Способ производства электротехнической анизотропной стали с повышенной проницаемостью
Изобретение относится к черной металлургии и может использоваться при производстве электротехнической анизотропной (трансформаторной) стали. Для формирования дополнительной ингибиторной фазы способ включает выплавку стали, содержащей, мас.%: углерод не более 0,05, марганец 0,15-0,4, кремний 3,0-3,5, медь 0,4-0,6, алюминий 0,018-0,03, азот 0,008-0,012, железо и неизбежные примеси - остальное, при выполнении соотношения: алюминий/азот в пределах 2,3-3,5, непрерывную разливку стали, черновую и чистовую горячую прокатки, двухкратную холодную прокатку с промежуточным обезуглероживающим отжигом для удаления углерода, азотирование в интервале температур 700-850°С в атмосфере, содержащей диссоциированный аммиак, высокотемпературный и выпрямляющий отжиги. 1 табл.
Реферат
Предлагаемое изобретение относится к области черной металлургии, конкретнее к производству электротехнических сталей.
Известно, что магнитные свойства анизотропной электротехнической стали в значительной мере определяются степенью совершенства текстуры {110}<001> (ребровая текстура), формирующейся в ходе вторичной рекристаллизации. При переделе анизотропной стали необходимо выполнить ряд следующих условий, соблюдение которых позволит повысить совершенство текстуры:
1) стабилизация структуры матрицы включениями второй фазы (главным образом нитриды алюминия, сульфиды и селениды марганца или их комбинация);
2) преобладание в текстуре матрицы, легко поглощаемой октаэдрической ({111}<112>) компоненты текстуры;
3) наличие в текстуре матрицы достаточно острой ребровой компоненты, которая в ходе вторичной рекристаллизации интенсивно поглощает октаэдрическую.
При производстве высокопроницаемой стали для выполнения первого условия используют следующие два технологических направления:
1) создание оптимальной стабилизирующей фазы на первых этапах передела (выплавка, разливка, высокотемпературный нагрев слябов, горячая прокатка, отжиг горячекатаных рулонов) [1, 2];
2) азотирование металла в конечной толщине после (или в процессе) обезуглероживающего отжига [3, 4].
Второе условие в обоих случаях реализуется за счет холодной прокатки с высокой степенью деформации (85-90%) [5].
Для реализации третьего условия также в обоих случаях используется «теплая» (˜200°С) прокатка, обеспечивающая так называемое деформационное старение, а также модифицирование стали оловом.
Недостатком первого направления является необходимость высокотемпературного нагрева слябов. В процессе нагрева образуется «железная» окалина, которую необходимо непрерывно удалять, что обуславливает высокие трудовые, материальные и энергетические затраты.
Второе направление требует весьма точное сочетание параметров горячей прокатки, нормализации и термообработки в конечной толщине, что не всегда удается совместить. Небольшое отклонение параметров прокатки и термообработки от оптимума чревато ухудшением свойств стали вплоть до отбраковки части полос.
Предлагаемый в настоящей заявке вариант отличается от описанных тем, что он реализуется при двукратной холодной прокатке, не требует высокотемпературного нагрева слябов и деформационного старения, а также не требует «ювелирного» сочетания параметров прокатки и термообработки, т.е. характеризуется относительной простотой и стабильностью. Кроме того, в предлагаемом варианте отсутствует операция отжига горячекатаных полос, что значительно уменьшает затраты.
В качестве прототипа взят патент Японии [4], как наиболее близкое решение аналогичной технологической задачи. Стабилизация структуры частично осуществляется за счет нитридов алюминия, формирующихся при горячей прокатке, частично - образующихся при химико-термической обработке за счет азотирования в промежуточной или конечной толщине. Усиление октаэдрической компоненты в текстуре матрицы, равно как и обострение ребровой, осуществляется за счет введения в сталь меди (0,4-0,6 мас.%) и медленного нагрева металла в интервале температур возврата и первичной рекристаллизации (400-650°С).
Ниже в качестве примеров приведены результаты экспериментов, обосновывающих новизну и полезность настоящей заявки на патент.
Пример 1. Металл, содержащий 0,03 мас.% С, 0,17 мас.% Mn, 3,08 мас.% Si, 0,022 мас.% Al, 0,50 мас.% Cu и 0,008 мас.% N, выплавляли в кислородных конверторах и разливали на машинах непрерывного литья слябов. Слябы нагревали до температуры 1250°С и прокатывали на широкополосном стане горячей прокатки на толщину 2,5 мм. Температура завершения черновой прокатки составляла 1040-1050°С; чистовой прокатки 915-920°С; смотки полос 560-570°С. Далее металл подвергали травлению, первой холодной прокатке на толщину 0,7 мм, обезуглероживающему отжигу при температуре 850°С в увлажненной азотоводородной смеси, азотированию в атмосфере, содержащей диссоциированный аммиак, второй холодной прокатке на толщину 0,30 мм, нанесению термостойкого покрытия, высокотемпературному отжигу. Для сравнения часть металла не подвергали азотированию.
Из данных таблицы 1 следует, что введение в технологический цикл операции азотирования стали после завершения обезуглероживания способствует увеличению значений индукции с 1,86-1,87 Тл до 1,90-1,94 Тл, характерных для высокопроницаемой стали.
Таблица 1Сопоставление магнитных свойств стали, полученной по стандартной технологии и технологии с азотированием в промежуточной толщине | ||||
Вариант технологии | Номер испытания | Содержание азота после термообработки, % | Магнитные свойства | |
В800, Тл | P1,7/50, Вт/кг | |||
Стандартный (без азотирования) | 1 | 0,008 | 1,86 | 1,23 |
2 | 0,008 | 1,87 | 1,19 | |
С азотированием в промежуточной толщине | 1 | 0,011 | 1,90 | 1,10 |
2 | 0,015 | 1,92 | 1,05 | |
3 | 0,015 | 1,92 | 1,04 | |
4 | 0,017 | 1,94 | 1,00 | |
5 | 0,020 | 1,91 | 1,08 | |
6 | 0,026 | 1,90 | 1,11 |
Важно учесть, что эффективность азотирования реализуется только при переделе стали с умеренной степенью стабилизации структуры нитридными включениями, формирующимися при горячей прокатке.
При пониженной степени стабилизации структуры в процессе нагрева металла при высокотемпературном отжиге в интервале температур 700-950°С развивается собирательная рекристаллизация (до аномального роста зерна). Вторичная рекристаллизация происходит в условиях повышенной стабилизации структуры (увеличенный размер зерен матрицы и появление дополнительной ингибиторной фазы за счет азотирования), что способствует росту зерен с наиболее совершенной ребровой ориентировкой.
Из результатов исследований следует, что наилучшие магнитные свойства имеет сталь, которая характеризовалась отношением алюминия к азоту в интервале 2.3-3.5.
Таким образом, введение операции азотирования стали в промежуточной толщине в технологический цикл передела стали нитридного варианта позволяет получать высокопроницаемую сталь.
Источники информации
1. Европейский патент ЕР №219611, 1986 г.
2. Европейский патент ЕР №420238, 1990 г.
3. Европейский патент ЕР №339474, 1989 г.
4. Европейский патент ЕР №392534, 1990 г.
5. Европейский патент ЕР №566986, 1993 г.
Способ производства анизотропной электротехнической стали, включающий выплавку стали, содержащей углерод, кремний, марганец, алюминий, азот, медь, железо и неизбежные примеси, непрерывную разливку стали, горячую прокатку, двухкратную холодную прокатку с обезуглероживающим отжигом полосы, азотирование, нанесение термостойкого покрытия и высокотемпературный отжиг, отличающийся тем, что осуществляют выплавку стали, содержащей компоненты при следующем соотношении, мас.%:
углерод | не более 0,05 |
марганец | 0,15-0,4 |
кремний | 3,0-3,5 |
медь | 0,4-0,6 |
алюминий | 0,018-0,03 |
азот | 0,005-0,012 |
железо и неизбежные примеси | остальное, |
причем отношение алюминия к азоту устанавливают в пределах 2,3-3,5, а азотирование ведут в интервале температур 700-850°С в атмосфере, содержащей диссоциированный аммиак после обезуглероживающего отжига в промежуточной толщине полосы.