Передача пилот-сигнала и оценивание канала для системы ofdm с избыточным разбросом задержки

Иллюстрации

Показать все

Изобретение относится к передачи пилот-сигнала и оцениванию канала для системы OFDM с избыточным разбросом задержки. Достигаемый технический результат - ослабление вредных эффектов избыточного разброса задержки. Используется большое количество поддиапазонов пилот-сигнала в каждом периоде символа. Получают первую и вторую группы принятых символов пилот-сигнала для первого и второго наборов поддиапазонов пилот-сигнала и используют их для выведения первой и второй оценок частотной характеристики. Первая и вторая оценки импульсной характеристики выводятся, базируясь на первой и второй оценках частотной характеристики, соответственно, и используются для вывода третьей оценки импульсной характеристики, имеющей больше отводов (составляющих), чем количество поддиапазонов пилот-сигнала в каждом наборе. 5 н. и 46 з.п. ф-лы, 12 ил., 1 табл.

Реферат

Заявление о приоритете согласно 35 USC §119

Настоящая заявка на патент испрашивает приоритет для предварительной заявки номер 60/538,210, озаглавленной "Pilot Transmission and Channel Estimation for an OFDM System with Excess Delay Spread", зарегистрированной 21 января 2004 и приписанной правопреемнику этой заявки, и поэтому включенной сюда по ссылке.

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к передаче данных и, более конкретно, к передаче пилот-сигнала и оцениванию канала для системы мультиплексирования с ортогональным делением частот (OFDM) с избыточным разбросом задержки.

Предшествующий уровень техники

OFDM - это технология модуляции с несколькими несущими, которая эффективно разбивает всю полосу пропускания системы на многочисленные (NF) ортогональные поддиапазоны. Эти поддиапазоны также указываются как тоны, поднесущие, элементы дискретизации (bins) и частотные каналы. С OFDM каждый поддиапазон ассоциирован с соответствующей поднесущей, которая может модулироваться данными. Вплоть до NF символов модуляции могут передаваться по NF поддиапазонам в каждом периоде OFDM символа. До передачи эти символы модуляции преобразуются во временную область, используя NF-точечное обратное быстрое преобразование Фурье (IFFT) для получения "преобразованного" символа, который содержит NF элементарных сигналов.

OFDM может использоваться для противодействия избирательному затуханию частот, которое характеризуется разными усилениями каналов на разных частотах всей полосы пропускания системы. Хорошо известно, что избирательное затухание частот вызывает межсимвольные помехи (ISI), которые являются явлением, в силу которого каждый символ в принятом сигнале действует как искажение для одного или более последующих символов в принятом сигнале. ISI искажение ухудшает производительность, влияя на способность корректно обнаруживать принятые символы. Избирательному затуханию частот можно легко противодействовать с помощью OFDM посредством повторения части каждого преобразованного символа для формирования соответствующего OFDM символа. Повторенная часть обычно упоминается как циклический префикс.

Длина циклического префикса (т.е. величина, которая должна повторяться для каждого OFDM символа) зависит от разброса задержки. Разброс задержки беспроводного канала является промежутком времени или продолжительностью импульсной характеристики для беспроводного канала. Этот разброс задержки также является разностью между наиболее ранними и наиболее поздними экземплярами прибывающего сигнала (или компонентами многолучевого распространения) в приемнике для сигнала, переданного через беспроводной канал передатчиком. Разброс задержки системы OFDM является максимальным ожидаемым разбросом задержки беспроводных каналов для всех передатчиков и приемников в системе. Чтобы позволить всем приемникам в системе противодействовать ISI, длина циклического префикса должна быть равна или быть длиннее, чем максимальный ожидаемый разброс задержки. Однако, так как циклический префикс представляет служебную информацию для каждого OFDM символа, желательно иметь длину циклического префикса настолько короткой, насколько возможно, чтобы минимизировать служебную информацию. В качестве компромисса длина циклического префикса обычно выбирается так, что циклический префикс содержит значимую часть всех энергий компонентов многолучевого распространения для большинства приемников в системе.

Система OFDM может выдерживать разброс задержки, который меньше чем или равен длине циклического префикса. Когда это имеет место, NF поддиапазонов ортогональны друг другу. Однако заданный приемник в системе может наблюдать избыточный разброс задержки, который является разбросом задержки, который больше чем длина циклического префикса. Избыточный разброс задержки может вызывать различные вредные эффекты, такие как ISI и ошибки оценивания канала, оба из которых могут ухудшать производительность системы, как описано ниже. Поэтому имеется необходимость в данной области техники в технологиях для ослабления вредных эффектов избыточного разброса задержки в системе OFDM.

Сущность изобретения

Здесь описываются технологии для передачи пилот-сигнала и оценки характеристики беспроводного канала с избыточным разбросом задержки. Чтобы ослабить вредные эффекты избыточного разброса задержки, количество поддиапазонов пилот-сигнала выбирается так, чтобы оно было больше чем длина циклического префикса (т.е. NPeff>Ncp), для достижения "передискретизации" в частотной области. Передискретизация может быть получена посредством либо (1) использования большего количества поддиапазонов пилот-сигнала в каждом периоде OFDM символа, либо (2) использования разных наборов поддиапазонов пилот-сигнала в разных периодах OFDM символа (т.е. смещенных поддиапазонов пилот-сигнала). Например, схема смещенной передачи пилот-сигнала может использовать два набора поддиапазонов пилот-сигнала, причем каждый набор содержит Ncp поддиапазонов пилот-сигнала. Поддиапазоны пилот-сигнала в первом наборе являются смещенными или сдвинутыми от поддиапазонов пилот-сигнала во втором наборе.

В одной иллюстративной технологии оценивания канала для вышеуказанной схемы смещенной передачи пилот-сигнала, первая группа принятых символов пилот-сигнала для первого набора поддиапазонов пилот-сигнала получается в первом периоде символа и используется для вывода первой (начальной) оценки частотной характеристики для беспроводного канала. Вторая группа принятых символов пилот-сигнала для второго набора поддиапазонов пилот-сигнала получается во втором периоде символа и используется для вывода второй (начальной) оценки частотной характеристики (частотного отклика) для беспроводного канала. Первая и вторая оценки импульсной характеристики канала выводятся, базируясь на первой и второй оценках частотной характеристики, соответственно. Третья (полная) оценка импульсной характеристики канала затем выводится, базируясь на (например, посредством повторения и либо комбинирования, либо фильтрации) первой и второй оценках импульсной характеристики канала, как описано ниже. Третья оценка импульсной характеристики канала содержит больше ответвлений (составляющих), чем количество поддиапазонов пилот-сигнала либо в первом, либо во втором наборе, что делает возможной более точной характеризацию беспроводного канала в присутствии избыточного разброса задержки. Третья (конечная) оценка частотной характеристики выводится, базируясь на третьей оценке импульсной характеристики канала, и может использоваться для обнаружения и других целей. Оценивание канала может быть подстроено к конкретной схеме смещенной передачи пилот-сигнала, выбранной для использования.

Различные аспекты и варианты осуществления этого изобретения описываются более детально ниже.

Краткое описание чертежей

Признаки и природа настоящего изобретения станут более ясны из подробного описания, излагаемого ниже, когда оно берется в соединении с чертежами, на которых сходные ссылочные символы всюду идентифицируют соответствующие элементы, и где:

фиг.1 показывает OFDM модулятор для системы OFDM;

фиг.2A и 2D показывают беспроводной канал с избыточным разбросом задержки и его результативный канал соответственно;

фиг.2B и 2C показывают последовательность принятых элементарных сигналов для беспроводного канала;

фиг.3 показывает структуру поддиапазона, которая может использоваться для системы OFDM;

фиг.4A, 4B и 4C показывают периодически опрашиваемый канал для беспроводного канала, его результативный канал и его оцененный канал с критической дискретизацией соответственно;

фиг.5, 9A и 9B показывают три схемы смещенной передачи пилот-сигнала;

фиг.6 показывает процесс для получения полной оценки импульсной характеристики канала, базирующийся на схеме смещенной передачи пилот-сигнала, показанной на фиг.5;

фиг.7 показывает вывод полной оценки импульсной характеристики канала;

фиг.8A показывает оцененный канал с передискретизацией и усечением;

фиг.8B показывает оцененный канал с передискретизацией и без усечения;

фиг.10 показывает процесс для выполнения оценивания канала для заданной схемы смещенной передачи пилот-сигнала;

фиг.11 показывает точку доступа и терминал в системе OFDM; и

фиг.12 показывает модуль оценивания канала.

Подробное описание

Слово "иллюстративный" используется здесь для обозначения "служащий в качестве примера, экземпляра или иллюстрации". Любой вариант осуществления или конструкция, описанный здесь как "иллюстративный", не должен необходимо толковаться как предпочтительный или выгодный по сравнению с другими вариантами осуществления или конструкциями.

Фиг.1 показывает блок-схему OFDM модулятора 100 для системы OFDM. Данные, которые должны передаваться, обычно кодируются и перемежаются для генерирования битов кода, которые затем отображаются в символы модуляции. Отображение в символы выполняется посредством (1) группирования битов кода в B-битные бинарные значения, где B≥1, и (2) отображения каждого B-битного значения в конкретный символ модуляции, базируясь на некоторой схеме модуляции (например, M-PSK или M-QAM, где M=2B). Каждый символ модуляции является комплексным значением в совокупности сигналов, соответствующей схеме модуляции. Для каждого периода OFDM символа один "передаваемый" символ посылается по каждому из NF поддиапазонов. Каждый передаваемый символ может являться либо символом модуляции для пилот-сигнала/данных, либо сигнальным значением нуля, (т.е. "нулевым символом"). IFFT модуль 110 выполняет NF-точечное IFFT над NF передаваемыми символами для NF полных поддиапазонов в каждом периоде OFDM символа и предоставляет преобразованный символ, который содержит NF элементарных сигналов. IFFT может быть выражено как:

где - это NF×1 вектор передаваемых символов для NF поддиапазонов;

- это NF×NF матрица дискретного преобразования Фурье (DFT);

- это NF×1 вектор элементарных сигналов временной области; и

H обозначает сопряженное транспонирование.

DFT матрица определяется так, что (n,m)-е вхождение, wn,m, задается как:

где n - это индекс строки и m - это индекс столбца. - это обратная DFT матрица.

Генератор 120 циклического префикса повторяет часть каждого преобразованного символа для получения соответствующего OFDM символа, который содержит NC элементарных сигналов, где NC=NF+Ncp, Ncp - это длина циклического префикса. Период OFDM символа является продолжительностью одного OFDM символа, который равен NC периодам элементарных сигналов. Элементарные сигналы обрабатываются и передаются через беспроводной канал.

Фиг.2A показывает иллюстративную импульсную характеристику 210 беспроводного канала с избыточным разбросом задержки. Импульсная характеристика 210 канала включает в себя два ответвления 212 и 214 для двух компонентов многолучевого распространения в беспроводном канале. Ответвление 212 имеет комплексное усиление, равное h1, и находится на индексе 1 ответвления. Ответвление 214 имеет комплексное усиление, равное he, и находится на индексе Ne ответвления, который находится вне длины Ncp циклического префикса. Как здесь используется, "главный канал" указывает на часть импульсной характеристики канала, которая находится на или внутри длины циклического префикса, "канал избытка" относится к части импульсной характеристики канала, которая находится вне длины циклического префикса, и "избыток" относится к разности между индексом ответвления для ответвления канала избытка и длиной циклического префикса. Для импульсной характеристики 210 канала главный канал включает в себя одно ответвление 212, канал избытка включает в себя одно ответвление 214, и избыток для ответвления 214 равен Nex=Ne-Ncp.

Фиг.2B показывает последовательность 220 принятых элементарных сигналов для беспроводного канала, показанного на фиг.2A. Последовательность 220 принятых элементарных сигналов является сверткой последовательности переданных элементарных сигналов с ответвлениями 212 и 214 для беспроводного канала. Последовательность 220 принятых элементарных сигналов состоит из (1) последовательности 222 элементарных сигналов, сгенерированной посредством свертывания ответвления 212 главного канала с последовательностью переданных элементарных сигналов, и (2) последовательности 224 элементарных сигналов, сгенерированной посредством свертывания ответвления 214 канала избытка с последовательностью переданных элементарных сигналов, где si обозначает i-й элементарный сигнал для текущего OFDM символа, xi обозначает i-й элементарный сигнал для предыдущего OFDM символа и i=1... NC.

Фиг.2C показывает разложение последовательности 220 принятых элементарных сигналов на различные компоненты. Последовательность 224 элементарных сигналов на фиг.2B заменяется на (1) последовательность 226 элементарных сигналов, сгенерированную посредством круговой свертки ответвления 214 канала избытка с NC элементарными сигналами для текущего OFDM символа, (2) последовательность 228 элементарных сигналов для хвостового конца предыдущего OFDM символа и (3) последовательность 230 элементарных сигналов для хвостового конца текущего OFDM символа. Последовательности 222 и 226 элементарных сигналов представляют последовательности, которые были бы приняты для ответвлений 212 и 214, если бы длина циклического префикса была достаточно длинной и ответвление 214 являлось частью главного канала. Однако, так как это не имеет места, последовательности 228 и 230 элементарных сигналов обе возникают вследствие избыточного разброса задержки. Последовательность 228 элементарных сигналов представляет утечку предыдущего OFDM символа в текущий OFDM символ и является источником межсимвольных помех. Последовательность 230 элементарных сигналов представляет возмущение для круговой свертки и является источником помех между несущими (ICI) и ослабления канала.

Межсимвольные помехи, наблюдаемые в каждом поддиапазоне, могут быть выражены как:

где - это NF×1 вектор переданных символов для предыдущего OFDM символа;

- это Nex×NF матрица с последними Nex строками ;

и

(k) - это 1×Nex вектор с первыми Nex элементами в k-й строке .

Операция генерирует Nex×1 вектор , который содержит последние Nex элементарных сигналов предыдущего OFDM символа. Умножение на (k) генерирует помехи вследствие этих последних Nex элементарных сигналов в поддиапазоне k.

Мощность шума в каждом поддиапазоне вследствие межсимвольных помех может быть выражена как:

где ES - это энергия переданного символа, |he|2 - это мощность канала избытка, - это мощность шума вследствие ISI в каждом поддиапазоне. Как показано в уравнении (4), мощность ISI шума на поддиапазон (1) пропорциональна энергии канала избытка |he|2, (2) пропорциональна избытку Nex, который показывает величину утечки предыдущего OFDM символа на текущий OFDM символ, и (3) обратно относится к количеству всех поддиапазонов, так как полная мощность ISI шума распределена по NF поддиапазонам.

Мощность шума в каждом поддиапазоне вследствие помех между несущими может быть вычислена аналогичным способом, как для межсимвольных помех, и выражается как:

где является мощностью шума вследствие ICI в каждом поддиапазоне.

Фиг.2D показывает "результативный" канал 240 для беспроводного канала, показанного на фиг.2A. Ссылаясь назад на фиг.2C, последовательность 226 элементарных сигналов представляет вклад вследствие ответвления 214 канала избытка (предполагая, что циклический префикс является достаточно длинным), и последовательность 230 элементарных сигналов представляет источник ICI вследствие канала избытка. Операция вычитания для последовательности 230 элементарных сигналов частично дает результатом уменьшение мощности сигнала для каждого поддиапазона. Это вычитание может учитываться посредством уменьшения масштаба ответвления 214 канала избытка с помощью коэффициента, равного (1-Nex/NF). Как показано на фиг.2D, результативный канал 240 включает в себя ответвление 212, имеющее комплексное усиление, равное h1, и ответвление 216, имеющее комплексное усиление, равное he·(1-Nex/NF). Уменьшение в усилении ответвления 216 по отношению к усилению ответвления 214 упоминается как "ослабление канала" и проистекает от избыточного разброса задержки для ответвления 214. Величина ослабления связана с избытком Nex.

Приемник выполняет оценивание канала, чтобы вывести оценку канала для беспроводного канала. Оценивание канала обычно выполняется, базируясь на символах пилот-сигнала, которые являются символами модуляции, которые известны приемнику заранее. Символы пилот-сигнала могут передаваться различными способами, как описывается ниже.

Фиг.3 показывает иллюстративную структуру поддиапазонов, которая может использоваться для системы OFDM. Система OFDM имеет полную полосу пропускания системы, равную BW МГц, которая разделена на NF ортогональных поддиапазонов, используя OFDM. Каждый поддиапазон имеет полосу пропускания, равную BW/NF МГц. Для спектрально профилированной системы OFDM, только NU из NF суммарных поддиапазонов (суммарного количества поддиапазонов) используются для передачи данных/пилот-сигнала, где NU<NF, и остающиеся NF-NU поддиапазонов не используются для передачи данных/пилот-сигнала и служат в качестве защитных поддиапазонов, чтобы позволять системе удовлетворять спектральным требованиям маски. Для простоты последующее описание предполагает, что в системе OFDM могут использоваться все NF поддиапазонов.

Фиг.3 также показывает иллюстративную схему 300 передачи пилот-сигнала мультиплексной передачи с частотным разделением каналов (FDM). NP поддиапазонов используются для передачи пилот-сигнала и указываются как "поддиапазоны пилот-сигнала". Чтобы упростить вычисление для оценки канала, NP может выбираться как степень двух, и NP поддиапазонов пилот-сигнала могут равномерно распределяться по NF суммарным поддиапазонам, так что последовательные поддиапазоны пилот-сигнала разделены посредством NF/NP поддиапазонов.

Приемник может выводить начальную оценку частотной характеристики беспроводного канала, базируясь на принятых символах пилот-сигнала для поддиапазонов пилот-сигнала, следующим образом:

где yp(k) - это принятый символ пилот-сигнала для поддиапазона k;

p(k) - это символ пилот-сигнала, переданный по поддиапазону k;

p(k) - это оценка усиления канала для поддиапазона k пилот-сигнала; и

Kp - это набор поддиапазонов пилот-сигнала.

NP×1 вектор p для начальной оценки частотной характеристики для NP равномерно распределенных поддиапазонов пилот-сигнала может быть сформирован как p=[p(1) p(2)... p(NP)]T, где "T" обозначает транспонирование. Если символы пилот-сигнала не передаются по какому-либо из NP поддиапазонов пилот-сигнала (например, для спектрально профилированной системы OFDM), то могут выполняться экстраполяция и/или интерполяция согласно необходимости для получения оценок усиления канала для поддиапазонов пилот-сигнала без передачи пилот-сигнала. Также может выполняться фильтрация над векторами p, полученными для разных периодов OFDM символа, для улучшения качества начальной оценки частотной характеристики.

Оценка частотной характеристики для NF суммарных поддиапазонов может быть получена, базируясь на начальной оценке p частотной характеристики, используя различные технологии. Для технологии оценивания канала по наименьшим квадратам оценка импульсной характеристики по наименьшим квадратам для беспроводного канала сначала получается следующим образом:

где - это NP×NP DFT матрица для NP поддиапазонов пилот-сигнала; и

- это NP×1 вектор для оценки импульсной характеристики наименьших квадратов.

Уравнение (7) показывает, что максимальное количество ответвлений канала, которые могут быть оценены, ограничено количеством поддиапазонов пилот-сигнала (т.е. Ntap=NP).

Вектор может быть подвергнут последующей обработке, например, посредством установки ответвлений со значениями меньшими, чем заданный порог, на ноль, установки ответвлений для канала избытка на ноль, и так далее, как описано ниже. Вектор затем заполняется нулями до длины NF. Заполненный нулями вектор преобразуется с помощью NF-точечного FFT для получения вектора для конечной оценки частотной характеристики следующим образом:

где =[(1) (2)... (NF)]T.

Фиг.4A показывает типичную импульсную характеристику 410 для беспроводного канала. Импульсная характеристика 410 канала включает в себя (1) Ncp ответвлений с индексами 1 по Ncp для главного канала и (2) L ответвлений с индексами Ncp+1 по Ncp+L для канала избытка. L - это промежуток времени или длина канала избытка, и она больше чем нуль, когда присутствует избыточный разброс задержки. Каждое ответвление имеет комплексное усиление hi, которое, в общем, может быть ненулевым или нулевым значением.

Фиг.4B показывает импульсную характеристику 420 для результативного канала для беспроводного канала на фиг.4A. Импульсная характеристика 420 канала включает в себя все ответвления импульсной характеристики 410 канала. Однако каждое из L ответвлений для канала избытка масштабируется с помощью масштабирующего коэффициента, равного =(1-Ni/NF), где Ni - это избыток для ответвления и Ni=1... L. Промежуток времени результативного канала равен промежутку времени беспроводного канала и больше, чем длина циклического префикса в присутствии избыточного разброса задержки. Частотная характеристика для беспроводного канала может быть получена посредством выполнения FFT над импульсной характеристикой 420 для результативного канала.

Импульсная характеристика канала для результативного канала может быть оценена, базируясь на принятых символах пилот-сигнала, как показано в уравнениях (6) и (7). На точность оценки импульсной характеристики канала влияет количество поддиапазонов пилот-сигнала.

Для критически дискретизированной системы OFDM количество поддиапазонов пилот-сигнала равно длине циклического префикса (т.е. NP=Ncp). Так как количество поддиапазонов пилот-сигнала определяет максимальный промежуток времени, который может быть оценен для импульсной характеристики канала, вплоть до Ncp ответвлений канала для индексов от 1 до Ncp могут быть оценены для критически дискретизированной системы.

Фиг.4C показывает импульсную характеристику 430 для оцененного канала для критически дискретизированной системы OFDM с избыточным разбросом задержки. Промежуток времени результативного канала больше, чем длина циклического префикса, когда присутствует избыточный разброс задержки. В этом случае ответвления канала избытка с индексами Ncp+1 по Ncp+L не могут быть оценены, так как существует недостаточное количество степеней свободы для критически дискретизированной системы OFDM. Более того, импульсная характеристика канала для беспроводного канала недостаточно дискретизирована в частотной области NP поддиапазонами пилот-сигнала. Это тогда вызывает эффект циклического перехода канала избытка во временной области, так что ответвление канала избытка с индексом Ncp+1 появляется на индексе 1, ответвление канала избытка с индексом Ncp+2 появляется на индексе 2 и так далее. Каждое ответвление канала избытка циклического перехода вызывает ошибку в оценке соответствующего ответвления главного канала.

Если FFT выполняется над импульсной характеристикой 430 канала, то результирующая оценка частотной характеристики для каждого поддиапазона может быть выражена как:

где H(k) - это фактическое усиление канала для поддиапазона k;

cs(k) - это оценка усиления канала для поддиапазона k с критической дискретизацией; и

Herr(k) - это ошибка в оценке усиления канала для поддиапазона k.

Для простоты, ошибка усиления канала вследствие другого шума в уравнении (9) не показана.

Ошибка Herr(k) усиления канала может быть выражена как:

где Hex(k) - это комплексное усиление для поддиапазона k вследствие канала избытка, которое может быть получено посредством выполнения FFT над ответвлениями канала избытка. Ошибка усиления канала Herr(k) может быть разложена на четыре части. Коэффициент 2, сразу справа от знака равенства в уравнении (10), отражает два источника ошибки усиления канала: (1) неспособность дискретизировать канал избытка и (2) циклический переход канала избытка на главный канал. Член синуса соответствует синусоиде, имеющей частоту, определенную отношением Ncp к NF. Полная мощность шума для ошибок усиления канала для всех поддиапазонов может быть выражена как:

Отношение сигнала к шуму и помехам (SNR) для каждого поддиапазона может быть выражено как:

где N0 - это шум канала (который включает в себя тепловой шум, помехи от других источников, шум приемника и так далее), и - это 2-норма импульсной характеристики результативного канала. Как показано в уравнении (12), ошибка оценивания канала, ISI и мощность шума ICI - все масштабируются посредством мощности ES сигнала. Эти три шумовых члена, таким образом, проявляются в качестве минимального уровня шума для SNR. Минимальный уровень шума вследствие ошибки оценивания канала, ISI и мощностей ICI шума может игнорироваться, если они меньше, чем шум N0 канала. Однако этот минимальный уровень шума может ограничивать производительность системы, если эти мощности шума больше, чем шум N0 канала. Мощность шума ошибки оценивания канала может превосходить мощности ISI и ICI шума, если ответвления канала избытка содержат значительную часть (например, 10% или более) суммарной энергии канала.

Чтобы ослабить вредные эффекты избыточного разброса задержки в ошибке оценивания канала и SNR, количество поддиапазонов пилот-сигнала может быть увеличено. Для передискретизированной системы OFDM "эффективное" количество поддиапазонов пилот-сигнала (которое является количеством разных поддиапазонов пилот-сигнала, используемых для оценивания канала) больше, чем длина циклического префикса (т.е. NPeff>Ncp). Если NPeff является достаточно большим, так что импульсная характеристика беспроводного канала (включающего в себя канал избытка) не превосходит NPeff ответвлений, то достаточное количество степеней свободы доступно для оценки всех ответвлений для беспроводного канала в присутствии избыточного разброса задержки.

С помощью различных средств могут быть получены дополнительные поддиапазоны пилот-сигнала для передискретизации. В одной схеме передачи пилот-сигнала NPeff=NP>Ncp, и символы пилот-сигнала передаются по всем NP поддиапазонам пилот-сигнала в каждом периоде OFDM символа. Чтобы упростить вычисление, NP может выбираться равным степени двух (например, NP=2Ncp), и NP поддиапазонов пилот-сигнала могут быть равномерно распределены по NF суммарным поддиапазонам. Для этой схемы передачи пилот-сигнала будет доступно меньшее количество поддиапазонов для передачи данных.

Фиг. 5 показывает схему 500 смещенной передачи пилот-сигнала, которая может использоваться для увеличения эффективного количества поддиапазонов пилот-сигнала без увеличения служебной информации пилот-сигнала. Для схемы 500 NP=Ncp поддиапазонов пилот-сигнала используются для каждого периода OFDM символа. Однако Ncp поддиапазонов пилот-сигнала для нечетных периодов OFDM символа смещены или сдвинуты от Ncp поддиапазонов пилот-сигнала для четных периодов OFDM символа на NF/2Ncp поддиапазонов. Схема 500 использует два разных набора Ncp поддиапазонов пилот-сигнала, которые соответствуют коэффициенту повторения, равному двум. Эффективное количество поддиапазонов пилот-сигнала равно, таким образом, NPeff=2NP=2Ncp. Чтобы упростить вычисление, Ncp поддиапазонов пилот-сигнала для каждого OFDM символа могут равномерно распределяться по NF суммарным поддиапазонам.

Фиг.6 показывает процесс 600 для вывода полной оценки импульсной характеристики канала длины NPeff=2Ncp для беспроводного канала, базирующийся на схеме 500 передачи пилот-сигнала. Начальная оценка p0 частотной характеристики получается, базируясь на принятых символах пилот-сигнала для первого набора Ncp поддиапазонов пилот-сигнала, используемых в периоде n OFDM символа, как показано в уравнении (6) (этап 612). Начальная оценка p1 частотной характеристики также получается, базируясь на принятых символах пилот-сигнала для второго набора Ncp поддиапазонов пилот-сигнала, используемых в периоде n+1 OFDM символа (этап 614). Ncp-точечное IFFT выполняется над p0 для получения оценки 0 импульсной характеристики канала с Ncp ответвлениями (этап 616). Ncp-точечное IFFT также выполняется над p1 для получения другой оценки 1 импульсной характеристики канала с Ncp ответвлениями (этап 618). Для схемы 500 с повторением, равным двум, вектор 0 повторяется для получения вектора 0 длины NPeff=2Ncp (этап 620). Вектор 1 также повторяется, но дополнительно регулируется по фазе для получения вектора 1 длины NPeff (также этап 620). Векторы 0 и 1 затем комбинируются (например, фильтрацией) для получения полной оценки импульсной характеристики канала с NPeff ответвлениями (этап 622). Вектор может дополнительно обрабатываться (например, для подавления шума) и заполняться нулями для получения вектора длины NF (этап 624). NF-точечное FFT затем выполняется над вектором для получения конечной оценки частотной характеристики для NF поддиапазонов, как показано в уравнении (8) (этап 626).

Фиг.6 показывает вариант осуществления, в силу которого оценки канала для двух наборов поддиапазонов пилот-сигнала комбинируются во временной области. Это достигается посредством (1) вывода начальной оценки импульсной характеристики канала для начальной оценки частотной характеристики для каждого набора поддиапазонов пилот-сигнала (этапы 616 и 618) и (2) комбинирования начальных оценок импульсной характеристики канала для двух наборов поддиапазонов пилот-сигнала для получения полной оценки импульсной характеристики канала (этап 622). Начальные оценки частотной характеристики канала для двух наборов поддиапазонов пилот-сигнала также могут комбинироваться в частотной области для получения промежуточной оценки частотной характеристики, которая затем может использоваться для вывода полной оценки импульсной характеристики канала.

Фиг.7 показывает вывод полной оценки импульсной характеристики канала с NPeff=2Ncp ответвлениями, базирующийся на схеме 500 смещенной передачи пилот-сигнала. Вектор 0 представляет оценку импульсной характеристики канала с Ncp ответвлениями и включает в себя (1) характеристику 712 для главного канала и (2) характеристику 714 для канала избытка циклического перехода, который обусловлен недостаточной дискретизацией в частотной области с Ncp поддиапазонами пилот-сигнала. Вектор 0 повторяется для получения вектора 0=[00]T. Вектор 1 аналогично включает в себя характеристику 722 для главного канала и характеристику 724 для канала избытка циклического перехода. Вектор 1 также повторяется, причем повторяемый экземпляр инвертируется для получения вектора 1=[1 -1]T. Вектор может быть получен посредством сложения векторов 0 и 1, как показано на фиг.7. Вектор такж