Передача с нарастающей избыточностью для многочисленных параллельных каналов в системе связи с многими входами и многими выходами (мвмв)

Иллюстрации

Показать все

Изобретение относится к технике связи. Технический результат состоит в обеспечении передачи с нарастающей избыточностью по многочисленным параллельным каналам в системе с МВМВ. Для этого передатчик обрабатывает (например, кодирует, разделяет, перемежает и модулирует) каждый пакет данных для каждого параллельного канала, основываясь на скорости, выбранной для параллельного канала, и получает многочисленные блоки символов для пакета. Для каждого пакета данных передатчик передает один блок символов за один раз по своему параллельному каналу до тех пор, пока приемник не восстановит пакет, или пока не будут переданы все блоки. Приемник выполняет детектирование и получает блоки символов, переданные по параллельным каналам. Приемник восстанавливает пакеты данных, переданные по параллельным каналам независимо или в назначенном порядке. Приемник обрабатывает (например, демодулирует, деперемежает, выполняет повторную сборку и декодирует) все блоки символов, полученные для каждого пакета данных, и выдает декодированный пакет. Приемник может оценивать и подавлять помехи, обусловленные восстановленными пакетами данных, так что восстанавливаемые позже пакеты данных могут достигать более высоких ОСШП. 7 н. и 56 з.п. ф-лы, 15 ил., 2 табл.

Реферат

Настоящая заявка претендует на приоритет предварительной заявки США № 60/501 776, озаглавленной «H-ARQ for MIMO Systems with Successive Interference Cancellation» (Гибридный автоматический запрос на повторение (ГАЗП) для систем с МВМВ и последовательным подавлением помех), поданной 9 сентября 2003 г., и заявки США № 60/531 393, озаглавленной «Incremental Redundancy Transmission for Multiple Parallel Channels in a MIMO Communication System» (Передача с нарастающей избыточностью для многочисленных параллельных каналов в системе связи с МВМВ), поданной 19 декабря 2003 г., правопреемником которых является правопреемник настоящей заявки, и которые включены в данную заявку по ссылке во всей своей полноте для всех целей.

Область техники, к которой относится изобретение

Настоящее изобретение относится, в основном, к связи и, более конкретно, к методам передачи данных по многочисленным параллельным каналам в системе связи со многими входами и многими выходами (МВМВ).

Уровень техники

В системе с МВМВ используются многочисленные (NT) передающие антенны и многочисленные (NR) приемные антенны для передачи данных, и она обозначается как (NT, NR)-система. Канал с МВМВ, образованный NT передающими и NR приемными антеннами, может быть разложен на NS пространственных каналов, где NS ≤ min {NT, NR}, как описано ниже. NS потоков данных могут передаваться по NS пространственным каналам. Система с МВМВ может обеспечивать повышенную пропускную способность, если NS пространственных каналов, создаваемых многочисленными передающими и приемными антеннами, используются для передачи данных.

Главной проблемой в системе с МВМВ является выбор подходящих скоростей для передачи данных по каналу с МВМВ, основываясь на режиме канала. «Скорость» может указывать конкретную скорость передачи данных или скорость передачи информационных битов, конкретную схему кодирования, конкретную схему модуляции, конкретный размер пакета данных и т.д. Цель выбора скорости заключается в максимизировании общей пропускной способности по NS пространственным каналам, в то же время удовлетворяя определенным требованиям на качество, которые могут измеряться целевой вероятностью ошибки на пакет (ВОП) (например, 1% ВОП) или некоторыми другими мерами.

Пропускная способность каждого пространственного канала зависит от отношения сигнала к сумме шума и помех (ОСШП), достигаемого этим пространственным каналом. ОСШП для NS пространственных каналов зависят от режима канала и могут дополнительно зависеть от того, как потоки данных восстанавливаются в приемнике. В одной обычной системе с МВМВ передатчик кодирует, модулирует и передает каждый поток данных в соответствии со скоростью, выбранной на основе модели статического канала с МВМВ. Могут достигаться хорошие рабочие характеристики, если модель является точной, и если канал с МВМВ является относительно статичным (т.е. не сильно меняется во времени). В другой обычной системе с МВМВ приемник оценивает канал с МВМВ, выбирает подходящую скорость для каждого пространственного канала, основываясь на оценках канала, и посылает NS выбранных скоростей для NS пространственных каналов передатчику. Передатчик затем обрабатывает NS потоков данных в соответствии с выбранными скоростями и передает эти потоки по NS пространственным каналам. Рабочие характеристики этой системы зависят от природы канала с МВМВ и точности оценок каналов.

Для обоих обычных систем с МВМВ, описанных выше, передатчик обрабатывает и передает каждый пакет данных для каждого пространственного канала со скоростью, выбранной для этого пространственного канала. Приемник декодирует каждый пакет данных, принятый по каждому пространственному каналу, и определяет, правильно ли декодируется пакет или с ошибкой. Приемник может послать обратно подтверждение приема (ПП), если пакет декодируется правильно, или неподтверждение приема (НПП), если пакет декодируется с ошибкой. Передатчик может повторно передавать каждый пакет данных, декодированный с ошибкой приемником, полностью при приеме НПП для пакета.

Рабочие характеристики обеих систем с МВМВ, описанных выше, сильно зависят от точности выбора скорости. Если выбранные скорости для пространственных каналов являются слишком осторожными (например, так как фактические ОСШП значительно выше, чем оценки ОСШП), тогда избыточные ресурсы системы тратятся на передачу пакетов данных, и происходит недоиспользование пропускной способности канала. И наоборот, если выбранные скорости для пространственных каналов слишком агрессивные, тогда пакеты данных могут декодироваться с ошибкой приемником, и ресурсы системы могут расходоваться на повторную передачу этих пакетов. Выбор скорости для системы с МВМВ является проблемой из-за (1) большей сложности при оценке канала для канала с МВМВ, (2) изменяющейся во времени и независимой природы пространственных каналов и (3) взаимосвязи многочисленных потоков данных, передаваемых по пространственным каналам.

Существует, поэтому, потребность в способах эффективной передачи данных по многочисленным пространственным каналам в системе с МВМВ, которые не требуют точного выбора скорости для достижения хороших рабочих характеристик.

Раскрытие изобретения

В данном документе представлены методы для выполнения передачи с нарастающей избыточностью (НИ) по многочисленным (ND) параллельным каналам в системе с МВМВ. Эти параллельные каналы могут формироваться (1) посредством многочисленных пространственных каналов в системе с МВМВ, (2) таким образом, при котором в них достигаются подобные ОСШП, или (3) некоторым другим образом. Первоначально, приемник или передатчик в системе с МВМВ оценивает ОСШП для ND параллельных каналов и выбирает ND скоростей для этих параллельных каналов. ОСШП могут зависеть от различных факторов, таких как схема передачи, используемая передатчиком, обработка, выполняемая приемником и т. д. Передатчику предоставляются выбранные скорости, если приемник выполняет выбор скорости.

Передатчик обрабатывает (например, кодирует, разделяет, перемежает и модулирует) каждый пакет данных для каждого параллельного канала, основываясь на скорости, выбранной для этого канала, и получает многочисленные (NB) блоки символов данных для пакета. Первый блок символов данных обычно содержит достаточную информацию для восстановления приемником пакета данных при благоприятном режиме канала. Каждый из оставшихся блоков символов данных содержит дополнительную избыточность, позволяющую приемнику восстанавливать пакет данных при менее благоприятном режиме канала. Для каждого пакета данных передатчик передает один блок символов данных за один раз, пока не будут переданы все блоки для пакета. Передатчик заблаговременно завершает передачу пакета данных, если пакет восстановлен (т. е. успешно декодирован) приемником при меньшем количестве, чем все блоки символов данных.

Приемник выполняет детектирование NR последовательностей принятых символов и получает блок детектированных символов для каждого блока символов данных, переданного передатчиком. Последующая обработка зависит от того, являются ли параллельные каналы независимыми или взаимозависимыми.

ND параллельных каналов являются независимыми, если передача данных по каждому параллельному каналу не зависит от передачи данных по другим параллельным каналам. В этом случае, для каждого пакета данных по каждому параллельному каналу приемник обрабатывает (например, демодулирует, деперемежает, выполняет повторную сборку и декодирует) все блоки детектированных символов, полученные для пакета данных, и выдает декодированный пакет. Приемник может послать обратно ПП, если декодированный пакет является хорошим, и НПП, если декодированный пакет с ошибкой. Приемник завершает обработку для каждого пакета данных, который восстановлен, или если все блоки символов данных были приняты для пакета.

ND параллельных каналов являются взаимозависимыми, если передача данных по каждому параллельному каналу зависит от передачи данных по другим параллельным каналам. Это является случаем, если приемник использует метод обработки с «последовательным подавлением помех» (ППП) для получения блоков детектированных символов. При помощи ППП, всякий раз когда пакет данных восстанавливается на параллельном канале, помехи, которые этот пакет вызывают для еще не принятых пакетов данных по другим параллельным каналам, оцениваются и подавляются до выполнения детектирования с целью получения блоков детектированных символов для этих других пакетов данных. ОСШП для восстанавливаемых позднее пакетов данных, таким образом, являются более высокими, и более высокие скорости могут быть выбраны для этих пакетов. Пакеты данных затем восстанавливаются приемником в определенном порядке, определяемом на основе их выбранных скоростей, так что могут быть получены ОСШП, необходимые для восстановления этих пакетов данных.

Для схемы «упорядоченной» передачи с ППП, если пакет данных по данному параллельному каналу х восстанавливается ранее ожидаемого момента, тогда доступен один из нескольких вариантов. Во-первых, передатчик может ничего не передавать по параллельному каналу х и использовать большую или всю мощность излучения для пакетов данных, которые еще не восстановлены. Во-вторых, передатчик может передавать новый «короткий» пакет данных по параллельному каналу х. Короткий пакет, как ожидается, будет восстановлен в тот момент, когда должен быть восстановлен следующий пакет данных, или перед ним. В-третьих, передатчик может передавать новый «длинный» пакет данных по параллельному каналу х. Длинный пакет, как ожидается, будет восстановлен после того момента, когда должен быть восстановлен следующий пакет данных. Один из этих вариантов может быть выбран, основываясь на метрике, которая сравнивает пропускные способности с передачей пакета и без передачи пакета по параллельному каналу х после преждевременного завершения.

Для схемы передачи с ППП и «циклическим повтором», всякий раз когда пакет данных восстанавливается для параллельного канала, передатчик передает новый пакет данных по этому параллельному каналу, и приемник циклически переходит к следующему параллельному каналу и пытается восстановить пакет данных на этом следующем параллельном канале.

ППП и другие схемы передачи описываются ниже. Различные аспекты и варианты осуществления изобретения также более подробно описываются ниже.

Краткое описание чертежей

Отличительные признаки и сущность настоящего изобретения станут более очевидными из подробного описания, изложенного ниже, рассматриваемого совместно с чертежами, на которых аналогичные позиции определяют аналогичным образом на всех чертежах и на которых:

фиг.1 изображает блок-схему передатчика и приемника в системе с МВМВ, которая реализует передачу с НИ для многочисленных (ND) параллельных каналов;

фиг.2 изображает процесс выполнения передач с НИ для параллельных каналов;

фиг.3 иллюстрирует передачу с НИ для одного потока данных по одному параллельному каналу;

фиг.4 изображает схему передачи для системы ортогонального частотного разделения каналов (ОЧРК) с МВМВ;

фиг.5 иллюстрирует передачу с НИ для ND независимых параллельных каналов;

фиг.6А-6С иллюстрируют схему упорядоченной передачи с ППП с тремя различными вариантами для преждевременного завершения пакета данных по одному параллельному каналу;

фиг.7 изображает графики ВОП для Пакета 1b и Пакета 2а в зависимости от количества циклов передачи для Пакета 2а;

фиг.8 изображает диаграмму состояний для схемы упорядоченной передачи с ППП;

фиг.9А и 9В иллюстрируют схему передачи с ППП и циклическим повтором;

фиг.10 изображает процессор данных передачи (ТХ) на передатчике;

фиг.11 иллюстрирует обработку одного пакета данных передатчиком;

фиг.12 изображает пространственный процессор ТХ и передающий узел в передатчике;

фиг.13 изображает один вариант осуществления приемника;

фиг.14 изображает процессор данных приема (RX) в приемнике по фиг.13; и

фиг.15 изображает приемник, который реализует способ ППП.

ПОДРОБНОЕ ОПИСАНИЕ

Слово «примерный» в данном документе используется для того, чтобы означать «служащий в качестве примера, варианта или иллюстрации». Любой вариант осуществления или разработка, описанные в данном документе в качестве «примерных», необязательно следует толковать как предпочтительный или выгодный относительно других вариантов осуществления или разработок.

Для системы с МВМВ ND потоков данных могут передаваться одновременно по ND параллельным каналам, один поток данных по каждому параллельному каналу, где ND>1. Каждый параллельный канал может соответствовать пространственному каналу или может быть сформирован некоторым другим образом, как описано ниже. Каждый поток данных может обрабатываться независимо, основываясь на скорости, выбранной для этого потока данных, и передаваться по своему параллельному каналу.

Фиг.1 изображает блок-схему передатчика 110 и приемника 150 в системе 100 с МВМВ, которая реализует передачу с НИ для многочисленных потоков данных по многочисленным параллельным каналам. В передатчике 110 процессор 120 данных ТХ принимает ND потоков данных от источника 112 данных. Процессор 120 данных ТХ обрабатывает (например, форматирует, кодирует, разделяет, перемежает и модулирует) каждый пакет данных в каждом потоке данных в соответствии со скоростью, выбранной для этого потока данных, и выдает NB блоков символов данных для пакета, где NB>1 и может зависеть от выбранной скорости. Каждый блок символов данных может передаваться в одном временном интервале (или просто «интервале»), который представляет собой предопределенный период времени для системы 100 с МВМВ. Выбранная скорость для каждого потока данных может указывать скорость передачи данных, схему кодирования или скорость кодирования, схему модуляции, размер пакета, количество блоков символов данных и т. п., которые указываются различными сигналами управления, выдаваемыми контроллером 140. Выбранная скорость для каждого потока данных может быть статической или непрерывно обновляться (например, основываясь на режиме канала). Для передачи с НИ данного потока данных блоки символов данных для каждого пакета данных этого потока данных передаются одним блоком за один раз до тех пор, пока пакет не будет восстановлен приемником 150, или не будут переданы все блоки.

Пространственный процессор 130 ТХ принимает ND потоков символов данных от процессора 120 данных ТХ. Каждый поток символов данных включает в себя набор блоков символов данных для каждого пакета данных в соответствующем потоке данных. Пространственный процессор 130 ТХ выполняет обработку (например, демультиплексирование, пространственную обработку и т. п.) для передачи ND потоков символов данных от NT передающих антенн. Могут быть реализованы различные схемы передачи, как описано ниже. В зависимости от схемы передачи, выбранной для использования, до ND блоков символов данных для до ND потоков данных передаются одновременно по до ND параллельным каналам в любом данном интервале. Пространственный процессор 130 ТХ также мультиплексирует пилот-символы, которые используются для оценки канала приемником 150, и выдает NT потоков символов передачи на передающий узел 132 (TMTR).

Передающий узел 132 принимает и приводит в определенное состояние (например, преобразует в аналоговую форму, преобразует с повышением частоты, фильтрует и усиливает) NT потоков символов передачи для получения NT модулированных сигналов. Каждый модулированный сигнал затем передается от соответствующей передающей антенны (не показана на фиг.1) и по каналу с МВМВ на приемник 150. Канал с МВМВ искажает NT передаваемых сигналов в соответствии с характеристикой канала с МВМВ и дополнительно ухудшает передаваемые сигналы аддитивным белым гауссовым шумом и, возможно, помехами от других передатчиков.

В приемнике 150 NT передаваемых сигналов принимаются каждой из NR приемных антенн (не показаны на фиг.1), и NR принятых сигналов от NR приемных антенн подаются на приемный узел (RCVR) 154. Приемный узел 154 приводит в определенное состояние, оцифровывает и выполняет предварительную обработку каждого принимаемого сигнала для получения потока принятых символов. Приемный узел 154 подает NR потоков принятых символов (для данных) на пространственный процессор 160 RX и принятые пилот-символы (для пилот-сигнала) на узел 172 оценки канала. Пространственный процессор 160 RX обрабатывает (например, детектирует, мультиплексирует, демультиплексирует и т. п.) NR потоков принятых символов для получения ND потоков детектированных символов, которые представляют собой оценки ND потоков символов данных, посылаемых передатчиком 110.

Процессор 170 данных RX принимает и обрабатывает ND потоков детектированных символов для получения ND потоков декодированных данных, которые представляют собой оценки ND потоков данных, посылаемых передатчиком 110. Для каждого пакета данных каждого потока данных процессор 170 данных RX обрабатывает (например, демодулирует, деперемежает, выполняет повторную сборку и декодирует) все блоки символов данных, принимаемых для этого пакета данных в соответствии с выбранной скоростью, и выдает декодированный пакет, который представляет собой оценку пакета данных. Процессор 170 данных RX также выдает состояние каждого декодированного пакета, которое указывает, правильно ли декодирован пакет или с ошибкой.

Узел 172 оценки канала обрабатывает принятые пилот-символы и/или принятые символы данных для получения оценок канала (например, оценок коэффициента усиления канала и оценок ОСШП) для ND параллельных каналов. Селектор 174 скорости принимает оценки канала и выбирает скорость для каждого из ND параллельных каналов. Контроллер 180 принимает ND выбранных скоростей от селектора 174 скорости и состояние пакета от процессора 170 данных RX и выполняет сборку информации обратной связи для передатчика 110. Информация обратной связи может включать в себя ND выбранных скоростей, ПП и НПП для декодированных пакетов и т.п. Информация обратной связи обрабатывается пространственным процессором 190 данных ТХ, дополнительно приводится в определенное состояние передающим узлом 192 и передается по каналу обратной связи на передатчик 110.

В передатчике 110 сигнал(ы), передаваемый приемником 150, принимается и приводится в определенное состояние приемным узлом 146 и дополнительно обрабатывается пространственным процессором 148 данных RX для получения информации обратной связи, посылаемой приемником 150. Контроллер 140 принимает информацию обратной связи, использует ПП/НПП для управления передачей с НИ текущих пакетов данных, посылаемых по ND параллельным каналам, и использует ND выбранных скоростей для обработки новых пакетов данных, подлежащих посылке по ND параллельным каналам.

Контроллеры 140 и 180 управляют работой в передатчике 110 и приемнике 150, соответственно. Узлы 142 и 182 памяти обеспечивают хранение программных кодов и данных, используемых контроллерами 140 и 180, соответственно. Узлы 142 и 182 памяти могут быть внутренними для контроллеров 140 и 180, как показано на фиг.1, или внешними для этих контроллеров. Узлы обработки, показанные на фиг.1, подробно описываются ниже.

Фиг.2 изображает блок-схему последовательности операций процесса 200 для выполнения передач с НИ для ND потоков данных по ND параллельным каналам в системе с МВМВ. Первоначально, приемник оценивает ND параллельных каналов, основываясь на пилот-сигнале и/или символах данных, принимаемых от передатчика (этап 210). Приемник выбирает скорость для каждого из ND параллельных каналов, основываясь на оценках каналов, и посылает ND выбранных скоростей на передатчик (этап 212). Передатчик принимает ND выбранных скоростей и обрабатывает пакеты данных для ND потоков данных в соответствии с ND выбранными скоростями для получения ND потоков символов данных (этап 220). Передатчик может форматировать, кодировать, разделять, перемежать и модулировать каждый пакет данных каждого потока данных в соответствии со скоростью, выбранной для этого потока данных, для получения NB блоков символов данных для пакета данных. Передатчик затем передает ND потоков символов данных по ND параллельным каналам (этап 222). Например, передатчик может передавать один блок символов данных за один раз для каждого пакета данных каждого потока данных до тех пор, пока не будут переданы все блоки символов данных или не будет принят ПП для пакета данных. Различные схемы передачи могут использоваться для передачи с НИ ND потоков данных, как описано ниже.

Приемник принимает ND потоков символов данных от передатчика при помощи NR приемных антенн и обрабатывает NR потоков принятых символов для получения ND потоков детектированных символов (этап 230). Приемник затем обрабатывает ND потоков детектированных символов и восстанавливает пакеты данных, переданные передатчиком (этап 232). Для каждого интервала приемник может предпринимать попытку восстановления текущего пакета данных, передаваемого для каждого из ND потоков данных. Например, всякий раз, когда получается новый блок детектированных символов для пакета данных, приемник может демодулировать, деперемежать, выполнять повторную сборку и декодировать все блоки детектированных символов, принятые для этого пакета, для получения декодированного пакета. Приемник также проверяет каждый декодированный пакет для определения, правильно ли декодирован (хороший ли) пакет или с ошибкой (стерт) (также этап 232).

Обратная связь ПП/НПП может достигаться различным образом. В одном варианте осуществления приемник посылает НПП для каждого декодированного пакета, который стерт, и передатчик использует эту обратную связь для передачи следующего блока символов данных для стертого пакета. В другом варианте осуществления передатчик посылает один блок символов данных за один раз для каждого пакета данных до тех пор, пока не будет принято ПП для пакета от приемника (приемник может посылать обратно и может не посылать обратно НПП). В любом случае, приемник завершает обработку для каждого пакета данных, который восстановлен, или если были приняты все блоки символов данных для пакета (этап 234).

Фиг.2 изображает характерный вариант осуществления передачи с НИ для ND потоков данных по ND параллельным каналам. Передача с НИ для многочисленных параллельных каналов также может выполняться другим образом, и это находится в рамках объема изобретения.

Фиг.3 иллюстрирует передачу с НИ для одного потока данных (обозначенного как Поток i) по одному параллельному каналу (обозначенному как Канал i). Приемник оценивает Канал i, выбирает скорость ri,1 для Канала i, основываясь на оценках канала, и посылает выбранную скорость передатчику в интервале 0. Передатчик принимает выбранную скорость, обрабатывает пакет (Пакет 1) данных для Потока i в соответствии с выбранной скоростью и передает первый блок (Блок 1) символов данных для Пакета 1 в интервале 1. Приемник принимает и обрабатывает Блок 1, определяет, что Пакет 1 декодируется с ошибкой, и посылает обратно НПП в интервале 2. Передатчик принимает НПП и передает второй блок (Блок 2) символов данных для Пакета 1 в интервале 3. Приемник принимает Блок 2, обрабатывает Блоки 1 и 2, определяет, что Пакет 1 все еще декодируется с ошибкой, и посылает обратно НПП в интервале 4. Передача блоков и ответное НПП могут повторяться любое количество раз. В примере, показанном на фиг.3, передатчик принимает НПП для блока NX-1 символов данных и передает блок NX (Блок NX) символов данных для Пакета 1 в интервале m, где NX меньше или равен общему количеству блоков для Пакета 1. Приемник принимает Блок NX, обрабатывает все NX блоков символов данных, принятых для Пакета 1, определяет, что пакет декодирован правильно, и посылает обратно ПП в интервале m+1. Приемник также оценивает Канал i, выбирает скорость ri,2 для следующего пакета данных для Потока i и посылает выбранную скорость передатчику в интервале m+1. Передатчик принимает ПП для Блока NX и завершает передачу Пакета 1. Передатчик также обрабатывает следующий пакет (Пакет 2) данных в соответствии с выбранной скоростью ri,2 и передает первый блок символов данных для Пакета 2 в интервале m+2. Обработка в передатчике и приемнике для Пакета 2 продолжается аналогично тому, как описано для Пакета 1.

Для варианта осуществления, показанного на фиг.3, существует задержка на один интервал для ответного ПП/НПП от приемника для передачи каждого блока. Чтобы улучшить использование канала, могут передаваться многочисленные пакеты данных для каждого потока данных чередующимся образом. Например, один пакет данных может передаваться в интервалах с нечетными номерами, и другой пакет данных может передаваться в интервалах с четными номерами. Более двух пакетов данных также могут чередоваться, если задержка ПП/НПП больше одного интервала.

ND параллельных каналов в системе с МВМВ могут формироваться различным образом, как описано ниже. Кроме того, в зависимости от обработки, выполняемой на приемнике, ND параллельных каналов могут быть независимыми один от другого или взаимозависимыми. Для независимых параллельных каналов передача с НИ для каждого потока данных может выполняться независимо от передачи с НИ для других потоков данных или с учетом ее. Для взаимозависимых параллельных каналов передача с НИ для каждого потока данных зависит от передачи с НИ для других потоков данных.

1. Передача с НИ для многочисленных независимых параллельных каналов

Различные схемы передачи могут использоваться для передачи ND потоков данных одновременно по ND параллельным каналам, где ND>1. Некоторые примерные схемы передачи описываются ниже. Для простоты, в следующем описании предполагается полноранговый канал с МВМВ и ND ≤ NS = NT ≤ NR.

В первой схеме передачи один поток данных передается от каждой из NT передающих антенн без какой-либо пространственной обработки на передатчике. Модель для этой схемы передачи может быть выражена как:

Ур.(1)

где s представляет собой вектор данных {NT×1} с NT элементами для символов данных;

rnsp представляет собой вектор приема {NR×1} с NR элементами для NR принятых символов, полученных при помощи NR приемных антенн;

H представляет собой матрицу характеристики канала {NR×NT} для канала с МВМВ; и

n представляет собой вектор аддитивного белого гауссова шума (АБГШ).

Вектор s включает в себя NT элементов для NT передающих антенн, причем ND элементов устанавливаются равными ND символам данных для ND потоков данных, и оставшиеся NT - ND элементов устанавливаются в нуль. Вектор n, как предполагается, имеет нулевое среднее и ковариационную матрицу , где σ2 представляет собой дисперсию шума, и I представляет собой единичную матрицу с единицами по диагонали и нулями во всех других местах.

Вследствие рассеяния в канале с МВМВ, ND потоков данных, передаваемых от NT передающих антенн, создают помехи друг другу в приемнике. Поток данных, передаваемый от данной передающей антенны, может приниматься всеми NR приемными антеннами с различными амплитудами и фазами. Принимаемый сигнал для каждой приемной антенны тогда включает в себя компоненту каждого из ND потоков данных.

Приемник может оценивать вектор s данных, основываясь на различных схемах пространственной и пространственно-временной обработки (т. е. «детектирования»). Например, приемник может оценивать вектор s данных при помощи детектора оптимального сложения (ОС), детектора по минимальной среднеквадратической ошибке (МСКО), линейного детектора с форсированием нуля (ФН) (который также упоминается как детектор с обращением корреляционной матрицы канала (ОКМК)), линейного корректора по МСКО, корректора с решающей обратной связью или некоторого другого детектора/корректора. Пространственная обработка для некоторых этих детекторов описывается ниже.

Пространственная обработка для детектора ОС может быть выражена как:

Ур. (2)

где Wmrc представляет собой характеристику детектора ОС, которая представляет собой Wmrc=H;

представляет собой вектор {NT×1} для NT детектированных символов от детектора ОС; и

«Н» обозначает сопряженный результат транспозиции.

Пространственная обработка для детектора по МСКО может быть выражена как:

Ур. (3)

где Wmmse=(HHH + σ2I)-1H для детектора по МСКО.

Пространственная обработка для детектора с форсированием нуля может быть выражена как:

Ур. (4)

где Wzf=H(HHH)-1 для детектора с форсированием нуля. Для первой схемы передачи каждый пространственный канал соответствует соответствующей передающей антенне.

Во второй схеме передачи один поток данных передается по каждой «собственной моде» канала с МВМВ. Матрица H характеристики канала может быть разложена с использованием или разложения по особым значениям, или разложения по собственным значениям для получения NS собственных мод канала с МВМВ. NS собственных мод канала с МВМВ ортогональны друг другу, и улучшенные рабочие характеристики могут быть достигнуты посредством передачи многочисленных потоков данных при помощи этих собственных мод. Разложение по особым значениям матрицы H характеристики канала может быть выражено как:

H=UΣVHУр. (5)

где U представляет собой единичную матрицу {NR×NR} левых собственных векторов H;

Σ представляет собой диагональную матрицу {NR×NT} особых значений H; и

V представляет собой единичную матрицу {NT×NT} правых собственных векторов H.

Единичная матрица характеризуется свойством MHM=I. Единичные матрицы V и U используются для пространственной обработки передатчиком и приемником, соответственно, для передачи ND потоков данных по NS собственным модам канала с МВМВ.

Передатчик выполняет пространственную обработку при помощи матрицы V следующим образом:

xsvd=VsУр. (6)

где xsvd представляет собой вектор {NT×1} с NT элементами для NT символов передачи, посылаемых с NT передающих антенн. Вектор приема тогда определяется как rsvd=HVs+n. Приемник выполняет пространственную обработку при помощи матрицы U следующим образом:

Ур. (7)

Для второй схемы передачи каждый пространственный канал соответствует соответствующей собственной моде. NS собственных мод могут рассматриваться как ортогональные пространственные каналы, полученные посредством разложения.

Для первой и второй схем передачи ND потоков данных могут достигать различных и, возможно, изменяющихся в значительной степени ОСШП «после обработки» или «после детектирования», которые представляют собой ОСШП, достигаемые после линейного детектирования приемником (например, при помощи детектора по МСКО, с форсированием нуля или оптимального сложения). Тогда требуются различные скорости для потоков данных.

В третьей схеме передачи передается каждый из ND потоков данных из всех NT символов передачи, так что все потоки данных испытывают аналогичные режимы канала и достигают аналогичных ОСШП после обработки. Тогда могут использоваться одинаковые или подобные скорости для ND потоков данных. Для этой схемы передатчик выполняет перемножение матриц вектора s данных с базисной матрицей передачи и диагональной матрицей следующим образом:

xtbm=MΛsУр. (8)

где xtbm представляет собой вектор {NT×1} с NT символами передачи для NT передающих антенн;

M представляет собой базисную матрицу {NT×NT} передачи, которая является единичной матрицей; и

Λ представляет собой диагональную матрицу {NT×NT}.

Базисная матрица M передачи делает возможным посылку каждого потока данных от всех NT передающих антенн и дополнительно делает возможным использование полной мощности Pant каждой передающей антенны для передачи данных. Матрица M может определяться как , где E представляет собой матрицу Уолша-Адамара. Матрица M также может определяться как , где F представляет собой матрицу дискретного преобразования Фурье (ДПФ) с (m,n)-элементом, определенным как , где m представляет собой индекс строки, и n представляет собой индекс столбца для матрицы F, причем m=1...NT и n=1...NT. Диагональная матрица Λ включает в себя ND ненулевых элементов по диагонали и нули во всех других местах. Эти ND ненулевых элементов могут использоваться для назначения различной мощности излучения ND потокам данных, в то же время соответствуя ограничению на полную мощность излучения Pant для каждой передающей антенны.

«Эффективная» характеристика канала, наблюдаемая приемником для этой схемы передачи, равна Heff=HM. Приемник может оценивать вектор s данных, используя детектор/корректор ОС, по МСКО, с форсированием нуля или некоторый другой, где характеристика W детектора (которой может быть Wmrc, Wmmse или Wzf) вычисляется при помощи матрицы Heff эффективной характеристики канала вместо матрицы H характеристики канала. Третья схема передачи подробно описывается в заявке на патент США с передачей права на совместное использование № 10/367 234, озаглавленной «Rate Adaptive Transmission Scheme for MIMO Systems» (Схема адаптивной к скорости передачи для систем с МВМВ), поданной 14 февраля 2003 г.

Третья схема передачи может передавать любое количество потоков данных одновременно с NT передающих антенн (т. е. 1≤ND≤NS), позволяет ND параллельным каналам достигать подобных ОСШП после обраб