Применение производных птеридина для лечения повышенного внутричерепного давления, вторичной ишемии и заболеваний, связанных с повышенным уровнем цитотоксических реакционноспособных соединений кислорода

Иллюстрации

Показать все

Изобретение относится к области медицины и фармацевтики и касается применения соединения общей формулы 1a, 1b для получения фармацевтической композиции для лечения повышенного внутричерепного давления и вторичного повреждения головного мозга. Изобретение позволяет реализовать указанное назначение. 4 н. и 9 з.п. ф-лы, 3 ил., 4 табл.

Реферат

Область техники

Настоящее изобретение относится к применению производных птеридина для лечения повышенного внутричерепного давления и/или вторичной ишемии. В частности, эти производные птеридина предложены для эффективного лечения повышенного внутричерепного давления, вызванного закрытой черепно-мозговой травмой (ЧМТ). Изобретение также относится к применению производных птеридина для лечения расстройства, связанного с повышенным уровнем цитотоксических реакционно-способных соединений кислорода.

Уровень техники

Травматическое повреждение головного мозга (ТПГМ) остается важной проблемой здравоохранения в глобальном масштабе. В США среди населения, обратившихся в больницы, распространенность закрытых черепно-мозговых травм составляет примерно 200 на 10000 человек, а распространенность проникающего повреждения головы составляет примерно 12 на 10000 человек. Это дает примерно 500000 новых случаев ежегодно, значительная доля которых сопровождается довольно длительной нетрудоспособностью.

С диагностической точки зрения различают открытые и закрытые ЧМТ. Открытой ЧМТ считают повреждение, при котором мозговые оболочки (Dura mater) подвергаются механическому разрушению, и головной мозг находится в контакте с окружающей средой через это отверстие. Часто открытая ЧМТ связана с выходом ликвора и продуктов разрушения ткани головного мозга. При закрытой ЧМТ свод черепа остается неповрежденным, и первичное повреждение головного мозга (травма) характеризуется местными поражениями, такими как контузии или гематомы, и/или диффузным повреждением ткани головного мозга. Это первичное повреждение головного мозга вместе с возможным угнетением сердечно-сосудистой и дыхательной системы сопровождается вторичными повреждениями, в частности некрозом, апоптозом, отеком (сосудистого и/или клеточного происхождения), вторичным кровотечением, изменениями объема циркулирующей крови головного мозга, нарушенной саморегуляцией кровообращения головного мозга и ишемией. Отек, кровотечение и увеличение объема циркулирующей крови головного мозга как процессы, требующие пространства, приводят к повышению внутричерепного давления в связи с отсутствием компенсации объема вследствие того, что свод черепа не поврежден. Это повышение внутричерепного давления (ПВД) может, в свою очередь, приводить в результате к возможному острому угнетению дыхания и поэтому само по себе представляет угрозу для жизни. Кроме того, повышение внутричерепного давления может также приводить к последующим вторичным повреждениям головного мозга, таким как разрушение аксонов и дендритов нервных клеток вследствие сдвигающих усилий в результате ПВД и, следовательно, к необратимым перманентным расстройствам функции головного мозга сенсорного, моторного и умственного типа.

Вплоть до настоящего времени неизвестны лекарства, которые можно применять для снижения внутричерепного давления или для уменьшения вредных эффектов, связанных с повышением внутричерепного давления. Фармацевтические подходы, которые описаны в связи с черепно-мозговыми травмами, относятся исключительно к предупреждению гибели клеток, в частности, гибели нейронов, которая встречается как вторичное повреждение головного мозга.

Например, в патенте США 5409935 описано применение производных ксантина для лечения вторичного повреждения нервных клеток и функциональных расстройств после черепно-мозговых травм посредством ингибирования образования свободных радикалов, повреждающих клетки. В этом патенте США раскрыты производные ксантина, которые осуществляют эффективное ингибирование образования свободных радикалов в периферических макрофагах и в культурах активированных клеток микроглии головного мозга, то есть именно в тех двух типах клеток, активацию которых наблюдали при множестве нейропатологических процессов, которые сопровождаются гибелью мозговой ткани в процессе посттравматического повреждения головного мозга.

В немецких выложенных патентных заявках 19740785 и 19754573, а также в заявке РСТ WO 99/29346 раскрыто комбинированное применение антагонистов рецепторов 5-HT1A и антагонистов кальциевых каналов для лечения апоплексии головного мозга и черепно-мозговой травмы. Благодаря этому подходу защитный эффект антагонистов рецепторов 5-HT1A, таких как дигидропиридины, и антагонистов кальциевых каналов, таких как 2-аминометилхроманы, которые блокируют кальциевые каналы L-типа нейронов, улучшен согласно этим публикациям. В WO 02/069972 раскрыты соединения, представляющие собой триазолы, которые также указаны как специфичные антагонисты рецептора 5-HT1A и, следовательно, полезны при профилактике и терапии нейродегенеративных заболеваний, травмы головного мозга и ишемии головного мозга.

В патентах США 6469054 и 6462074 соответственно раскрыты арилсульфонамиды и замещенные альфа, бета-аннелированные бутиролактоны, которые должны быть направлены на рецептор СВ1, чтобы быть эффективными для лечения повреждения нейронов, вызванного различными причинами, например, ишемией головного мозга, спазмами сосудов головного мозга или атеросклеротическими изменениями.

Кроме того, в патенте США 6448270 раскрыты аналоги 4-замещенного пиперидина, включая гидроксипиперидин и тетрагидропиридин, которые указаны как избирательно активные в качестве антагонистов подтипов рецепторов N-метил-D-аспартата (NDMA). Согласно патенту США 6448270 эти соединения ингибируют экситотоксическое действие стимулирующих глутаматных и аспартатных аминокислот на N-метил-D-аспартатном рецепторе (NDMA), причем это экситотоксическое действие считают ответственным за повреждение нейронов при цереброваскулярных расстройствах, которые являются результатом состояний, таких как спазмы сосудов головного мозга, гипогликемия или травма головного мозга.

Однако, как упомянуто выше, еще не было предпринято попыток, чтобы преодолеть повышение внутричерепного давления фармакологически. Вплоть до настоящего времени это повышение можно лишь предупреждать либо путем хирургического вскрытия свода черепа пораженного пациента, чтобы обеспечить компенсацию объема путем хирургического дренажа желудочков, либо путем применения осмотерапевтических агентов, таких как маннит или сорбит. Эти осмотерапевтические агенты инфузируют в кровоток, где они обеспечивают разность осмотического давления между кровотоком и участком внутричерепной паренхимы. Этот градиент приводит к снижению внутричерепного давления (см., например, McGraw CP, Alexander E Jr, Howard G Surg Neurol 1978, Aug. 10 (2): 127-30 или McGraw CP, Howard G., Neurosurgery 1983 Sep. 13 (3): 269-71).

Однако оба способа страдают серьезными недостатками. Вскрытие свода черепа является тяжелым хирургическим вмешательством, которое может иметь очевидный риск для жизни, особенно для пациентов с тяжелыми закрытыми ЧМТ, повышает риск серьезных бактериальных инфекций и требует специальных мер для предупреждения сепсиса. Кроме того, эта операция требует послеоперационного лечения специально подготовленным персоналом, так что ее проводят только в избранных клиниках.

Введение осмотерапевтических агентов дает только кратковременный преходящий эффект, за которым следует новое последующее повышение внутричерепного давления, которое иногда наблюдается уже через 10-15 минут после введения. Осмотерапевтический подход дополнительно осложнен тем фактом, что первоначальное применяемое количество осмолита, например, маннита, сильно влияет на размер последующих доз осмолита. Первоначальное введение большего количества осмолита, чем абсолютно необходимо, будет приводить к большим дозам, требующимся для борьбы с ПВД. Следовательно, должна поддерживаться самая низкая возможная первоначальная доза, которая ограничивает осмотерапевтический подход. И, поскольку разность осмотического давления крови и головного мозга становится меньше при каждом применении, осмотерапевтические агенты обычно можно вводить только два или три раза. Наконец, это неоперативное лечение несет риск ишемии головного мозга и эффектов рецидива внутричерепного давления. Кроме того, считают, что это лечение повреждает целостность гематоэнцефалического барьера и вызывает вторичное воспаление головного мозга вследствие инфильтрации мозговой паренхимы кровяными элементами.

Раскрытие изобретения

Задачей изобретения является создание лекарства, которое снижает внутричерепное давление, вызванное травматическим повреждением головного мозга, и которое облегчает патофизиологические состояния, связанные с повышенным внутричерепным давлением.

Эта задача решена посредством применения производного птеридина одной из общих формул (Ia)-(Ie). Известно, что соединения формул (Ia)-(Ie) являются ингибиторами синтазы оксида азота (NO) (см., например, патент США 5902810; WO 95/31987; WO 95/32203; WO 01/21619 или патент США 5922713).

На молекулярном уровне настоящее изобретение основано на открытии, что способность соединений согласно формулам (Ia)-(Ie) быть ингибиторами синтаз оксида азота (NO) можно использовать для ингибирования продуцирования NO преимущественно в областях повышенной активности NO, в частности, активности эндотелиальной синтазы NO (e-NOS), которая повышенно активирована в участке травмы.

Таким путем предупреждается вазодилататорный эффект NO в отношении церебральных кровеносных сосудов. В случае черепно-мозговой травмы это приводит к такому эффекту, что кровеносные сосуды головного мозга не набухают, а наоборот сохраняют постоянный объем или даже снова сужаются, посредством чего уже развившаяся дилатация может быть частично преодолена. Соответственно, создается дополнительное внутричерепное пространство, которое может быть заполнено поврежденной мозговой тканью, что сопровождается снижением (при повышении) внутричерепного давления. К удивлению авторов изобретения некоторые из соединений птеридина, применяемые в настоящем изобретении, обладают только небольшой или совсем не обладают тенденцией к пересечению гематоэнцефалического барьера. Это свойство в сочетании со специфичностью к синтазам NO дает возможность вводить соединения формул (Ia)-(Ie) в высоких дозах, что делает их идеальными кандидатами для применения в критических ситуациях и, следовательно, для снижения критически повышенного внутричерепного давления, которое обычно встречается после закрытой черепно-мозговой травмы или нетравматического повреждения головного мозга. С другой стороны, в результате отдаленного эффекта закрытой черепно-мозговой травмы или нетравматического повреждения головного мозга обычно гематоэнцефалический барьер становится проницаемым. Это, в свою очередь, дает возможность производным птеридина, применяемым в настоящем изобретении, проходить (проникать через) гематоэнцефалический барьер и направленно действовать на синтазы NO (нейронные NOS, индуцибельные NOS, митохондриальные NOS), в частности, экспрессируемые в паренхиме головного мозга. Следовательно, благодаря применению производных птеридина, описанных здесь, можно бороться с вторичным повреждением головного мозга, таким как воспалительные процессы, острая гибель клеток посредством некроза и апоптоза и образование отека (см. фиг.1).

Таким образом, соединения, раскрытые в настоящем изобретении, полезны для лечения повышенного внутричерепного давления, в частности, повышенного внутричерепного давления, которое вызвано закрытой черепно-мозговой травмой. В частности, эти соединения можно вводить в случае критически повышенного внутричерепного давления, а также вторичной ишемии. Применение соединений формул (Ia)-(Ie) для лечения повышенного внутричерепного давления, которое вызвано нетравматическим повреждением головного мозга, например, ударом или повреждением холодом, также является объектом настоящего изобретения.

Кроме того, известно, что тетрагидробиоптерин нестабилен при физиологическом рН и склонен к разрушению в кислородсодержащих растворах. Потеря связанного с ферментом тетрагидробиоптеринового кофактора приводит к мономеризации и инактивации NOS. Хотя механизм, лежащий в основе стабилизации тетрагидробиоптерином димерного комплекса NOS, неясен и кажется специфичным для изоформы, тетрагидробиоптерин может действовать в качестве молекулярного "зажима" для предотвращения диссоциации субъединиц NOS (см. Crane et al., (1998) Science 279: 2121-2126). Очевидно, тетрагидробиоптерин индуцирует большое конформационное изменение при связывании с оксигеназным доменом NOS. Нарушение структуры (диссоциация) NO-синтазы может происходить, когда ее кофактор тетрагидробиоптерин окислен или снижено его количество, и показано, что нарушение структуры NO-синтазы происходит в головном мозге после ТПГМ и подобных патофизиологии, таких как ишемия головного мозга. Этот механизм также является важным при эндотелиальной дисфункции и связанных с ней заболеваниях.

Как превращение аргинина в N-гидрокси-L-аргинин (NHA), так и превращение NHA в L-цитруллин и NO зависят от присутствия тетрагидробиоптерина. В отсутствие достаточного количества тетрагидробиоптерина NOS будет переключаться с синтеза NO на образование супероксидного аниона (Knowles, R.G. and Moncada, S. (1994) Biochem. J. 298: 249-258; Pou. S. et al., (1992) J. Biol. Chem. 267: 24173-24176), последовательно приводящее к сокращению количества NO и аккумуляции оксидантов (Bookman, J.S. et al., Methods of Enzymology, Vol.233, Part С: Oxygen Radicals in Biological Systems. L. Packer (Ed.), Academic Press, Inc., San Diego, CA 229-240), что вызывает дальнейшее нарушение структуры NOS. Этот цикл приводит к выделению реакционно-способных соединений кислорода (ROS), таких как супероксид.

Супероксид, основной продукт NOS с нарушенной структурой, быстро взаимодействует с NO с образованием даже более высоко цитотоксического и стабильного пероксинитрита, который, вероятно, ответственен за большинство клеточных повреждений, которые происходят в поврежденном головном мозге. Это взаимодействие происходит даже быстрее, чем взаимодействие супероксидного аниона с супероксиддисмутазой с образованием пероксида водорода и О2. Любой продуцируемый пероксинитрит при протонировании образует надазотистую кислоту, которая обычно претерпевает изомеризацию с образованием катиона водорода и аниона нитрата. Кроме того, надазотистая кислота может претерпевать гомолиз до свободного гидроксильного радикала и свободного радикала диоксида азота или гетеролиз до катиона нитрония и аниона гидроксида. Три из этих продуктов расщепления (свободный гидроксильный радикал, катион нитрония и свободный радикал оксида азота) входят в число наиболее реакционно-способных и разрушительных соединений в биологических системах.

Катализируемое NOS образование супероксидного аниона и его последующее превращение в продукты расщепления надазотистой кислоты или его дисмутация в пероксид водорода и свободный гидроксильный радикал играет центральную роль в эндотелиальной дисфункции и окислительном повреждении кровеносных сосудов, описанном при ряде сосудистых заболеваний.

В дополнение к их способности ингибировать образование NO NO-синтазами птеридины формул (Ia)-(Ie) могут ингибировать продуцирование NO-синтазой с нарушенной структурой цитотоксических реакционно-способных соединений кислорода, таких как супероксид. Птеридины формул (Ia)-(Ie) действуют как антагонисты эндогенного тетрагидробиоптерина. Подобно тетрагидробиоптерину они обладают способностью стабилизировать гомодимеры NOS, но, в противоположность эндогенному кофактору, они ингибируют образование NO. С другой стороны, посредством стабилизации димерной структуры фермента птеридины также ингибируют нарушение структуры NO-синтазы, а следовательно, продуцирование цитотоксического пероксинитрита. Этот двойной механизм действия приводит к полезным эффектам этих соединений как на сосудистом, так и на клеточном уровне.

Соединения, раскрытые в настоящем изобретении, таким образом, не только полезны для лечения повышенного внутричерепного давления, в частности, повышенного внутричерепного давления, которое вызвано закрытой черепно-мозговой травмой. Также их можно применять при лечении других расстройств, которые связаны с повышенным уровнем цитотоксических реакционно-способных соединений кислорода, продуцируемых NO-синтазой с нарушенной структурой. Соответственно, применение соединений формул (Ia)-(Ie) для лечения повышенного внутричерепного давления, которое вызвано нетравматическим повреждением головного мозга, например, ударом или повреждением холодом, и для облегчения окислительного стресса, порожденного NO-синтазой с нарушенной структурой, также рассматривается в настоящем изобретении.

В соединениях формул (Ia)-(Ie), используемых в настоящем изобретении, применяют приведенные ниже определения, если не указано иное.

Если группы заместителей встречаются более одного раза в соединениях приведенных ниже формул (Ia)-(Ie), они могут все, независимо друг от друга, иметь указанные значения и могут быть в каждом случае одинаковыми или различными.

Алкильные радикалы в соединениях, используемых в настоящем изобретении, могут быть прямыми или разветвленными. Это также применимо, если они присутствуют в разных группах, например, в алкоксигруппах, алкоксикарбонильных группах или в аминогруппах, либо если они замещены. Алкильные радикалы как правило содержат от одного до двенадцати атомов углерода, предпочтительно от одного до десяти атомов углерода. Примерами алкильных групп являются метил, этил, пропил, бутил, пентил, гексил, гептил, октил, нонил, децил, н-изомеры этих радикалов, изопропил, изобутил, изопентил, втор-бутил, трет-бутил, неопентил, 3,3-диметилбутил.

Примерами алкенильных радикалов являются прямые или разветвленные углеводородные радикалы, которые содержат одну или более чем одну двойную связь. Алкенильные радикалы как правило содержат от двух до двенадцати атомов углерода и одну или две двойные связи, предпочтительно от двух до десяти атомов углерода и одну двойную связь.

Примерами алкинильных радикалов являются прямые или разветвленные углеводородные радикалы, которые содержат одну или более чем одну тройную связь. Алкинильные радикалы как правило содержат от двух до двенадцати атомов углерода и одну или две тройные связи, предпочтительно от двух до десяти атомов углерода и одну тройную связь.

Примерами алкенильных радикалов являются виниловый радикал, 2-пропениловый радикал (аллиловый радикал), 2-бутениловый радикал и 2-метил-2-пропениловый радикал.

Примерами алкинильных радикалов являются этиниловый радикал, 2-пропиниловый радикал (пропаргиловый радикал) или 3-бутиниловый радикал.

Циклоалкильные радикалы представляют собой насыщенные циклические углеводороды, которые как правило содержат от трех до восьми кольцевых атомов углерода, предпочтительно пять или шесть кольцевых атомов углерода. Цикпоалкильные радикалы могут, в свою очередь, быть замещенными.

Примерами циклоалкильных радикалов являются циклопропил, цикпобутил, циклопентил, циклогексил, циклогептил и циклооктил, все из которых могут быть также замещены, например, одним или более чем одним из одинаковых или различных (С14)-алкильных радикалов, в частности, метилом. Примерами таких замещенных циклоалкильных радикалов являются 4-метилциклогексил или 2,3-диметилциклогексил.

Циклоалкенильные радикалы представляют собой ненасыщенные циклические углеводороды, которые как правило содержат от трех до восьми кольцевых атомов углерода, предпочтительно пять или шесть кольцевых атомов углерода. Циклоалкенильны радикалы предпочтительно имеют двойную связь в кольцевой системе. Циклоалкенильные радикалы могут, в свою очередь, быть замещенными.

Циклоалкилалкильные радикалы представляют собой насыщенные углеводороды, которые образованы алкильной группой, замещенной циклоалкильной группой. Циклоалкильная группа как правило имеет от пяти до шести кольцевых атомов углерода. Примерами цикпоалкилалкильных радикалов являются циклопентилметил, циклопентилэтил, циклогексилэтил и, в частности, циклогексилметил. Циклоалкилалкильные радикалы могут, в свою очередь, быть замещенными.

Арил представляет собой карбоциклический или гетероциклический ароматический радикал, предпочтительно фенил, нафтил или гетероарил. Арильные радикалы могут быть незамещенными или замещенными. Заместителями являются один или более чем один из одинаковых или различных одновалентных органических радикалов, выбранных из группы, включающей галоген, алкил, фенил, -ОН, -O-алкил, алкилендиокси, -NR8R9, -NO2, -СО-(С15)-алкил, -CF3, -CN, -CONR8R9, -СООН, -СО-O-(С15)-алкил, -S(O)n-(С15)-алкил, -SO2-NR8R9.

Алкиларил представляет собой алкил-замещенный арильный радикал, предпочтительно (С13)-алкиларил, в частности, метилфенил.

Арилалкил представляет собой арил-замещенный алкильный радикал, в частности, фенилметил или 2-фенилэтил.

Гетероарил или гетероциклический ароматический радикал предпочтительно представляет собой 5-7-членный ненасыщенный гетероцикл, который имеет один или более чем один гетероатом из группы О, N, S.

Примерами гетероарилов, из которых могут быть образованы радикалы, встречающиеся в соединениях формулы (I), являются пиррол, фуран, тиофен, имидазол, пиразол, 1,2,3-триазол, 1,2,4-триазол, 1,3-оксазол, 1,2-оксазол, 1,3-тиазол, 1,2-тиазол, тетразол, пиридин, пиридазин, пиримидин, пиразин, пиран, тиопиран, 1,4-диоксин, 1,2-оксазин, 1,3-оксазин, 1,4-оксазин, 1,2-тиазин, 1,3-тиазин, 1,4-тиазин, 1,2,3-триазин, 1,2,4-триазин, 1,3,5-триазин, 1,2,4,5-тетразин, азепин, 1,2-диазепин, 1,3-диазепин, 1,4-диазепин, 1,3-оксазепин или 1,3-тиазепин.

Радикалы, образованные их гетероциклов, могут быть связаны через любой подходящий атом углерода. Азотсодержащие гетероциклы, которые имеют атом водорода (или заместитель) на кольцевом атоме азота, например, пиррол, имидазол и т.д., могут также быть связаны через кольцевой атом азота, особенно если соответствующий азотсодержащий гетероцикл связан с атомом углерода. Тиениловый радикал может, например, находиться в форме 2-тиенилового или 3-тиенилового радикала, фурановый радикал может находиться в форме 2-фурилового радикала или 3-фурилового радикала, пиридиловый радикал - в форме 2-пиридилового радикала, 3-пиридилового радикала или 4-пиридилового радикала.

Галоген представляет собой фтор, хлор, бром или йод, предпочтительно фтор или хлор.

В предпочтительных воплощениях изобретения применение производных птеридина, имеющих незамещенную или замещенную аминогруппу, в 2- и/или 4-положении кольцевой системы является предпочтительным.

В одном из этих предпочтительных воплощений изобретение относится к применению производных птеридина формулы (Ia)

для лечения повышенного внутричерепного давления и/или вторичной ишемии, где в формуле (Ia) R1, R3 независимо выбраны из Н или ОН, R4 представляет собой Н, СН3, CH2OH, СНО, R2 представляет собой Н, СН3, СН2OH, СНО или низший C19алкильный радикал с прямой или разветвленной цепью, а также (CH(OH))n-Y или (CH(OH))n-(CH2)m-W, где Y представляет собой водород или низший алкил, W представляет собой водород или гидроксильную группу и n и m независимо друг от друга равны 1-20.

Соединения формулы (Ia) могут быть получены, как описано в патенте США 5922713 или в Wemer, Ernst R. et al, Biochem. J., Vol.320, Nov. 1996, 193-196. Кроме того, эти соединения также имеются в продаже и, например, могут быть получены от Schircks Laboratories, Jona, Switzerland.

В особенно предпочтительном воплощении соединений формулы (Ia) R1 и R4 (Ia) представляют собой водород, R2 представляет собой метил и R3 представляет собой гидроксил. Соединение, которое предпочтительно применяют в настоящем изобретении, представляет собой 2,4-диамино-5,6,7,8-тетрагидро-6-(L-эритро-1,2-дигидроксипропил)-птеридин.

В другом предпочтительном воплощении изобретение относится к применению 2,4-диамино-замещенных производных птеридина формулы (Ib)

для лечения повышенного внутричерепного давления и/или вторичной ишемии, где в формуле (Ib) R1, R2, R3 и R4 независимо выбраны из Н или ОН, R5 представляет собой Н, СН3, СН2OH, СНО или низший C1-C9алкильный радикал, который может представлять собой нормальную или разветвленную цепь, а также (CH(OH))n-Y или (CH(OH))n-(CH2)m-W, где Y представляет собой водород или низший алкильный радикал, W представляет собой водород или гидроксильную группу и n и m независимо друг от друга равны 1-20.

В предпочтительном соединении формулы (Ib) R5 представляет собой метил, R3 представляет собой водород, R2 и R4 оба представляют собой водород и R1 представляет собой либо водород, либо гидроксил. Соединения формулы (Ib) могут быть получены, как описано в ЕР 0906913.

В следующем воплощении настоящее изобретение относится к применению производных 4-аминоптеридина общей формулы (Ic)

для лечения повышенного внутричерепного давления и/или вторичной ишемии, где в формуле (Ic)

А представляет собой мостиковое звено формы

или

R1 представляет собой водород, (C120)алкил, (С120)-алкенил, (C120)-алкинил, предпочтительно (С110)-алкил, циклоалкил, циклоалкенил, предпочтительно (С38)-циклоалкил, циклоалкилалкил, арил, алкиларил, предпочтительно (С13)-алкиларил или арилалкил, где органические радикалы, предпочтительно алкильные радикалы, могут быть замещены одним или более чем одним заместителем, предпочтительно заместителем R6,

R2 независимо от R1 представляет собой водород, (С120)-алкил, (С120)-алкенил, (С120)-алкинил, предпочтительно (С110)-алкил, циклоалкил, циклоалкенил, предпочтительно (С38)-циклоалкил, циклоалкилалкил, арил, алкиларил, предпочтительно (С13)-алкиларил или арилалкил, где органические радикалы, предпочтительно алкильные радикалы, могут быть замещены одним или более чем одним заместителем, предпочтительно заместителем R6,

R1 и R2 вместе с атомом азота, к которому они присоединены, образует 3-8-членное кольцо, которое может содержать 0, 1 или 2 дополнительных гетероатома из группы N, О, S и которое может быть замещено одним или более чем одним радикалом, предпочтительно радикалом R6,

R3 представляет собой водород, -СО-алкил, предпочтительно -CO-(C1-C7)-алкил, -СО-алкиларил, более предпочтительно -СО-(С13)-алкиларил или -СО-арил,

R4 представляет собой алкил, алкенил, алкинил, предпочтительно (C110)-алкил, циклоалкил, циклоалкенил, предпочтительно (С38)-циклоалкил, циклоалкилалкил, арил или алкиларил, предпочтительно (С13)-алкиларил, арилалкил, -СО-O-алкил, предпочтительно -СО-O-(С15)-алкил, -СО-O-арил, -СО-алкил, предпочтительно -СО-(С15)-алкил или -СО-арил, где органические радикалы, предпочтительно алкильные радикалы, могут быть замещены одним или более чем одним заместителем, предпочтительно заместителем R7,

R5 независимо от R3 представляет собой водород, -СО-алкил, предпочтительно -СО-(С17)-алкил, -СО-алкиларил, предпочтительно -СО-(С13)-алкиларил или -СО-арил,

R6 представляет собой -F, -ОН, -O-(С110)-алкил, -O-фенил, -O-CO-(C1-C10)-алкил, -O-СО-арил, -NR8R9, оксо, фенил, -СО-(С16 )-алкил, -CF3, -CN, -CONR8R9, -СООН, -СО-O-(С15)-алкил, -СО-O-арил, -S(O)n-(С15)-алкил, -SO2-NR8R9,

R7 имеет независимо от R6 одно из значений R6,

R8 представляет собой водород или (С120)-алкил, предпочтительно (С15)-алкил,

R9 представляет собой водород, (С120)-алкил, предпочтительно (C1-C5)-алкил, или арил, предпочтительно фенил,

R10 представляет собой водород, (С120)-алкил, предпочтительно (С15)-алкил, алкокси или арил,

арил предпочтительно представляет собой фенил, нафтил или гетероарил, каждый из которых может быть незамещенным или замещенным, например, может быть замещен одним или более чем одним из одинаковых или различных заместителей из группы, включающей галоген, (С120)-алкил, предпочтительно (С15)-алкил или фенил, -ОН, -O-(С120)-алкил, предпочтительно -O-(С15)-алкил, (C120)-алкилендиокси, предпочтительно (С12)-алкилендиокси, -NR8R9, -NO2, -CO-(C15)-алкил, -CF3, -CN, -CONR8R9, -СООН, -СО-O-(С15)-алкил, -S(O)n-(С15)-алкил, -SO2-NR8R9,

гетероарил представляет собой 5-7-членный ненасыщенный гетероцикл, который содержит один или более чем один гетероатом из группы О, N, S.

n равно 0, 1 или 2,

во всех их стереоизомерных и таутомерных формах и их смесях во всех соотношениях, и их физиологически приемлемых солей, гидратов и эфиров. Соединения формулы (Ic) можно синтезировать, как описано в WO 01/21619 или в WO 00/39129. Производные 2,4-диаминоптеридина формулы (Ic) могут быть также получены способом, описанным в WO 97/21711, используя, например, 2,4,5,6-тетрааминопиримидин-дигидрохлорид в качестве исходного вещества, который подвергают взаимодействию с соответствующим производным оксимина согласно формуле (II) WO 97/21711.

В предпочтительных воплощениях формулы (Ic):

R1 предпочтительно представляет собой водород, (С24)-алкил, который может быть замещен одним или более чем одним заместителем R6, или (C1-C2)-алкиларил, и R1 особенно предпочтительно представляет собой арилметил,

R2 предпочтительно представляет собой (С24)-алкил, который может быть замещен одним или более чем одним заместителем R6, или (С12)-алкиларил, и R2 особенно предпочтительно представляет собой арилметил,

кроме того, R1 и R2 предпочтительно образуют вместе с атомом азота, к которому они присоединены, 5-7-членное кольцо, которое предпочтительно не содержит или содержит только один гетероатом из группы N, О, S. В частности, весьма предпочтительными кольцами данного типа являются пирролидин, пиперидин, морфолин, диметилморфолин, тиоморфолин или N-(C1-C2)-алкилпиперазин, где эти кольца сами по себе могут быть также замещены, например, -ОН, -O-(С13)-алкилом, -NR8R9 или -СООН.

R3 предпочтительно представляет собой водород, СО-(С13)-алкил или СО-арил, и, в частности, весьма предпочтительно R3 представляет собой водород.

R4 предпочтительно представляет собой арил, (С13)-алкил, который может быть замещен одним или более чем одним заместителем R7, или -СО-O-арил. Особенно предпочтительными радикалами R4 являются арил и 1,2-дигидроксипропил.

R5 предпочтительно представляет собой водород.

R6 предпочтительно представляет собой -ОН, -O-(С13)-алкил, -NR8R9 или -СООН.

R7 предпочтительно представляет собой -ОН, -O-(С110)-алкил, фенокси, оксо, особенно предпочтительно -ОН, децилокси и фенокси.

R10 предпочтительно представляет собой водород или метил.

арил предпочтительно представляет собой фенил, тиофенил, фурил и пиридил, причем фенил является особенно предпочтительным, все из которых могут быть замещены, как описано. Предпочтительными заместителями являются (С13)-алкил, галоген и (С13)-алкилокси и (С12)-алкилендиокси. Предпочтительное число заместителей на арильных радикалах составляет 0, 1 или 2; заместители фенила предпочтительно находятся в мета- или пара-положении, и в случае двух заместителей в положениях 3 и 4.

n предпочтительно равно 0 или 2.

Особенно предпочтительным является применение производных 5,6,7,8-тетрагидроптеридина формулы (Ic), в которых R1 и R2 оба представляют собой метил, этил, пропил, либо R1 и R2 образуют вместе с атомом азота, к которому они присоединены, 5- или 6-членное кольцо, которое предпочтительно не содержит или содержит только один другой гетероатом из группы N, О, S, и где R4 представляет собой бензил или тиофенил, который возможно замещен (С13)-алкилом, галогеном и (С13)-алкилокси и (С12)-алкилендиокси.

В следующем аспекте изобретение относится к применению соединений общей формулы (Id)

для лечения повышенного внутричерепного давления и/или вторичной ишемии, где в формуле (Id)

Х представляет собой О или NH;

R1 представляет собой водород, метил, (С15)-алканоил, никотиноил или (1-метил-3-пиридинио)карбонил;

R2 представляет собой водород или метил;

R3 представляет собой водород, метил, этил, бензил, (С15)-алканоил, незамещенный бензоил, замещенный бензоил, пиридоил, тиенилкарбонил, один из радикалов

, , или

радикал R9R9aN-CO-, радикал R9R9aN-CS-, феноксиккарбонил или бензилоксикарбонил;

R4 представляет собой водород, (С25)-алкил, незамещенный фенил, замещенный фенил или радикал R4a-CH2-;

R4a представляет собой водород, (С14)-алкилмеркапто, радикал -S(O)mR10, где m представляет собой число 1 или 2, радикал -NR11R12 или радикал -OR13, либо

R3 и R4a вместе представляют собой группу -СО-O-, карбонильный атом которой соединен с молекулой птеридина в 5-положении;

R5 представляет собой водород или фенил;

R6 представляет собой водород;

R7 представляет собой водород или метил;

R8 представляет собой (С110)-алкил или бензил;

R9 представляет собой водород, (С16)-алкил, циклогексил, фенил или бензоил;

R9a представляет собой водород, метил или этил;

R10 представляет собой метил;

R11 и R12 независимо друг от друга представляют собой водород или метил;

R13 представляет собой водород, (С110)-алкил, 2-метоксиэтил, фенил, 3-фенилпропил, 3-циклогексилпропил, (С15)-алканоил, гидроксиацетил, 2-амино-(С26)-алканоил, который является незамещенным или замещен в алкильной группировке фенильным радикалом, или ((С12)алкокси)карбонил;

А представляет собой физиологически приемлемый анион;

а также их таутомерных форм и их фармакологически приемлемых солей.

Предпочтительными соединениями формулы (Id) являются соединения, в которых Х=О, R1, R2, R5 и R6 представляют собой Н, R3 представляет собой Н, метил или этил и R4 представляет собой CH2NH2, CH2NHMe или CH2NMe2.

Еще в одном воплощении изобретение относится к применению соединений общей формулы (Ie)

для лечения повышенного внутричерепного давления и/или вторичной ишемии, где в формуле (Ie)

Х представляет собой О, NH или N-(С15)-алканоил;

R представляет собой водород и

R1 представляет собой водород или (С15)-алканоил, либо R и R1 вместе с атомом азота, к которому они присоединены, образуют диметиламинометиленаминовую группу;

R2 представляет собой водород, метил, фенил, гидроксил, метокси или амино;

R3 представляет собой радикал -OR4, -NR5R6 или -S(O)mR7, где m представляет собой числа 0, 1 или 2;

R4 представляет собой водород, (С110)-алкил, циклогексил, бензил, фенил, который является незамещенным или замещен хлором или радикалом -COR8, аминокарбонилметил, который является незамещенным или замещен на атоме азота одним или двумя одинаковыми или различными (С14)алкильными радикалами, 2-метоксиэтил, (2,2-диметил-1,3-диоксолан-4-