Способ определения распределения радиоактивного препарата внутри исследуемого объекта и устройство, его реализующее

Иллюстрации

Показать все

Изобретение может быть использовано в медицинской диагностике и при неразрушающем контроле. Способ включает измерение интенсивности излучения от радионуклида внутри объекта через многощелевой коллиматор 7 стрип-детектором 9, установленным у выхода коллиматора, вход которого направлен в сторону объекта 12, при различных угловых положениях системы 11 коллиматор-детектор относительно объекта и получение набора данных интенсивности излучения, аналогичных компьютерной томографии, с последующим применением к набору данных алгоритма реконструкции и визуализации результата реконструкции. Устройство содержит щелевой коллиматор 7, вход которого направлен в сторону исследуемого объекта 12, стрип-детектор 9 интенсивности излучения, установленный у выхода коллиматора, первое средство 15 вращения, предназначенное для поворота системы детектор-коллиматор вокруг продольной оси 14 исследуемого объекта, второе средство 16 вращения, предназначенное для поворота системы 11 детектор-коллиматор вокруг оси 25, перпендикулярной продольной оси исследуемого объекта, средство 18 измерения выходных сигналов стрип-детектора интенсивности излучения, средство (22, 20) запоминания и обработки измеренных данных и средство 21 визуализации результатов обработки. Технический результат - повышение точности восстановления распределения радиоактивного источника внутри исследуемого объекта либо сокращение времени проведения исследования или количества вводимого радионуклида. 2 н. и 6 з.п. ф-лы, 15 ил.

Реферат

Изобретение относится к способам и устройствам для определения распределения радиоактивного препарата внутри исследуемого объекта и может быть использовано в медицинской диагностике и методах неразрушающего контроля. Как для визуализации двумерного (на плоскость детектора), так и трехмерного распределения радиоактивного препарата внутри исследуемого объекта.

Целью изобретения является снижение себестоимости устройства и повышение точности определения распределения радиоактивного препарата внутри исследуемого объекта.

Известен способ для определения распределения радиоактивного препарата внутри исследуемого в виде изображения этого распределения по патенту США 3,684,886 (опубл. 1972.08.15) [2], патенту США 4,090,080 (опубл. 1978.05.16) [3], патенту США 4,563,583 (опубл. 1986.01.07) [4], патенту США 6,627,893 В1 (опубл. 2003.09.30) [5], патенту США 6,631,285 В2 (опубл. 2003.10.07) [6]. Способ состоит в измерении интенсивности излучения препарата через щелевые коллиматоры координатно чувствительным детектором, находящимся у выходов щелевых коллиматоров, входы которых направлены в сторону исследуемого объекта. Измерения производят для различных угловых положений системы коллиматоры-детектор, получая набор данных, аналогичный компьютерной томографии, к которому применяют какой-либо алгоритм обработки (например, обратное преобразование Радона [3]), и получают изображение распределения радиоактивного препарата внутри объекта.

Преимуществом данного способа измерения относительно классического способа измерения через узконаправленный коллиматор [1] является высокая эффективность регистрации гамма-квантов через щелевые коллиматоры. Недостатком, как и в [1], является необходимость использования в устройствах для реализации способа координатно чувствительных детекторов (например, в виде камеры Анже [2] или стрип-детектора [3]), изготовление которых представляет определенную сложность и приводит к удорожанию устройства.

Реализации способа стрип-детектора на основе сцинтиллятора и подключенного к нему через оптический согласователь фотоумножителя не являются эффективными, как указывалось в [3] и [4], а использование теллурида кадмия [4] при реализации способа приводит к удорожанию детектора в указанных устройствах.

Для снижения себестоимости устройства при реализации способа предлагалось вместо длинных стрипов использовать короткие стрипы [5] и [6] на теллуриде кадмия, но это приводит к снижению эффективности регистрации излучения радионуклида, так как площадь стрипов значительно снижается.

Кардинальным решением для удешевления устройства, реализующего способ, было бы использование недорогого стрип-детектор или отказ от координатно чувствительного детектора вообще, поскольку координатно нечувствительный детектор намного дешевле координатно чувствительного. Однако такого технического решения предложено не было.

Кроме того, при реализации способа для получения изображения с высоким пространственным разрешением требуется стрип-детектор высокого пространственного разрешения и щелевой коллиматор с малым шагом между щелями. Изготовление стрипов равной чувствительности и коллиматоров с прозрачностью, одинаковой для всех щелей, представляется проблематичной, и, видимо, никакая технология не позволит изготавливать абсолютно идентичные щели и стрипы, что приведет к тому, что в результирующем изображении радионуклида появятся кольцевые артефакты. О возникновении кольцевых артефактов, связанных с неточностью стрипов и щелей коллиматора, в указанных технических решениях [3-6] также не упоминается. В связи с этим в известных технических решениях [3-6] нет методов устранения артефактов, связанных с различной прозрачностью щелей и чувствительностью стрипов. Не было предложено и методов измерения прозрачности щелей коллиматора и чувствительности стрипов.

Однако в известных технических решениях [3-6] предложно компенсировать другие искажения результата трехмерной реконструкции, например связанные с весовой функцией 1/r, путем наклона пластин многощелевого коллиматора, либо алгоритмическими методами. Анализ указанных решений [3-6] говорит о том, что они не являются единственно возможными способами, позволяющими компенсировать указанные искажения, связанные с 1/r. При использовании других коллиматоров или других методов измерения, видимо, можно компенсировать указанные искажения другими подходами.

Данное предположение основано на том, что использование коллиматора в виде набора пластин не является единственно возможным для указанного способа измерения и устройств его реализующих.

Для устранения указанных недостатков необходимо модифицировать способ измерения, коллиматоры, конструкцию устройства и алгоритмы обработки измеренных данных.

Размер стрип-детектора в известных технических решениях [3-6] меньше размера исследуемого объекта. При реконструкции двумерного изображения возникает проблема, известная в компьютерной томографии как неполный набор данных. Наличие неполного набора данных искажает результат реконструкции, особенно на краях исследуемой области.

В известных технических решениях [3-6] не предложено методов, позволяющих компенсировать или снизить искажения, связанные с неполным набором данных на краях исследуемой области при получении двумерных изображений.

В известных технических решениях [3-6] при обработке данных используется приращение функции для оценки ее производной. Использование приращения вместо производной снижает точность реконструкции. Использование более точного метода оценки производной, особенно в шумах, позволило бы повысить точность конечного результата.

В предлагаемом техническом решении предлагается ряд подходов для устранения указанных недостатков.

На Фиг.1 показано устройство, реализующее различные подходы по устранению указанных недостатков.

Совершенствования, касающиеся системы детектор-коллиматор и собственно коллиматора, показаны на Фиг.2 - Фиг.10. Для удешевления устройства при реализации способа предлагается в качестве стрип-детектора использовать набор сцинтилляционных волокон (Фиг.2 позиция А) требуемого сечения и длины, к торцам которых прикреплены высокочувствительные PIN фотодиоды или просто фотодиоды требуемой площади, или линейка фотодиодов.

Использование линейки фотодиодов для построения стрип-детектора известно [3], однако в известном техническом решении они прикреплены не к торцам, а сбоку сцинтиллятора через оптический согласователь, что снижает эффективность детектора и увеличивает его высоту. При создании детектора большой площади высота может оказаться недопустимо большой.

В известном техническом решении [4] использовано множество тонких оптических волокон для передачи вспышек света от стрипов сцинтиллятора к фотоумножителям. Однако сами оптоволокна не являются сцинтилляционными. Использование сцинтилляционных волокон не рассматривается.

В предлагаемом решении отдельные тонкие сцинтилляционные волокна укладывают так, чтобы образовалась толщина сцинтиллятора, необходимая для эффективного поглощения излучения заданной энергии. Ширину набора организуют такой, чтобы получить пространственное разрешение и ширину детектора требуемого значения (Фиг.2 позиция А).

Схожие конструкции структурированных сцинтилляторов используются в современных цифровых детекторах рентгеновского излучения. Однако длина сцинтиллятора в этих устройствах не превышает обычно долей сантиметра и определяется эффективностью поглощения излучения. В предлагаемом техническом решении длина сцинтилляционных волокон (столбиков) может составлять десятки сантиметров и метры и определяться потребной длиной стрипа. Эффективность поглощения излучения определяется толщиной набора сцинтилляционных волокон. Кроме того, излучение на структурированный сцинтиллятор в известных технических решениях воздействует с торца волокна, в то время как в предлагаемом техническом решении излучение падает поперек волокна, чтобы реализовать режим стрип-детектора (Фиг.2 позиции А и В).

В предлагаемом решении возможно также использование одного длинного сцинтиллятора (например, из йодида цезия CsI) требуемого поперечного сечения и длины для каждого стрипа, вместо набора столиков микронного сечения, что не нарушит работоспособность предлагаемого технического решения. Стенки сцинтиллятора в этом случае должны иметь либо зеркальный, либо диффузный отражатель. К торцам сцинтиллятора следует прикрепить, как и ранее, фотодиоды (Фиг.2 позиция В).

Возможны и другие варианты структурированных сцинтилляционных стрипов, например за счет использования капилляра с заполнением его жидким сцинтиллятором или набора капилляров (поликапиляр). В любом случае, чтобы реализовать режим стрип-детектора, соотношение длины к толщине такого структурированного сцинтиллятора должно быть намного больше, чем в известных структурированных сцинтилляторах.

Таким образом, отличительной особенностью предлагаемого изобретения по данному пункту является использование структурированного сцинтиллятора, отношение длины которого к его толщине много больше единицы.

Чтобы компенсировать затухание световых вспышек внутри длинного сцинтиллятора может быть применена известная схема [13] компенсации затухания в материале сцинтиллятора (например, в виде перемножения сигнала от двух фотодиодов, установленных на противоположных концах сцинтиллятора), что позволяет обеспечить высокое энергетическое разрешение, а при необходимости (если в дополнение к умножителю использовать делитель, сигнал с выхода которого характеризует координату вспышки) обеспечивает некоторое пространственное разрешение вдоль сцинтиллятора [13]. Если свойства сцинтиллятора таковы, что затухание световых вспышек в материале сцинтиллятора незначительно, то можно обойтись без схемы компенсации затухания.

Применяя предлагаемое техническое решение, можно создать стрип-детектор большой площади, малой толщины и низкой себестоимости, по сравнению, например, с детектором на основе теллурида кадмия. Поскольку линейки фотодиодов и сцинтилляторы на основе йодида цезия или пластиковые сцинтилляторы являются достаточно дешевыми материалами. Длина стрипов может быть очень большой (десятки сантиметров и метры). В отличие от технических решений [3] с использованием линейки детекторов на теллуриде кадмия малой площади, предлагаемый детектор будет обладать большой площадью и, следовательно, высокой эффективностью регистрации излучения.

Возможность создания детектора с высокой эффективностью регистрации является очень важной в медицинских применениях, поскольку позволяет либо сократить время проведения исследования, либо сократить количество вводимого радионуклида.

Кроме того, такой детектор можно сделать малым по толщине и неохлаждаемым, что является немаловажным при построении устройства.

Более радикальным вариантом удешевления устройства является использование координатно нечувствительного детектора в качестве стрип-детектора (Фиг.3). В этом случае используется сцинтиллятор большой площади, равный по площади стрип-детектору, и фотодетектор (фотоумножитель) большой площади, соединенные вместе и образующие детектор излучения радионуклида большой площади. Между этим координатно нечувствительным детектором большой площади и многощелевым коллиматором помещают экран из материала, прозрачность которого для излучения радионуклида неоднородна вдоль направления, перпендикулярного щелям коллиматора. Этот экран соединен со средством, обеспечивающим его линейное перемещение вдоль направления, перпендикулярного щелям коллиматора.

В результате движения экрана на выходе детектора большой площади возникает сигнал, определяемый операцией математической свертки искомого сигнала (плоскостного интеграла) и распределения неоднородности в экране. Чтобы получить требуемый исходный неискаженный сигнал (плоскостной интеграл) необходимо произвести операцию обратной математической свертки. Данная математическая задача решена академиком Тихоновым и относится к классу обратных некорректных задач [9].

На практике измерения производят в дискретные моменты времени, и решение обратной задачи необходимо производить в дискретном виде. Интервал времени, через который производят измерения, определяет то пространственное разрешение, которое будет иметь данный стрип-детектор, поскольку все измерения производят во времени при движении экрана.

Данный подход позволяет использовать в качестве стрип-детектора координатно нечувствительный детектор.

Несмотря на то, что при указанном подходе возможно использование практически любой неоднородности в экране, немаловажной является задача максимизации отношения сигнал/шум в условиях шумов и дискретных измерений. Решение такой задачи в условиях дискретного измерения известно на основе массивов с плоскими боковыми лепестками и одним максимумом в автокорреляционной функции - URA массивы [10].

Эти массивы состоят из единиц и нулей, типа 10100111001 ... Реализация их на практике требует всего лишь проделывания отверстий в непрозрачном для излучения радионуклида экране, который можно сделать из материала с высоким атомным номером (свинец, вольфрам и т.д.). Такой материал является тяжелым по весу, и средство для его линейного перемещения должно быть достаточно мощным.

На Фиг.4 показан стрип-детектор на основе сцинтиллятора и фотодетектора большой площади, между которыми расположен оптический экран, содержащий неоднородность для оптического излучения (излучения сцинтиллятора) со свойствами неоднородности, аналогичными экрану для излучения радионуклида. В этом случае вес оптического экрана может быть минимальным, так как его можно изготовить, например, из черной плотной бумаги, фольги и пластика. Возможно использование и других материалов, что не является принципиальным. Оптический экран, как и ранее, должен быть соединен со средством его перемещения.

На Фиг.5 показан стрип-детектор на основе сцинтиллятора и фотодетектора большой площади, между которыми расположен оптический движущийся экран в виде гибкого кольца, охватывающего сцинтиллятор. Экран движется постоянно в одну сторону (как лента транспортера), исключаются возвратно-поступательные движения. Устройство получается максимально простым и легким. Оптический экран, как и ранее, соединен со средством его перемещения.

Однако в настоящее время известны оптические пространственно-временные модуляторы, например на основе жидких кристаллов. Используя их, можно устранить механическое движение экрана. Оптическая прозрачность модулятора должна изменяться во времени таким образом, чтобы приводить к результату, аналогичному движению оптического экрана, то есть сигнал на выходе фотодетектора должен определяться как результат математической свертки искомого сигнала (плоскостного интеграла) и неоднородности экрана.

На Фиг.6 показан стрип-детектор на основе сцинтиллятора и фотодетектора большой площади, между которыми расположен оптический пространственно-временной модулятор. В качестве пространственно-временного оптического модулятора можно использовать жидкокристаллические оптические модуляторы, используемые в проекционных телевизорах, либо жидкокристаллические оптические пространственные модуляторы большой площади, используемые в плоских пассивных компьютерных мониторах. Пространственно-временно модулятор соединен со средством его управления.

В случае, если требуется согласовать размер сцинтиллятора и координатно нечувствительного фотодетектора, между ними можно установить оптический согласователь (фокон). В этом случае пространственный оптический модулятор следует устанавливать до или после оптического согласователя, в соответствии с размерами модулятора (на Фиг.6 оптический согласователь не показан).

Указанное техническое решение можно использовать как при параллельном расположении пластин в коллиматоре, так и при конвергентном и дивергентном. Если ограничиться только дивергентным коллиматором, то техническое решение можно еще более упростить и соответственно еще более удешевить устройство. В дивергентном случае можно использовать детектор излучения радионуклида в виде одного стрипа и движущегося экрана, без использования многощелевого коллиматора.

На Фиг.7 показан стрип-детектор для дивергентного случая на основе одного стрипа и движущегося экрана. Экран соединен со средством его перемещения.

Эффективность регистрации будет аналогичной случаю использования детектора большой площади и движущемуся экрану, указанному ранее. Объясняется это тем, что сцинтиллятор выступает в роли интегратора вспышек, поступающих от всех направлений (как и в случае детектора большой площади). При этом сам интегратор в дивергентном случае можно сделать в виде одного стрипа. В этом случае устройство получается более простым и соответственно более дешевым по сравнению с детектором большой площади. Характер сигнала на выходе такого детектора будет аналогичен сигналу, описанному ранее, то есть представлять собой операцию математической свертки искомого сигнала (плоскостного интеграла) и распределения неоднородности в экране. Для получения искомого сигнала (плоскостного интеграла) необходимо произвести операцию обратной математической свертки [9].

Когда длина стрипа минимальна (например, равна его ширине и высоте), устройство получается весьма дешевым. В этом случае фактически используется маленький кусочек сцинтиллятора, прикрепленный к фотодиоду. Однако, если использовать стрип малой длины, то эффективность регистрации излучения будет низкой. Поэтому несмотря на принципиальную возможность использования короткого стрипа, желательно использовать длинный стрип. Короткий стрип можно использовать тогда, когда интенсивность излучения радионуклида достаточно высока.

В том случае, если в качестве экрана использовать вращающийся барабан, внутри которого коаксиально расположен один стрип. Барабан соединен со средством его вращения. Устройство становится максимально простым (Фиг.8).

Как и ранее можно использовать короткий стрип. Несмотря на принципиальную возможность использования короткого стрипа, желательно использовать длинный стрип. Короткий стрип можно использовать тогда, когда интенсивность излучения радионуклида достаточно высока.

Для эффективной регистрации гамма-квантов большой энергии (более 100 кэВ) сечение сцинтиллятора в стрип-детекторах (Фиг.7 и Фиг.8) должно быть достаточно большим. Однако при большой сечении сцинтиллятора уменьшается пространственное разрешение в реконструируемом изображении. Чтобы обеспечить одновременно высокую эффективность регистрации и высокое пространственное разрешение в указанных стрип-детекторах используется сцинтиллятор необходимого сечения (для эффективной регистрации квантов требуемой энергии) и свинцовая "рубашка" вокруг сцинтиллятора с продольной щелью требуемой ширины.

На Фиг.9 (позиция А и В) показано поперечное сечение сцинтиллятора, совмещенного с "рубашкой" защиты для стрип-детектора на основе одного стрипа. Ширина щели в "рубашке" определяет требуемое пространственное разрешение, а угол раскрыва щели определяет область объекта, охватываемую детектором. В позиции А угол раскрыва щели меньше, чем в позиции В, при этом ширина щели одинакова и в той и в другой позиции.

Применение такого технического решения, помимо основного назначения, позволяет резко снизить вес защитной "рубашки", что может быть существенным при создании мобильных устройств. Это справедливо как для технического решения, показанного на Фиг.7, так и на Фиг.8.

Однако использование защитной "рубашки" необходимо во всех указанных ранее технических решениях, но место ее положения и назначения являются общеизвестными, поэтому на фигурах, поясняющих другие технические решения, она не показана. Защита показана там, где ее положение и назначение не является общеизвестным.

Для устранения влияния фактора 1/r на результат реконструкции стрип смещают относительно оси вращения системы детектор-коллиматор на угол δ, пропорциональный требуемому пространственному разрешению в реконструируемом изображении и находящийся в пределах от 0 до 5 градусов.

Оба указанных технических решения на основе Фиг.7 и Фиг.8 помимо удешевления устройства и устранения влияния фактора 1/r решают и задачу влияния прозрачности щелей многощелевого коллиматора на конечный результат реконструкции, поскольку многощелевой коллиматор в них попросту отсутствует.

Однако влияние многощелевого коллиматора можно избежать для дивергентного случая и при использовании детектора, состоящего из множества стрипов, не используя движущийся экран, путем устранения самого многощелевого коллиматора.

Чтобы устранить влияние различной прозрачности щелей многощелевого коллиматора для дивергентного случая, предлагается использовать коллиматор в виде отдельной протяженной щели, параллельной стрипам детектора и проделанной в непрозрачном экране, установленном на некотором расстоянии перед детектором (Фиг.10). При этом сама щель смещается относительно оси вращения системы детектор-коллиматор на угол, пропорциональный требуемому угловому разрешению, в пределах от 0 до 5 градусов. Что позволяет решить задачу устранения влияния искажения 1/r одновременно с устранением влияния прозрачности щелей коллиматора.

При этом следует отметить, что использование множества неподвижных щелей, смещенных относительно оси исследуемого объекта совместно со стрип-детекторами, известно [12], однако они находятся на расстоянии относительно оси вращения системы коллиматор-детектор, намного превышающем значение 5 градусов, и это значение не пропорционально требуемому пространственному разрешению. Это смещение определяется желанием одновременно измерять множество проекций, а не компенсировать искажения многощелевого коллиматора и искажения типа 1/r в результирующем изображении. Кроме того, щели и детекторы являются неподвижными относительно исследуемого объекта.

В предлагаемом техническом решении система детектор-коллиматор соединена со средством перемещения (вращения) ее вокруг ее оси.

Использование одной щели и отсутствие многощелевого коллиматора помимо указанных преимуществ позволяет также снизить стоимость устройства, поскольку стоимость его изготовления намного меньше, чем многощелевого.

Указанный однощелевой коллиматор можно также использовать при реализации стрип-детектора на основе координатно нечувствительного детектора большой площади и движущегося экрана (Фиг.3, Фиг.4, Фиг.5, Фиг.6). Расположение его в этом случае относительно оси вращения и ориентация аналогичны ранее указанным.

Ниже поясняется смысл использованных известных математических понятий:

"Свертка" (прямая апериодическая свертка).

При прямой апериодической свертке вместо значения апериодической функции I(x) в точке x используют ее средневзвешенное значение С(x) в диапазоне от минус до плюс бесконечности, при этом в качестве "весов" используется другая функция Н(x). В аналоговом виде такая свертка описывается интегралом свертки, в дискретном виде такая свертка описывается суммой.

"Обратная свертка" (обратная апериодическая свертка).

При обратной апериодической свертке вместо значения апериодической функции С(х) в точке х используют ее средневзвешенное значение I(х) в диапазоне от минус до плюс бесконечности, при этом в качестве "весов" используется другая функция H-1(x).

Функцию H-1(x) выбирают таким образом, чтобы компенсировать влияние прямой апериодической свертки, то есть получить неискаженное значение функции. В аналоговом виде такая свертка описывается интегралом свертки, в дискретном виде такая свертка описывается суммой. Такая процедура называется также деконволюцией.

"Циклическая свертка"

При циклической свертке вместо значения циклической (периодической) функции I(х) в точке х используют ее средневзвешенное значение С(х) в диапазоне периода повторения, при этом в качестве "весов" используется другая циклическая функция с тем же периодом повторения.

"Обратная циклическая свертка".

При обратной циклической свертке вместо значения циклической функции С(х) в точке х используют ее средневзвешенное значение I(х) в диапазоне периода повторения, при этом в качестве "весов" используется другая функция H-1(x).

Функцию Н-1(х) выбирают таким образом, чтобы компенсировать влияние прямой циклической свертки, то есть получить неискаженное значение функции. В аналоговом виде такая свертка описывается интегралом свертки, в дискретном виде такая свертка описывается суммой.

"Прямое преобразование Радона".

Прямое преобразование Радона сводится к переводу функции I(x,y) из декартовой системы координат в систему координат угловых проекций этой функции P(Q,s), где Q - угол, под которым получена проекция функции, s - координата вдоль проекции.

В аналоговом виде такое преобразование описывается интегральным уравнением, в дискретном виде - суммой.

Наглядным примером прямого преобразования Радона является получение рентгеновских снимков объекта с разных направлений вокруг объекта.

"Обратное преобразование Радона".

Обратное преобразование Радона сводится к переводу функции P(Q,s) из системы координат угловых проекций в декартову систему координат I(x,y). В аналоговом виде такое преобразование описывается сложным интегральным уравнением, в дискретном виде - специфической суммой.

Наглядным примером обратного преобразования Радона является получение томографического изображения пациента в медицинской компьютерной томографии на основе набора его рентгеновских проекций, полученных под различными углами.

Математические основы предлагаемого изобретения

1. Устранение влияния фактора 1/r в трехмерной реконструкции.

Приводимые математические соотношения по трехмерной реконструкции справедливы как для случая использования отдельной щели в качестве коллиматора, так и для случая одного стрипа и движущегося экрана. В обоих случаях возникает геометрия, эквивалентная дивергентному коллиматору. Однако в первом случае сигнал на выходе каждого стрипа представляет непосредственно плоскостной интеграл, а во втором случае плоскостной интеграл получается только после операции обратной свертки.

Будем считать, что значение плоскостного интеграла так или иначе уже измерено. Покажем, как компенсируются искажения типа 1/r в реконструируемом изображении, при отклонении фокальной точки "коллиматора" от оси вращения 25 на угол δ.

На Фиг.11А показаны проекции плоскостей интегрирования на плоскость, параллельную оси вращения 25, для угла поворота θ и угла поворота θ+180° системы детектор-коллиматор 11. Буквой а обозначены плоскости интегрирования для "крайнего стрипа", буквой b обозначены плоскости интегрирования для "n-ного стрипа". Плоскость интегрирования без смещения фокальной точки обозначена 50, плоскость интегрирования при смещении фокальной точки на угол δ обозначена 51, плоскость интегрирования при смещении фокальной точки на угол -δ обозначена 52.

На Фиг.11В показана изометрия плоскостей интегрирования для "n-ного стрипа".

Для дивергентного коллиматора значение плоскостного интеграла g(δ), в локальной системе координат привязанной к "n-ному" стрипу (Фиг.11В), при отклонении фокальной точки от оси 25 вращения системы детектор-коллиматор на угол δ равно

где f() - функция трехмерного распределения радионуклида 42 внутри исследуемого объекта 12.

Значение плоскостного интеграла g(-δ), при отклонении фокальной точки от оси вращения в другую сторону на угол -δ в локальной системе координат, равно

Если разницу двух этих значений g(δ) и g(-δ) умножить на константу

определяемую углом δ отклонения фокальной точки от оси, то получим следующее соотношение

которое можно переписать как

При этом разницу

можно трактовать как аппроксимацию частной производной функции f(), по переменной δ умноженной на константу, равную

одновременно учитывая то, что

Тогда, принимая во внимание то, что в декартовой системе координат частную производную можно вынести из под знака интеграла

разницу для двух плоскостных интегралов при противоположных углах δ можно переписать как

откуда видно, что эта разница не содержит члена, пропорционального 1/r, и аппроксимирует первую производную от функции ∫∫f(r,α,ω))rdrdα прямого преобразования Радона. В то же время известно [10], что для получения обратного преобразования Радона необходимо осуществить операцию "обратного" проецирования второй производной плоскостного интеграла

на область трехмерной реконструкции.

Таким образом, вычисляя разницу плоскостных интегралов для двух противоположных углов отклонения фокальной точки от оси вращения, мы получаем первую производную, свободную от влияния фактора 1/r.

После вычисления разницы плоскостных интегралов перекомпановываем данные в параллельную геометрию [4], затем по первой производной вычисляем вторую производную и осуществляем операцию "обратного проецирования", в результате чего получаем трехмерную реконструкцию искомой величины, свободную от влияния фактора 1/r.

В заключение добавим, что:

а. фокус для однощелевого (пинхольного) коллиматора с математической точки зрения находится там, где расположена щель,

в. фокус для одного стрипа и движущегося неоднородного экрана с математической точки зрения находится там, где расположен стрип.

Следовательно, чтобы устранить влияние фактора 1/r в трехмерной реконструкции в первом случае необходимо сдвинуть щель, а во втором случае сам стрип относительно оси вращения системы детектор-коллиматор на угол δ.

1. Аккуратное вычисление производных

Анализ выражения (10) по устранению искажающего фактора 1/r показывает, что в качестве оценки производной используется приращение функции. Но это тоже приводит к определенным искажениям. Наиболее наглядно характер искажений можно видеть в частотной области (Фиг.12).

Использование приращения функции в качестве ее производной приводит к "завалу" низких частот в оценке производной и, как следствие, к искажению результата реконструкции. Это отчетливо видно на Фиг.12, где показаны амплитудно-частотные характеристики оператора приращения - Фиг.12(А) и оператора дифференцирования - Фиг.12(В).

Чтобы устранить отличие оператора приращения от оператора дифференцирования, необходимо в частотной области умножить Фурье образ функции приращений на Фурье образ корректирующей функции

где f'() - искомая первая производная функции,

F-1[] - оператор обратного преобразования Фурье,

F[] - оператор прямого преобразования Фурье,

Δf() - функция приращений, полученная на основе вычитания измерений для двух, противоположных смещений фокальной точки,

K( Ω) - Фурье образ корректирующей функции.

где D( Ω) - Фурье образ оператора дифференцирования,

K( Ω) - Фурье образ оператора приращения.

При этом в качестве Фурье образа оператора дифференцирования D(ω) необязательно использовать "чистое" дифференцирование, показанное на Фиг.12(В). Возможно использование различных "регуляризирующих" вариантов [6] для повышения точности реконструкции - Фиг.12(С), суть которых сводится к некоторому сглаживанию результата реконструкции.

Полученная таким образом первая производная позволит производить реконструкцию с устранением фактора 1/r и без "завала" нижних частот в реконструированном изображении.

Аналогичным образом после перекомпоновки данных из веерной геометрии в параллельную [4], следует вычислять вторую производную, используя не приращение, а оператор дифференцирования.

При этом в качестве оператора дифференцирования также можно использовать не чистое дифференцирование - Фиг.12В, а различные варианты регуляризации - Фиг.12С, как и при вычислении первой производной. Оценка второй производной, особенно в шумах, станет точнее, улучшится точность реконструкции.

3. Двумерная реконструкция

В предлагаемом техническом решении помимо трехмерной реконструкции можно осуществлять и двухмерную реконструкцию трехмерного распределения радионуклида на плоскость детектора для всех вариантов технического решения. В этом случае плоскостные интегралы проецируются на плоскость детектора в виде линий, и реконструкция от плоскостных интегралов переходит к реконструкции линейных интегралов. В этом случае реконструкцию производят для обратного преобразования Радона для линейных интегралов и "параллельной геометрии". Термин "параллельная геометрия" является устоявшимся и широко используется в трансаксиальной томографии.

В нашем случае (Фиг.1) данное преобразование сводится к получению набора проекций Rθ(x') плоскостных интегралов на плоскость детектора для различных углов θ поворота системы детектор-коллиматор

где I(x,y) - проекция трехмерного распределения радионуклида на плоскость детектора.

Оси x' и y' задаются поворотом на угол θ против часовой стрелки в плоскости детектора, перпендикулярной оси 25:

с последующим восстановлением изображения проекции трехмерного распределения радионуклида на плоскость детектора из набора проекций, то есть получению обратного R-1 преобразования Радона [6], которое в операторном виде может быть записано как

где Dy - оператор частной производной по первой переменной;

Нy - оператор преобразования Гильберта;

В - оператор обратного проецирования.

За более детальным описанием прямого и обратного преобразования Радона для линейных интегралов при параллельной геометрии следует обратиться к указанному ранее источнику [6]. Там же можно найти несколько дискретных вариантов реализации обратного преобразования Радона для параллельной геометрии, называемых обычно алгоритмами реконструкции [6] и используемых в цифровых вычислительных машинах.

Здесь же важно отметить, что плоскостные интегралы (и их линейные проекции) содержат искажающий фактор, пропорциональный 1/r, поэтому получаемое двумерное реконструируемое изображение будет содержать также этот фактор. С этим можно мириться, считая что для двумерного случая это непринципиально, так как все слои трехмерного распределения сложены "в одну стопку" как в рентгеновском снимке. Отличие от рентгеновского снимка состоит лишь в том, что "вклад" каждого слоя зависит от расстояния, на котором находится слой от плоскости детектора. Но можно и не мириться, считая, что двумерная реконструкция может использоваться далее при получении трехмерного результата восстановления. В этом случае влияние фактора 1/r необходимо устранить. После устранения фактора 1/r двумерная реконструкция будет аналогична обычному рентгеновскому снимку, где влияние 1/r отсутствует.

Решить эту проблему можно также как для трехмерного случая, используя разницу двух измерений (приращение функции), проведенных при различных углах смещения фокуса коллиматора. Однако для двумерного случая требуется первая производная, а не втора