Регулирование мощности в системе беспроводной связи, использующей ортогональное мультиплексирование

Иллюстрации

Показать все

Изобретение относится к технике связи. Технический результат состоит в регулировании мощности для смягчения внутрисекторных помех для обслуживающей базовой станции и межсекторных помех для соседних базовых станций. Для этого величина внутрисекторных помех, которые может вызывать терминал, может быть примерно оценена на основе общих помех, обнаруживаемых каждой соседней базовой станцией, усилений канала для обслуживающей и соседних базовых станций и текущего уровня мощности передачи. Мощность передачи может понижаться, если соседней базовой станцией обнаруживается высокий уровень помех, и повышаться в противном случае. Мощность передачи может регулироваться на большую величину и более часто, если терминал находится ближе к соседней базовой станции, обнаруживающей высокий уровень помех, или если текущий уровень мощности передачи выше, и наоборот. Внутрисекторные помехи поддерживаются в рамках допустимого уровня посредством ограничения принимаемого SNR для терминала рамками диапазона разрешенных SNR. 12 н. и 55 з.п. ф-лы, 1 табл., 7 ил.

Реферат

Заявление о приоритете по 35 U.S.C. §119

Настоящая Заявка на патент притязает на приоритет Предварительной заявки № 60/580 819, озаглавленной "Reverse-Link Power Control Algorithm", зарегистрированной 18 июня 2004 года и назначенной правопреемнику этой заявки, и таким образом явно содержится в данном документе по ссылке.

Ссылка на находящиеся одновременно на рассмотрении Заявки на патент

Настоящая Заявка на патент связана со следующими находящимися одновременно на рассмотрении Заявками на патент (США): "Robust Erasure Detection and Erasure-Rate-Based Closed Loop Power Control" автора Arak Sutivong и других, выписка поверенного номер 040404U1, зарегистрированная 13 июля 2004 года, назначенной правопреемнику этой заявки и явно содержащейся в данном документе по ссылке.

Уровень техники

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к связи и, более конкретно, к методикам регулирования мощности в системе беспроводной связи.

Предшествующий уровень техники

Система беспроводной связи с множественным доступом может поддерживать одновременную связь для нескольких беспроводных терминалов. Каждый терминал обменивается данными с одной или более базовыми станциями посредством передач по линии прямой и обратной связи. Линия прямой связи (или нисходящая линия связи) относится к линии связи от базовых станций к терминалам, а линия обратной связи (или восходящая линия связи) относится к линии связи от терминалов к базовым станциям.

Несколько терминалов могут одновременно выполнять передачу по нисходящей линии связи посредством мультиплексирования своих передач, чтобы сделать их ортогональными по отношению друг к другу. Мультиплексирование ориентировано на достижение ортогональности нескольких передач по линии обратной связи во временной, частотной или кодовой области. Полная ортогональность, если достижима, приводит к передаче от каждого терминала без помех для передач от других терминалов в приемной базовой станции. Тем не менее полная ортогональность передач от различных терминалов зачастую не реализуется вследствие характеристик канала, недостатков приемного устройства и т.п. Потеря ортогональности приводит к определенной величине помех со стороны одного терминала для других терминалов, обменивающихся данными с той же базовой станцией. Более того, передачи от терминалов, обменивающихся данными с различными базовыми станциями, типично не являются ортогональными по отношению друг к другу. Таким образом, каждый терминал также может вызывать помехи для терминалов, обменивающихся данными с соседними базовыми станциями. В таком случае производительность каждого терминала снижается за счет помех от всех других терминалов в системе.

Следовательно, в данной области техники существует потребность в методиках смягчения эффектов от помех для достижения более высокой производительности.

Сущность изобретения

В этом документе описываются методики регулирования мощности передачи данных от беспроводного терминала способом, позволяющим смягчать "внутрисекторные" помехи и "межсекторные" помехи. Мощность передачи регулируется таким образом, чтобы величина внутрисекторных помех, которые может вызывать терминал для "обслуживающей" базовой станции, и величина межсекторных помех, которые может вызывать терминал для "соседних" базовых станций, поддерживалась на допустимом уровне. (Термины в кавычках поясняются ниже). Величина межсекторных помех, которые может вызывать терминал, приблизительно может быть оценена на основе (1) общих помех, обнаруживаемых каждой соседней базовой станцией, (2) усиления каналов для обслуживающей и соседних базовых станций, (3) текущего уровня мощности передачи, используемого терминалом, и (4), возможно, других параметров. Каждая базовая станция может выполнять широковещательную передачу отчета (к примеру, одного бита), указывающего общие помехи, обнаруженные этой базовой станцией. Усиление канала для каждой базовой станции может быть оценено на основе контрольного сигнала, принимаемого от базовой станции. Мощность передачи может регулироваться вероятностным методом, детерминистическим методом или каким-либо другим методом на основе вышеуказанных различных параметров.

В общем, мощность передачи может снижаться, если соседними базовыми станциями обнаружен высокий уровень помех, и повышаться, если обнаружен низкий уровень помех. Мощность передачи также может регулироваться на большую величину и/или более часто, если (1) терминал находится ближе к соседней базовой станции, обнаруживающей высокий уровень помех, и/или (2) текущий уровень мощности передачи выше. Мощность передачи может регулироваться на меньшую величину и/или менее часто, если (1) терминал находится ближе к обслуживающей базовой станции, и/или (2) текущий уровень мощности передачи ниже. Внутрисекторные помехи, вызываемые терминалом, поддерживаются в рамках допустимого уровня посредством ограничения качества принимаемых сигналов (SNR) для передачи данных диапазоном разрешенных значений SNR.

Далее подробно описаны различные аспекты и варианты осуществления изобретения.

Краткое описание чертежей

Признаки и характер настоящего изобретения станут более явными из изложенного ниже подробного описания, рассматриваемого вместе с чертежами, на которых одинаковые символы ссылок определяются соответствующим образом по всему документу, и из которых:

фиг.1 показывает систему беспроводной связи с множественным доступом;

фиг.2 иллюстрирует перескок частоты в частотно-временной плоскости;

фиг.3 иллюстрирует процесс регулирования мощности передачи вероятностным методом;

фиг.4 иллюстрирует процесс регулирования мощности передачи детерминистическим методом;

фиг.5 иллюстрирует механизм регулирования мощности канала данных;

фиг.6 иллюстрирует механизм регулирования мощности канала управления; и

фиг.7 иллюстрирует терминал, обслуживающую базовую станцию и соседнюю базовую станцию.

Подробное описание изобретения

Слово "примерный" используется в данном документе, чтобы обозначать "служащий в качестве примера, отдельного случая или иллюстрации". Любой вариант осуществления или проект, описанный в данном документе как "примерный", не обязательно должен быть истолкован как предпочтительный или выгодный по сравнению с другими вариантами осуществления или проектами.

Фиг.1 иллюстрирует систему 100 беспроводной связи с множественным доступом. Система 100 включает в себя определенное число базовых станций 110, которые поддерживают обмен данными для ряда беспроводных терминалов 120. Терминалы 120 типично распределены по системе, и каждый терминал может быть стационарным или мобильным. Терминал также может упоминаться как мобильная станция, абонентское оборудование (UE), устройство беспроводной связи или каким-либо другим термином. Базовая станция - это стационарная станция, используемая для обмена данными с беспроводными терминалами, и они также могут называться точкой доступа, узлом B или каким-либо другим термином. Системный контроллер 130 соединяется с базовыми станциями 110, обеспечивает координацию и управление этими базовыми станциями и дополнительно управляет маршрутизацией данных для терминалов, обслуживаемых этими базовыми станциями.

Каждая базовая станция 110 предоставляет покрытие связи для соответствующей географической зоны 102. Базовая станция или ее зона покрытия может упоминаться как "сота", в зависимости от контекста, в котором используется этот термин. Для повышения пропускной способности область покрытия каждой базовой станции может быть разбита на несколько (к примеру, три) секторов 104. Каждый сектор обслуживается базовой приемо-передающей подсистемой (BTS). Термин "сектор" может относиться к BTS или ее области покрытия, в зависимости от контекста, в котором используется термин. Для разбитой на секторы соты базовая станция типично включает в себя BTS всех секторов этой соты. Для простоты в последующем описании термин "базовая станция" используется обобщенно для стационарной станции, которая обслуживает соту, и стационарной станции, которая обслуживает сектор. "Обслуживающая" базовая станция или "обслуживающий" сектор - это тот, в котором терминал обменивается данными. "Соседняя" базовая станция или "соседний" сектор - это тот, с которым терминал не обменивается данными. Для простоты в последующем описании предполагается, что каждый терминал обменивается данными с одной обслуживающей базовой станцией, хотя это не является обязательным ограничением для методик, описываемых в данном документе.

Описанные в данном документе методики регулирования мощности могут использоваться в различных системах беспроводной связи. Например, эти методики могут использоваться в системе множественного доступа с временным разделением каналов (TDMA), множественного доступа с частотным разделением каналов (FDMA), множественного доступа с ортогональным частотным разделением каналов (OFDMA) и т.п. TDMA-система использует мультиплексирование с временным разделением каналов (TDM), и передачи для различных терминалов ортогонализированы посредством передачи в различные временные интервалы. FDMA-система использует мультиплексирование с частотным разделением каналов (FDM), и передачи для различных терминалов ортогонализированы посредством передачи в различных частотных поддиапазонах. TDMA- и FDMA-система также могут использовать мультиплексирование с кодовыми разделением каналов (CDM). В этом случае передачи для нескольких терминалов могут быть ортогонализированы с помощью различных ортогональных кодов (к примеру, Уолша), даже если они отправлены в одном временном интервале или частотном поддиапазоне. OFDMA-система использует мультиплексирование с ортогональным частотным разделением каналов (OFDM), которое эффективно разделяет общую полосу пропускания системы на некоторое число (N) ортогональных частотных поддиапазонов. Эти поддиапазоны также часто упоминаются как тоны, вспомогательные несущие, элементы разрешения, частотные каналы и т.д. Каждый поддиапазон ассоциативно связан с соответствующей вспомогательной несущей, которая может быть модулирована данными. OFDMA-система может использовать любое сочетание мультиплексирования с временным, частотным или кодовым разделением каналов. Для простоты методики регулирования мощности описываются ниже для OFDMA-системы.

В OFDMA-системе может задаваться несколько каналов "трафика", при этом (1) каждый поддиапазон используется только для одного канала трафика, в любом данном временном интервале (2) каждому каналу трафика может назначаться нуль, один или несколько поддиапазонов в каждом временном интервале. Каналы трафика могут включать в себя каналы "данных", используемые для отправки трафика/пакетных данных, и каналы "управления", используемые для отправки служебных сигналов/управляющих данных. Каналы трафика также могут упоминаться как физические каналы, транспортные каналы или под каким-либо другим термином.

Каналы трафика для каждого сектора могут задаваться как ортогональные по отношению друг к другу во времени и частоте, так чтобы два канала трафика не использовали один диапазон в любом данном интервале времени. Эта ортогональность позволяет устранить внутрисекторные помехи среди нескольких передач, отправляемых одновременно по нескольким каналам трафика в одном секторе. Некоторая потеря ортогональности может быть следствием различных эффектов, например помех между несущими (ICI) и межсимвольных помех (ISI). Эта потеря ортогональности приводит к внутрисекторным помехам. Каналы трафика для каждого сектора могут задаваться как псевдослучайные относительно каналов трафика соседних секторов. Это рандомизирует межсекторные помехи или помехи "с другими секторами", вызываемые каналами трафика в одном секторе с каналами трафика в соседних секторах. Рандомизированные внутрисекторные помехи и межсекторные помехи могут достигаться различными способами. Например, перескок частоты позволяет обеспечивать рандомизированные внутрисекторные и межсекторные помехи, а также частотное разнесение против отрицательных эффектов канала.

Фиг.2 иллюстрирует перескок частоты (FH) в частотно-временной плоскости 200 для OFDMA-системы. При перескоке частоты каждый канал трафика ассоциативно связан с конкретной последовательностью FH, которая указывает конкретные поддиапазон(ы) для использования этим каналом трафика в каждом временном интервале. Последовательности FH для различных каналов трафика в каждом секторе являются ортогональными относительно друг друга, так что два канала трафика не используют один и тот же поддиапазон в одном и том же временном интервале. Последовательности FH каждого сектора также являются псевдослучайными относительно последовательностей FH соседних секторов. Помехи между двумя каналами трафика в двух секторах возникают каждый раз, когда два канала трафика используют один и тот же поддиапазон в одном и том же интервале времени. Тем не менее внутрисекторные помехи рандомизированы благодаря псевдослучайному характеру последовательностей FH, используемых для различных секторов.

Каналы данных могут назначаться активным терминалам таким образом, чтобы каждый канал данных использовался только одним терминалом в любой данный момент времени. Для экономии системных ресурсов каналы управления могут совместно использоваться несколькими терминалами с помощью, например, мультиплексирования с кодовым разделением каналов. Если каналы данных ортогонально мультиплексированы только по частоте и времени (но не коду), то они менее подвержены потере ортогональности вследствие характеристик канала и недостатков приемного устройства, чем каналы управления.

Таким образом, каналы данных имеют несколько ключевых характеристик, которые относятся к регулированию мощности. Во-первых, внутрисотовые помехи в каналах данных минимальны благодаря ортогональному мультиплексированию по частоте и времени. Во-вторых, межсотовые помехи рандомизированы, поскольку соседние секторы используют различные последовательности FH. Величина межсотовых помех, вызываемых данным терминалом, определяется посредством (1) уровня мощности передачи, используемого этим терминалом, и (2) местоположения терминала относительно соседних базовых станций.

В каналах данных регулирование мощности может выполняться таким образом, чтобы каждому терминалу было разрешено выполнять передачу на максимально высоком уровне мощности при сохранении допустимых уровней внутрисотовых и межсотовых помех. Терминалу, располагающемуся ближе к своей обслуживающей базовой станции, может быть разрешено выполнять передачу с более высоким уровнем мощности, поскольку этот терминал, вероятно, вызывает меньшие помехи для соседних базовых станций. Наоборот, терминалу, размещающемуся дальше от своей базовой станции в направлении границы сектора, может быть разрешено выполнять передачу с меньшим уровнем мощности, поскольку этот терминал может вызывать большие помехи для соседних базовых станций. Регулирование мощности передачи таким образом позволяет потенциально снижать общие помехи, обнаруживаемые каждой базовой станцией, при этом предоставляя возможность "утвержденным" терминалам достигать более высоких значений SNR и, таким образом, более высоких скоростей передачи данных.

Регулирование мощности в каналах данных может осуществляться различными способами для достижения вышеозвученных целей. Для пояснения ниже описывается конкретный вариант осуществления регулирования мощности. В этом варианте осуществления мощность передачи канала данных данного терминала может быть выражена следующим образом:

Pdch(n) = Pref(n) + ΔP(n),

уравнение (1)

где Pdch(n) - это мощность передачи канала данных в интервале обновления n;

Pref(n) - это опорный уровень мощности в интервале обновления n; и

ΔP(n)- это дельта мощности передачи в интервале обновления n.

Уровни мощности Pdch(n) и Pref(n) и дельта мощности передачи ΔP(n)приводятся в децибелах (дБ).

Опорный уровень мощности - это величина уровня мощности, требуемая для получения целевого качества сигнала для указанной передачи (к примеру, в канале управления). Качество сигнала (обозначаемое SNR) может оцениваться количественно посредством соотношения "сигнал-шум", соотношения "сигнал-шум-и-помехи" и т.п. Опорный уровень мощности и целевой SNR может корректироваться посредством механизма регулирования мощности для получения требуемого уровня производительности по указанной передаче, как описано ниже. Если опорный уровень мощности позволяет достигать целевого SNR, то принимаемый SNR канала данных может быть оценен следующим образом:

SNRdch(n) = SNRtarget + ΔP(n).

уравнение (2)

Уравнение (2) предполагает, что канал данных и канал управления имеют аналогичную статистику по помехам. Это имеет место, например, в случае, если каналы управления и данных из различных секторов могут оказывать взаимные помехи друг на друга. Опорный уровень мощности может быть определен так, как описано ниже.

Мощность передачи для канала данных может задаваться на основе различных факторов, например (1) величины межсекторных помех, которые терминал может вызывать для других терминалов в соседних секторах, (2) величины внутрисекторных помех, которые терминал может вызывать для других терминалов в одном секторе, (3) максимального уровня мощности, разрешенного для терминала, и (4), возможно, других факторов. Каждый из этих факторов описывается ниже.

Величина межсекторных помех, которые может вызывать каждый терминал, может определяться различными способами. Например, величина межсекторных помех, вызываемая каждым терминалом, может непосредственно оцениваться каждой соседней базовой станцией и отправляться терминалу, который затем может соответствующим образом корректировать свою мощность передачи. Эта конкретизированная передача сообщений о помехах может требовать передачи значительного объема служебных сигналов. Для простоты величина внутрисекторных помех, которые может вызывать терминал, приблизительно может быть оценена на основе (1) общих помех, обнаруживаемых каждой соседней базовой станцией, (2) усиления каналов для обслуживающей и соседних базовых станций, и (3) уровня мощности передачи, используемого терминалом. Параметры (1) и (2) описываются ниже.

Каждая базовая станция может оценивать общую или среднюю величину помех, обнаруживаемых этой базовой станцией. Это может осуществляться посредством оценки мощности помех в каждом поддиапазоне и вычисления среднего уровня помех на основе оценок мощности помех для отдельных поддиапазонов. Средняя мощность помех может быть получена с помощью различных методик усреднения, например арифметического усреднения, геометрического усреднения, усреднения на основе SNR и т.д.

При арифметическом усреднении средняя мощность помех может быть выражена следующим образом:

,

уравнение (3)

где Im(k,n)- это оценка мощности помех сектора m в поддиапазоне k во временном интервале n; и

Imeas,m(n) - это средняя мощность помех сектора m во временном интервале n.

Параметры Im(k,n)и Imeas,m(n)измеряются в единицах линейных измерений в уравнении (3), но также могут даваться в децибелах (дБ). При арифметическом усреднении несколько больших значений оценок мощности помех могут вызвать перекос средней мощности помех.

При геометрическом усреднении средняя мощность помех может быть выражена следующим образом:

.

уравнение (4)

Геометрическое усреднение позволяет подавлять большие значения оценок мощности помех для нескольких поддиапазонов, так чтобы средняя мощность помех была меньше, чем при арифметическом усреднении.

При усреднении на основе SNR средняя мощность помех может быть выражена следующим образом:

,

уравнение (5)

где Pnom означает номинальную принимаемую мощность, допускаемую для каждого поддиапазона. Уравнение (5) определяет теоретическую пропускную способность каждого поддиапазона на основе номинальной принимаемой мощности, вычисляет среднюю пропускную способность для всех N поддиапазонов и определяет среднюю мощность помех, которая дает среднюю пропускную способность. Усреднение на основе SNR (которое также может называться усреднением на основе пропускной способности) также подавляет большие значения оценок мощности помех для нескольких поддиапазонов.

Вне зависимости от используемой методики усреднения каждая базовая станция может фильтровать оценки мощности помех и/или среднюю мощность помех по нескольким временным интервалам для повышения качества измерения помех. Фильтрация может выполняться с помощью фильтра с конечной импульсной характеристикой (FIR), фильтра с бесконечной импульсной характеристикой (IIR) или какого-либо другого типа фильтра, известного в данной области техники. Термин "помехи" в данном описании, таким образом, может относиться к фильтрованным и нефильтрованным помехам. Каждая базовая станция может передавать в широковещательном режиме свои измерения помех для использования терминалами в других секторах. Измерения помех могут передаваться в широковещательном режиме различными способами. В одном варианте осуществления средняя мощность помех (или "измеренные" помехи) квантуются до заранее определенного числа бит, которые затем отправляются посредством широковещательного канала. В другом варианте осуществления измеренные помехи передаются в широковещательном режиме с помощью одного бита, который указывает то, больше или меньше измеренные помехи номинального порога помех. В еще одном другом варианте осуществления измеренные помехи передаются в широковещательном режиме с помощью двух бит. Один бит указывает измеренные помехи относительно номинального порога помех. Другой бит может использоваться в качестве аварийного бита, который указывает, превышают ли измеренные помехи высокий уровень помех. Измерения помех также могут отправляться другими способами. Для простоты в последующем описании предполагается использование одного бита помех с другими секторами (OSI) для предоставления информации о помехах. Каждая базовая станция может задавать свой OSI-бит (OSIB) следующим образом:

,

уравнение (6)

где Itarget - это номинальный порог помех.

Альтернативно каждая базовая станция может получать измеренные помехи на термические (IOT), которые являются отношением общей мощности помех, обнаруживаемых базовой станцией, к мощности термического шума. Общая мощность помех может вычисляться так, как описано выше. Мощность термического шума может оцениваться посредством отключения передающего устройства и измерения шума в приемном устройстве. Отдельная рабочая точка может выбираться системой и обозначаться IOTtarget. Более высокая рабочая точка позволяет терминалам использовать более высокую мощность передачи (в среднем) в каналах данных. Тем не менее очень высокая рабочая точка может быть нежелательной, поскольку система может стать ограниченной помехами, т.е. когда увеличение мощности передачи не приводит к увеличению принимаемого SNR. Более того, очень высокая рабочая точка повышает вероятность нестабильности системы. В любом случае каждая базовая станция может задавать OSI-бит следующим образом:

,

уравнение (7)

где IOTmeas,m(n)- это измеренный IOT на сектор m во временном интервале n; и

IOTtarget - это требуемая рабочая точка для сектора.

В обоих случаях OSI-бит может использоваться для регулирования мощности так, как описано ниже.

Каждый терминал может оценивать усиление канала (или усиление тракта распространения) для каждой базовой станции, которая может принимать передачу по линии обратной связи от терминала. Усиление канала для каждой базовой станции может оцениваться посредством обработки пилот-сигнала (контрольного сигнала), принимаемого от базовой станции посредством линии прямой связи, оценки интенсивности и мощности принимаемого контрольного сигнала и фильтрации оценок интенсивности контрольного сигнала во времени (к примеру, с помощью фильтра, имеющего постоянную времени в несколько сотен миллисекунд) для устранения эффектов быстрого затухания и т.п. Если все базовые станции передают свои контрольные сигналы с одним уровнем мощности, то интенсивность принимаемого контрольного сигнала для каждой базовой станции указывает усиление канала между этой базовой станцией и терминалом. Терминал может сформировать вектор коэффициентов усиления канала, G, следующим образом:

G = [r1(n) r2(n)... rM(n)],

уравнение (8)

где ,

уравнение (9)

gs(n)- это усиление канала между терминалом и обслуживающей базовой станцией;

gni(n)- это усиление канала между терминалом и соседней базовой станцией i; и

ri(n)- это коэффициент усиления канала для соседней базовой станции i.

Поскольку расстояние обратно связано с усилением канала, коэффициент усиления канала gs(n)/gni(n)может рассматриваться как "относительное расстояние", которое указывает расстояние до соседней базовой станции i относительно расстояния до обслуживающей базовой станции. В общем коэффициент усиления канала для соседней базовой станции, ri(n),уменьшается по мере того, как терминал перемещается в направлении границы сектора, и увеличивается по мере того, как терминал перемещается ближе к обслуживающей базовой станции. Вектор коэффициентов усиления канала, G, может использоваться для регулирования мощности так, как описано ниже.

Хотя каналы данных для каждого сектора мультиплексированы таким образом, что они являются ортогональными по отношению друг к другу, некоторая потеря ортогональности может вытекать из помех между несущими (ICI), межсимвольных помех (ISI) и т.д. Эта потеря ортогональности приводит к внутрисекторным помехам. Для смягчения внутрисекторных помех мощность передачи каждого терминала может регулироваться таким образом, чтобы величина внутрисекторных помех, которые этот терминал может вызывать для других терминалов в том же секторе, поддерживалась в рамках допустимого уровня. Это может достигаться, к примеру, посредством обязательности того, чтобы принимаемый SNR канала данных для каждого терминала находился в рамках заранее определенного диапазона SNR, следующим образом:

SNRdch(n)∈[SNRmin, SNRmax],

уравнение (10)

где SNRmin - это минимальный принимаемый SNR, разрешенный для канала передачи данных; и

SNRmax - это максимальный принимаемый SNR, разрешенный для канала передачи данных.

Минимальный принимаемый SNR обеспечивает то, что все терминалы, особенно расположенные недалеко от границы сектора, могут достигать минимального уровня производительности. Без этого ограничения терминалы, размещенные недалеко от границы сектора, могут быть принудительно переведены в режим передачи с чрезвычайно низким уровнем мощности, поскольку они часто привносят значительную величину межсекторных помех.

Если принимаемые SNR каналов данных для всех терминалов ограничены диапазоном [SNRmin, SNRmax], то величина межсекторных помех, вызываемых каждым терминалом вследствие потери ортогональности, может считаться находящейся в рамках допустимого уровня. Посредством ограничения принимаемых SNR рамками этого диапазона SNR по-прежнему может быть разность максимум в (SNRmax-SNRmin) дБ в спектральной плотности принимаемой мощности между соседними поддиапазонами (при условии, что похожие величины межсекторных помех обнаруживаются в поддиапазонах, что происходит, к примеру, если каналы управления и данных перескакивают по частоте случайным образом, так чтобы каналы управления и данных из различных секторов могли накладываться друг на друга). Небольшой диапазон SNR повышает устойчивость системы при наличии ICI и ISI. Обнаружено, что диапазон SNR в 10 дБ предоставляет хорошую производительность в большинстве сценариев. Также могут использоваться другие диапазоны SNR.

Если мощность передачи канала данных определена так, как показано в уравнении (1), то принимаемый SNR канала данных может поддерживаться в диапазоне [SNRmin, SNRmax] посредством ограничения дельты мощности передачи, ΔP(n), рамками соответствующего диапазона, следующим образом:

ΔP(n)∈[ΔPmin, ΔPmax],

уравнение (11)

где ΔPmin - это минимальная дельта мощности передачи, разрешенная для канала данных, и

ΔPmax - это максимальная дельта мощности передачи, разрешенная для канала данных.

В частности, ΔPmin = SNRmin - SNRtarget, а ΔPmax = SNRmax - SNRtarget. В другом варианте осуществления мощность передачи Pdch(n)может быть ограничена диапазоном, который определяется, например, на основе мощности принимаемых сигналов для канала данных. Этот вариант осуществления может использоваться, например, если мощность помех статистически различается по поддиапазонам.

Мощность передачи канала данных для каждого терминала затем может корректироваться на основе следующих параметров:

1. OSI-бит, передаваемый в широковещательном режиме каждой базовой станцией;

2. Вектор коэффициентов усиления канала, G, вычисленный терминалом;

3. Диапазон принимаемых SNR, разрешенных для каналов данных, [SNRmin, SNRmax], или эквивалентно диапазон разрешенных дельт мощности передачи, [ΔPmin, ΔPmax]; и

4. Максимальный уровень мощности, Pmax, разрешенный для терминала, который может задаваться системой или усилителем мощности в терминале.

Параметры 1) и 2) связаны с межсекторными помехами, вызываемыми терминалом. Параметр 3) связан с внутрисекторными помехами, вызываемыми терминалом.

В общем, терминал, размещенный близко к соседнему сектору, который сообщает о высоких помехах, может передавать с меньшей дельтой мощности передачи, так чтобы его принимаемый SNR был ближе к SNRmin. Наоборот, терминал, размещенный близко к своей обслуживающей базовой станции, может передавать с более высокой дельтой мощности передачи, с тем чтобы его принимаемый SNR был ближе к SNRmax. Градация принимаемых SNR может обнаруживаться для терминалов в системе на основе их близости к обслуживающим базовым станциям. Диспетчер в каждой базовой станции может использовать преимущество распределения принимаемых SNR для достижения высокой пропускной способности, при этом обеспечивая равнодоступность для терминалов.

Мощность передачи канала данных может регулироваться различными способами на основе вышеуказанных четырех параметров. Механизм регулирования мощности не должен поддерживать одинаковый SNR для всех терминалов, особенно в ортогональной системе, такой как OFDMA-система, в которой терминалы, размещающиеся ближе к базовой станции, могут выполнять передачу с более высоким уровнем мощности без серьезных проблем для других терминалов. Для пояснения ниже описывается конкретный вариант осуществления регулирования мощности. Для этого варианта осуществления каждый терминал отслеживает OSI-биты, передаваемые в широковещательном режиме соседними базовыми станциями, и отвечает только на OSI-бит самой мощной соседней базовой станции, которая имеет наименьший коэффициент усиления канала в векторе G. Если OSI-биту данной базовой станции присвоено значение 1 (вследствие того, что базовая станция обнаруживает превышающие номинальный уровень межсекторные помехи), то мощность передачи терминалов, имеющих эту базовую станцию в качестве наиболее мощной соседней базовой станции, может корректироваться на понижение. Наоборот, если OSI-биту присвоено значение 0, то мощность передачи терминалов, имеющих эту базовую станцию в качестве наиболее мощной соседней базовой станции, может корректироваться на повышение. В других вариантах осуществления каждый терминал может корректировать свою мощность передачи на основе одного или нескольких OSI-битов, полученных для одной или нескольких базовых станций (к примеру, обслуживающей и соседних базовых станций).

Таким образом, OSI-бит определяет направление корректировки мощности передачи. Величина корректировки мощности передачи для каждого терминала может зависеть от (1) текущего уровня мощности передачи (или текущей дельты мощности передачи) терминала и (2) коэффициента усиления канала для самой мощной соседней базовой станции. В таблице 1 приведено несколько основных правил корректировки мощности передачи на основе дельты мощности передачи и коэффициента усиления канала для самой мощной базовой станции.

Таблица 1
OSI-битКорректировка мощности передачи
1(высокий уровень помех)Терминал с меньшим коэффициентом усиления канала для (т.е. ближе к) базовой станции, передающей OSI-бит, в общем, снижает свою дельту мощности передачи на большую величину в сравнении с терминалом с большим коэффициентом усиления канала для (т.е. дальше от) этой базовой станции.
Терминал с большей дельтой мощности передачи, в общем, снижает свою дельту мощности передачи на большую величину в сравнении с терминалом с аналогичным коэффициентом усиления канала для этой базовой станции, но с меньшей дельтой мощности передачи.
0(низкий уровень помех)Терминал с большим коэффициентом усиления канала для (т.е. дальше от) базовой станции, передающей OSI-бит, в общем, увеличивает свою дельту мощности передачи на большую величину в сравнении с терминалом с меньшим коэффициентом усиления канала для (т.е. ближе к) этой базовой станции.
Терминал с меньшей дельтой мощности передачи, в общем, увеличивает свою дельту мощности передачи на большую величину в сравнении с терминалом с аналогичным коэффициентом усиления канала для этой базовой станции, но с большей дельтой мощности передачи.

Мощность передачи может регулироваться детерминистическим методом, вероятностным методом или каким-либо другим методом. При детерминистическом регулировании мощность передачи регулируется заранее заданным способом на основе значимых параметров. При вероятностном регулировании мощность передачи имеет некоторую вероятность корректировки, причем эта вероятность определяется посредством значимых параметров. Примерные схемы детерминистического и вероятностного регулирования описаны ниже.

Фиг.3 иллюстрирует блок-схему последовательности операций процесса 300 регулирования мощности передачи вероятностным методом. Процесс 300 может выполняться каждым терминалом и для каждого временного интервала, в котором передается OSI-бит. Сначала терминал обрабатывает OSI-бит самой мощной соседней базовой станции (этап 312). Затем терминал определяет, равен OSI-бит 1 или 0 (этап 314).

Если OSI-бит равен 1, что указывает превышающий номинальный уровень помех, то терминал определяет вероятность снижения мощности, Prdn(n) (этап 322). Prdn(n) может вычисляться на основе текущей дельты мощности передачи, ΔP(n), и коэффициента усиления канала для самой мощной соседней базовой станции, rosib(n), так, как описано ниже. После этого терминал случайным образом выбирает значение x от 0,0 до 1,0 (этап 324). В частности, x - это случайная переменная, равномерно распределенная между 0,0 и 1,0. Если случайно выбранное значение x меньше или равно вероятности Prdn(n), как определяется на этапе 326, то терминал снижает дельту мощности передачи на шаг понижения ΔPdn (этап 328) следующим образом:

ΔP(n+1) = ΔP(n) - ΔPdn.

уравнение (12)

В противном случае, если x больше Prdn(n), то терминал сохраняет дельту мощности передачи на текущем уровне (этап 330). От этапов 328 и 330 процесс переходит к этапу 342.

Если OS