабируются, объединяются и передаются одновременно двумя передающими антеннами.

Передатчик генерирует два составных пилот-сигнала с помощью двух разных векторов и усиления. Передатчик передает два составных пилот-сигнала (например, в двух периодах символов), обеспечивая возможность MISO-приемнику и MIMO-приемнику оценивать их соответствующие каналы. В качестве примера, обучающая матрица и вектора и усиления могут быть определены следующим образом:

(4)

где α определяет долю передаваемой мощности для использования для дополнительного пилот-сигнала в MIMO-приемнике и в типовом случае выбирается так, что 1≥α≥0.

Принятый символ в MISO-приемнике для каждого составного пилот-сигнала может быть выражен следующим образом:

(5)

где r1x1,m - принятый символ в MISO-приемнике для составного пилот-сигнала m; и

n1x1,m - шум в MISO-приемнике для составного пилот-сигнала m.

Два принятых символа в MISO-приемнике для двух составных пилот-сигналов могут быть представлены в развернутой форме следующим образом:

(6)

В уравнении (6) предполагается, что MISO-канал является постоянным на двух периодах символов, в которых переданы два составных пилот-сигнала.

Передатчик обычно передает данные с избыточностью от обеих передающих антенн в MISO-приемник. В этом случае MISO-приемнику необходимо только оценить составной MISO-канал, который соответствует hcomp=h1+h2, и не требуется оценивать усиления h1 и h2 каналов для индивидуальных SISO-каналов MISO-канала. MISO-приемник может получать оценку составного MISO-канала следующим образом:

(7)

где является оценкой hcomp.

Принятые символы в MIMO-приемнике для каждого составного пилот-сигнала могут быть выражены следующим образом:

(8)

где - 2х1-вектор принятых символов для составного пилот-сигнала m, где «Т» обозначает транспонирование и

- вектор шума в MIMO-приемнике для составного пилот-сигнала m.

MIMO-приемник получает два вектора принятых символов и для двух составных пилот-сигналов, генерируемых с помощью двух векторов и усилений, соответственно.

Четыре принятых символа в MIMO-приемнике для двух составных пилот-сигналов могут быть выражены в развернутой форме следующим образом:

В уравнении (9) предполагается, что MIMO-канал является постоянным на двух периодах символов, в которых передаются два составных пилот-сигнала.

Передатчик может передавать данные параллельно от обеих передающих антенн к MIMO-приемнику для улучшения пропускной способности. В этом случае MIMO-приемнику обычно требуется (1) оценить усиления h1,1, h1,2, h2,1 и h2,2 канала для индивидуальных SISO-каналов MIMO-канала и (2) использовать эти оценки усилений каналов для восстановления передачи данных от передатчика. MIMO-приемник может вывести оценку индивидуальных SISO-каналов следующим образом:

(10)

где n1,1, n1,2, n2,1 и n2,2 - шумы, наблюдаемые оценками усилений каналов, соответственно, .

Приведенное выше описание относится к системе 2х2, в которой передатчик имеет две передающие антенны и приемники имеют максимум две приемные антенны. В общем случае, система с множеством антенн может содержать передатчики и приемники с любым числом антенн, так что Т и R могут быть любыми целыми числами.

В случае системы RxT, передатчик генерирует Т составных пилот-сигналов с Т векторами усилений, по одному вектору для каждого составного пилот-сигнала. Каждый составной пилот-сигнал может генерироваться следующим образом:

(11)

где - Тх1-вектор усиления для составного пилот-сигнала m;

- обучающая ТхТ-матрица с Т столбцами и

- Тх1 - вектор с Т обучающими символами для составного пилот-сигнала m.

Матрица содержит Т (предпочтительно ортогональных) обучающих векторов и определяется как =. Каждый обучающий вектор содержит Т элементов для Т передающих антенн и указывает в определенном пространственном направлении. Каждый составной пилот-сигнал содержит Т обучающих пилот-сигналов, которые генерируются с помощью Т обучающих векторов в . Т обучающих пилот-сигналов для каждого составного пилот-сигнала масштабируются с помощью Т элементов усиления в векторе усиления и затем суммируются вместе. Т различных векторов усиления используются для Т составных пилот-сигналов и определяются как . Вектора усиления соответствующим образом выбираются для облегчения оценивания канала как MISO-приемником, так и MIMO-приемником. Передатчик передает Т составных пилот-сигналов, например, в Т периодах символов.

MISO-приемник получает Т принятых символов для Т составных пилот-сигналов, что может быть выражено следующим образом:

(12)

где - 1хТ-вектор-строка с Т принятыми символами для Т составных пилот-сигналов;

- 1хТ-вектор-строка отклика канала для MISO-приемника;

- 1хТ-вектор-строка шума в MISO-приемнике для Т составных пилот-сигналов.

Вектор-строка принятых символов определяется как , где для m=a ... T представляет принятый символ для составного пилот-сигнала m.

MISO-приемнику в типовом случае необходимо только оценивать составной MISO-канал, который соответствует hmiso=h1+h2+...+hT, а не индивидуальные SISO-каналы MISO-канала. Если Т векторов усиления соответствующим образом выбраны, то MISO-приемник может получать оценку составного MISO-канала просто фильтрацией (например, усреднением) Т принятых символов для Т составных пилот-сигналов следующим образом:

(13)

где - оценка и - шум, наблюдаемый . MISO-приемник может также получать составную оценку MISO-канала путем фильтрации принятых символов с помощью других фильтров, имеющих другие коэффициенты, как описано ниже.

MIMO-приемник получает Т векторов принятых символов для Т составных пилот-сигналов, что может быть выражено следующим образом:

(14)

где - RxT- матрица с Т векторами принятых символов для Т составных пилот-сигналов;

- RxT- матрица отклика канала для MIMO-приемника и

- RxT- матрица шума в MIMO-приемнике для Т составных пилот-сигналов.

Матрица принятых символов определяется как , где для m=a ... T является вектором с R принятыми символами, принятыми посредством R приемных антенн для составного пилот-сигнала m.

MIMO-приемник может получить оценку матрицы отклика MIMO-канала в следующем виде:

(15)

где - оценка и - шумы, наблюдаемые матрицей . Матрица оценки отклика канала может также быть получена путем выполнения некоторой другой линейной операции над матрицей принятых символов.

Обучающая матрица определяется как обеспечивающая удовлетворительную эффективность оценивания канала как для MISO, так и для MIMO-приемников. Обучающий пилот-сигнал, генерируемый с использованием первого обучающего вектора в , может рассматриваться как MISO-пилот-сигнал, посланный для MISO-приемника. Остальные Т-1 обучающих пилот-сигналов, генерируемых с помощью остальных Т-1 векторов от по , могут рассматриваться как дополнительный пилот-сигнал, посланный для MIMO-приемника. MISO-пилот-сигнал может рассматриваться как более важный, например, если передатчик поддерживает множество MISO-приемников. Дополнительный пилот-сигнал для MIMO-приемника может рассматриваться как менее важный и не должен ухудшать эффективность оценивания канала MISO-приемников. Использование обучающей матрицы и матрицы усиления обеспечивает для передачи пилот-сигнала одно предпочтительное пространственное направление для MISO-приемника, в то же время при поддержке MIMO-приемника.

Наивысшая эффективность для оценивания канала может быть достигнута, если U является ортонормированной матрицей, и Т обучающих векторов в являются ортогональными друг другу и имеют единичную мощность. Ортонормированное условие может быть выражено как где - единичная матрица, и «H» обозначает сопряженное транспонирование. Ортонормированное условие может эквивалентным образом выражаться как для m=а...Т и для l=а...Т, m=а...Т и l≠m. Ортогональные обучающие вектора позволяют MISO-приемнику усреднять дополнительный пилот-сигнал, посланный для MIMO-приемника, так что оценка MISO-канала в минимальной степени ухудшается за счет дополнительного пилот-сигнала. Т обучающих векторов в указывающих в различных пространственных направлениях, позволяют MIMO-приемнику оценивать усиления каналов для индивидуальных SISO-каналов MIMO-канала или R·T элементы матрицы оценки канала. Обучающая матрица может быть сформирована различными способами.

В одном варианте осуществления обучающая матрица представляет собой матрицу Уолша . 2х2-матрица Уолша эквивалентна матрице в уравнении (4). Матрица Уолша большего размера, такая как может быть сформирована из матрицы Уолша меньшего размера, такой как , следующим образом:

(16)

Матрицы Уолша имеют квадратные размеры, выраженные как степень двух.

В другом варианте осуществления обучающая матрица представляет собой матрицу Фурье . Матрица Фурье размера ТхТ имеет элемент fl,n в l-й строке и n-м столбце, который может быть выражен следующим образом:

(17)

Выражения l-1 и n-1 (вместо просто l и n) в экспоненте в формуле (17) обусловлены схемой индексации, которая начинается с 1 вместо 0. Могут быть сформированы матрицы Фурье любого квадратного размера (например, 2х2, 3х3, 4х4 и т.д.).

Каждый составной пилот-сигнал содержит Т обучающих пилот-сигналов, которые генерируются с использованием Т обучающих векторов в матрице Вектор усиления для каждого составного пилот-сигнала определяет долю передаваемой мощности, предназначенной для использования для MISO-пилот-сигнала и дополнительного пилот-сигнала. Т векторов усиления для Т составных пилот-сигналов выбираются таким образом, чтобы (1) MISO-приемник мог оценивать отклик составного MISO-канала при минимальном ухудшении, связанном с дополнительным пилот-сигналом, и (2) MIMO-приемник мог оценивать индивидуальные SISO-каналы. В одном варианте осуществления матрица усиления формируется путем умножения последних Т-1 строк ортонормированной матрицы на усиление α. Это усиление α определяет долю передаваемой мощности, предназначенной для использования для дополнительного пилот-сигнала для MIMO-приемника. В другом варианте осуществления матрица усиления формируется как диагональная матрица с Т ненулевыми элементами на диагонали и остальными нулевыми элементами. Т диагональных элементов матрицы могут быть выбраны, например, как {1, α, α, ...α}. Эта диагональная матрица усиления приводит к получению Т обучающих пилот-сигналов, которые передаются по отдельности, причем первый обучающий пилот-сигнал передается с единичной мощностью, а каждый остальной обучающий пилот-сигнал передается с мощностью α2. В общем случае, матрица усиления определяется таким образом, чтобы MISO-приемник мог получить оценку составного MISO-канала, и MIMO-приемник мог вывести оценки индивидуальных SISO-каналов. Различные матрицы усиления приводят в результате к различным характеристикам пилот-сигналов и, следовательно, к различной эффективности оценивания канала.

Фиг.2 показывает процесс 200 для передачи пилот-сигнала для MISO-приемника и MIMO-приемника в системе с множеством антенн. Первоначально, индекс m устанавливается на первое значение α для этого индекса (блок 210). Передатчик генерирует составной пилот-сигнал m с обучающей матрицей и вектором усиления, например, как представлено в уравнении (11) (блок 212). Затем передатчик передает составной пилот-сигнал m от Т передающих антенн, например, в одном периоде символа (блок 214). Затем индекс m обновляется, например, устанавливается на следующее значение в наборе {a, b,,..., T} или устанавливается на первое значение α после достижения последнего значения в этом наборе (блок 216). Затем процесс возвращается к блоку 212 для генерации и передачи другого составного пилот-сигнала.

В качестве примера для Rx4-системы с четырьмя передающими антеннами обучающая матрица и матрица усиления могут быть выражены следующим образом:

(18)

Матрица представляет собой 4х4-матрицу Уолша и содержит 4 обучающих вектора или . Матрица сформирована на основе 4х4-матрицы Уолша и содержит 4 вектора усиления или .

Передатчик может проходить цикл для четырех векторов усиления в матрице и передавать четыре составных пилот-сигнала в четырех периодах символов. Например, передатчик может передавать первый составной пилот-сигнал, генерируемый с усилением в периоде символа n, затем второй составной пилот-сигнал, генерируемый с усилением в периоде символа n+1, затем третий составной пилот-сигнал, генерируемый с усилением в периоде символа n+2, затем четвертый составной пилот-сигнал, генерируемый с усилением в периоде символа n+3, затем первый составной пилот-сигнал в периоде символа n+4 и т.д.

Фиг.3А иллюстрирует оценивание канала MISO-приемником в Rx4-системе. Передатчик передает пилот-сигнал с использованием обучающей матрицы и путем прохождения цикла с использованием четырех векторов усиления в матрице , как описано выше. Принятые символы для MISO-приемника имеют вид: для периода n символа, для периода n+1 символа и т.д., как показано на фиг. 3А, где нижний индекс 4x4 для матрицы опущен для ясности. MISO-приемник может фильтровать принятые символы с использованием, например, фильтра с конечным импульсным откликом (КИО), для получения оценки составного MISO-канала в периоде n символа следующим образом:

(19)

где c(i) для i=-L1...L2 - коэффициенты для КИО-фильтра, и L1 и L2 - временная протяженность для КИО-фильтра.

Для каузального фильтра L1=0,L2≥1 и оценка составного MISO-канала является взвешенной суммой принятых символов для L2 предыдущих периодов символов и текущего периода символа. Для некаузального фильтра L1≥1, L2≥1 и оценка составного MISO-канала является взвешенной суммой принятых символов для L2 предыдущих периодов символов, текущего периода символа и L1 будущих периодов символов. L1 принятых символов буферизуются для реализации некаузального КИО-фильтра.

Фиг.3В иллюстрирует оценивание канала MIMO-приемником в Rx4-системе. Передатчик передает пилот-сигнал с использованием обучающей матрицы и матрицы усиления, как описано выше. Принятые символы для MIMO-приемника имеют вид: для периода n символа, для периода n+1 символа и т.д., как показано на фиг.3В. Блок пилот-сигнала представляет собой наименьший интервал, на котором передаются все Т составных пилот-сигнала. Для примера, показанного на фиг.3В, блок пилот-сигнала представляет собой четыре периода символа. MIMO-приемник может фильтровать принятые символы для одного и того же составного пилот-сигнала, например, фильтровать и для составного пилот-сигнала, генерируемого с использованием , фильтровать и для составного пилот-сигнала, генерируемого с использованием , и т.д. MIMO-приемник может также получать оценки усиления индивидуальных SISO-каналов на основе (отфильтрованных или нефильтрованных) принятых символов, полученных для одного блока пилот-сигналов, как показано на фиг.3В. Например, матрица может быть сформирована с использованием четырех векторов с по принятых символов, и оценки усилений каналов могут быть вычислены на основе матрицы , как показано в уравнении (15).

Для простоты, фиг.3А и 3В показывают MISO- и MIMO-каналы как статические в течение всего интервала времени на периодах символов от n-2 до n+5. Для обеспечения улучшенной эффективности оценивания канала блок пилот-сигналов должен быть короче, чем время когерентности MISO- и MIMO-каналов. Время когерентности представляет собой интервал времени, в котором беспроводный канал предполагается остающимся примерно постоянным.

Принцип, описанный выше со ссылками на фиг.3А и 3В для Rx4-системы, может быть расширен на любую RxT-систему. Обучающая матрица и матрица усиления могут быть сформированы, как описано выше. Передатчик генерирует Т составных пилот-сигналов с использованием матрицы и Т векторов усиления в матрице и передает эти Т составных пилот-сигналов к MISO- и MIMO-приемникам. MISO- и MIMO-приемники могут оценивать свои MISO- и MIMO-каналы, соответственно, на основе принятых символов для Т составных пилот-сигналов.

2. Система с множеством антенн и множеством несущих

Система с множеством антенн может использовать множество несущих для передачи данных и пилот-сигналов. Множество несущих могут быть обеспечены на основе мультиплексирования с ортогональным частотным разделением (OFDM), некоторых других методов модуляции с множеством несущих или других схем. OFDM эффективно подразделяет всю ширину полосы системы (W МГц) на множество (К) ортогональных частотных поддиапазонов. Эти поддиапазоны также называются тонами, поднесущими, элементами разрешения и частотными каналами. В случае OFDM, каждый поддиапазон связывается с соответствующей поднесущей, которая может модулироваться данными. OFDM-система с множеством антенн может использовать только поднабор из общего количества К поддиапазонов для передачи данных и пилот-сигналов, а остальные поддиапазоны могут служить в качестве защитных поддиапазонов, чтобы обеспечить удовлетворение системных требований к спектральной маске. Для простоты, в последующем описании предполагается, что все К поддиапазонов могут использоваться для передачи данных и/или пилот-сигналов.

Беспроводный канал между передатчиком и приемником в OFDM-системе с множеством антенн может испытывать частотно-селективное замирание, которое характеризуется частотным откликом, который изменяется в пределах ширины полосы. К поддиапазонов для каждого SISO-канала могут в этом случае быть ассоциированы с различными комплексными усилениями каналов. Точная оценка канала для всех К поддиапазонов может потребоваться для восстановления передачи данных в некоторых или всех из этих поддиапазонов.

MISO-канал для MISO-приемника в OFDM-системе с множеством антенн может характеризоваться набором из К векторов-строк отклика канала для k=1...K. Каждый из векторов-строк имеет размерность 1хТ и содержит Т элементов для усилений каналов между Т передающими антеннами и единственной приемной антенной для одного поддиапазона k. MIMO-канал для MIMO-приемника в OFDM-системе с множеством антенн может характеризоваться набором из К матриц отклика канала для k=1...K. Каждая