Способ параллельного окисления диоксида серы и его применение в производстве тетрабромфталевого ангидрида
Иллюстрации
Показать всеИзобретения относится к способам получения триоксида серы и тетрабромфталевого ангидрида. Триоксид серы получают способом, в котором первый газовый поток, содержащий SO2, SO3 и кислород и/или воздух, подают в слой ванадийсодержащего катализатора, в котором SO2 окисляется в SO3 и который выделяет второй газовый поток, содержащий триоксид серы. Этот способ усовершенствуют подачей испаренной серы в первый газовый поток, так что образующуюся смесь подают через существенную часть слоя катализатора, и выдерживают слой катализатора при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С. Сера окисляется до SO2. Как результат, второй газовый поток, выделяемый из нижнего конечного участка слоя катализатора, обогащен триоксидом серы, который может быть использован для производства соединений, таких как тетрабромфталевый ангидрид. Изобретения позволяют повысить эффективность процессов. 7 н. и 27 з.п. ф-лы, 5 ил., 2 табл.
Реферат
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение относится к улучшенной технологии способа окисления диоксида серы в триоксид серы и к усовершенствованным процессам, в которых участвует окисление диоксида серы в триоксид серы.
УРОВЕНЬ ТЕХНИКИ
Известно окисление диоксида серы до триоксида серы с применением кислорода или воздуха и подходящего катализатора, такого как пентоксид ванадия. Такую стадию окисления обычно включают в контактный способ получения серной кислоты. Кроме того, ранее было осуществлено пропускание газообразного потока, содержащего диоксид серы, воздух и некоторое количество триоксида серы, через слой ванадийсодержащего катализатора производства серной кислоты, такого как катализатор, предпочтительно используемый в практике данного изобретения, поддерживаемый при приблизительно 824-1100°F (приблизительно 440-593°С), чтобы окислить диоксид серы до триоксида серы. Далее, известно, что сера может быть окислена в диоксид серы подходящим окислителем, таким как воздух (самовоспламенение 261°С) или кислород (меньше чем 260°С). Однако конверсия диоксида серы в триоксид серы требует температурно-активируемого катализатора, такого как ванадийсодержащий катализатор, например пентоксид ванадия или ему подобный.
В книге авторов Latimer и Hildebrand, The Reference Book of Inorganic Chemistry, revised edition, copyrighted in 1940 by The Macmillan Company, New York, на странице 246 в отношении контактного процесса заявлено, что "Один из факторов успешного выполнения процесса - удаление из диоксида серы всех примесей, которые могут ′отравить′ катализатор и сделать его неактивным. Особенно важно удалить следы твердой серы, диоксида селена, ртути и соединений фосфора и мышьяка."
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В одном из вариантов данное изобретение обеспечивает улучшенный способ, в котором газообразный поток, содержащий диоксид серы, триоксид серы и кислород и/или воздух, пропускают через слой ванадийсодержащего катализатора, осуществляя с ним контакт, такого как ванадийоксидный катализатор (обычно пентоксид ванадия), и предпочтительно со слоем смеси комплексных неорганических солей (оксосульфатованадатов), содержащим соли натрия, калия и ванадия на кристаллическом кремнийоксидном носителе, или катализатор, включающий диоксид кремния как носитель и смесь солей, включающую сульфаты калия и/или цезия, и сульфаты ванадия, нанесенные на твердый кремнийоксидный носитель, который окисляет диоксид серы до триоксида серы, и выдает газообразный поток продукта, включающий триоксид серы. В этом варианте усовершенствование включает расплавленную серу, контактирующую с катализатором, и поддержание слоя катализатора при одной или нескольких температурах, при которых (i) серу, входящую в контакт с катализатором, испаряют до того, как образующиеся газообразные продукт(ы) выходят из конечной части слоя катализатора вниз по потоку, и (ii) газообразный поток, выходящий из конечной части указанного слоя, обогащен триоксидом серы.
Температуры слоя катализатора, которые реализуются в (i) и (ii) выше, до некоторой степени отличаются друг от друга. Чтобы окислить диоксид серы в триоксид серы, как в (ii) выше, слой ванадийсодержащего катализатора должен находится при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, и предпочтительно в интервале от приблизительно 450 до приблизительно 600°С. Однако, чтобы испарить серу, как в (i) выше, достаточно одной или нескольких температур в интервале от приблизительно 300 до приблизительно 450°С, хотя могут использоваться одна или несколько температур в интервале от приблизительно 300 до приблизительно 700°С. Таким образом, при проведении вышеупомянутого варианта данного изобретения:
a) слой катализатора может находиться при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С или предпочтительно при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 600°С;
b) слой катализатора может иметь два или более участков при разных температурах, например участок, расположенный выше по потоку, при одной или нескольких температурах в интервале от приблизительно 300 до ниже чем приблизительно 450°С, чтобы испарить серу, а также привести к некоторому окислению серы до SO2 при помощи SO3, и участок, расположенный ниже по потоку, при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С или предпочтительно при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 600°С, чтобы вызвать окисление SO2 до SO3; или
с) по меньшей мере два реактора могут быть расположены в тандеме с первым реактором, обеспеченным, например, внутренними поверхностями набивки или другими инертными поверхностями, которые находятся при одной или нескольких температурах, достаточных, чтобы испарить серу, как, например, одна или несколько температур в интервале от приблизительно 300 до приблизительно 700°С, предпочтительно в интервале от приблизительно 300 до приблизительно 450°С, и более предпочтительно в интервале от приблизительно 300 до приблизительно 350°С. Поскольку газовый поток, поступающий в такой первый реактор, также содержит SO3, в таком первом реакторе, вероятно, имеет место по меньшей мере некоторое окисление серы посредством SO2 до SO3. Второй реактор в этом варианте содержит вышеупомянутый слой ванадийсодержащего катализатора, который окисляет диоксид серы до триоксида серы, и этот слой поддерживают при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С или предпочтительно при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 600°С, чтобы вызвать окисление диоксида серы до триоксида серы.
Из этих альтернатив предпочтительна а), поскольку наиболее проста в практике, а b) и с) имеют тенденцию быть более дорогостоящими.
Одна из особенностей вышеупомянутого варианта данного изобретения, когда применяют альтернативу а) - это то, что из-за высокой температуры, при которой работает слой катализатора, сера испаряется, как только входит в контакт со слоем катализатора. Это дает возможность парам подвергаться окислению по мере того, как они проходят через слой катализатора, так что газовый поток, выходящий из нижнего по потоку конца слоя катализатора, обогащается триоксидом серы. Кроме того, при высокой температуре, при которой работает слой катализатора, сера испаряется до такой степени, что чрезмерно быстрое образование и накопление покрытий или отложений серы на поверхностях катализатора не происходят. Таким образом, каталитическая активность катализатора в слое не ухудшается.
Как будет видно в дальнейшем, улучшенная технология процесса по настоящему изобретению может эффективно использоваться в различных приложениях, в которых используют триоксид серы.
Другой вариант данного изобретения - это усовершенствование процесса, в котором первый газообразный поток, содержащий диоксид серы, триоксид серы и кислород и/или воздух, подают в слой ванадийсодержащего катализатора, который окисляет диоксид серы в триоксид серы и выделяет газообразный поток продукта, состоящий из триоксида серы. В этом варианте усовершенствование включает окисление серы воздухом, кислородом и/или триоксидом серы (предпочтительно газообразным потоком, который содержит (i) по меньшей мере триоксид серы и воздух или кислород, или (ii) триоксид серы, воздух и добавленный кислород) с образованием второго газообразного потока, обогащенного диоксидом серы, и введение по меньшей мере части второго газообразного потока в первый газообразный поток, для получения смешанного газообразного потока, и подачу смешанного газообразного потока в участок вышеупомянутого катализатора, расположенный выше по потоку и поддерживаемый при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, и предпочтительно в интервале от приблизительно 450 до приблизительно 600°С. Это приводит к образованию потока продукта, выходящего из участка катализатора, расположенного ниже по потоку, и обогащенного триоксидом серы. Количество триоксида серы в потоке продукта имеет тенденцию быть большим, чем количество, предсказанное из окисления всего количества диоксида серы в смешанном газовом потоке. Окисление серы в этом варианте изобретения выполняют в отдельном реакторе, который подает выходящий из него поток в качестве бокового потока в первый газообразный поток. Этот реактор не является встроенным в основную линию (′inline′) реактором. При осуществлении этого варианта изобретения первый газообразный поток не должен содержать триоксида серы, если триоксид серы используют в окислении серы в таком отдельном реакторе и если в отдельный реактор подают избыточное количество триоксида серы, так что подача в первый газообразный поток из отдельного реактора содержит некоторое остаточное количество триоксида серы. Однако предпочтительно, чтобы как первый газовый поток, так и подача в первый газовый поток из отдельного реактора содержали триоксид серы, поскольку это имеет тенденцию и далее увеличивать количество триоксида серы, выходящего из ванадийсодержащего слоя катализатора, до количества больше того, которое могло бы быть предсказано из суммы (А) количества триоксида серы, образованной прямым моль-на-моль окислением диоксида серы до триоксида серы, и (В) общей суммы триоксида серы в первом газообразном потоке и в подаче в первый газовый поток из отдельного реактора, полагая, что весь такой триоксид серы проходит через слой катализатора неизмененным.
Другой вариант данного изобретения относится к способу бромирования по меньшей мере одного сильно дезактивированного ароматического соединения, имеющего один или несколько заместителей с константой Гамметта σр>0,2, где упомянутый способ включает: А) бромирование указанного соединения в активирующем растворителе, включающем концентрированный олеум, чтобы вызвать окисление бромистого водорода, образующегося в качестве сопутствующего продукта, до брома с помощью SO3, с образованием диоксида серы в качестве сопутствующего продукта; В) извлечение со стадии бромирования в А) (i) газовой смеси диоксида серы наряду с некоторым количеством триоксида серы и (ii) менее концентрированного олеума; С) образование газового потока, включающего диоксид серы и триоксид серы из В) и введение кислорода и/или воздуха в указанный поток с образованием первого газового потока, включающего диоксид серы, триоксид серы и кислород и/или воздух; D) продвижение по меньшей мере части указанного первого газового потока, так чтобы он входил в реактор, содержащий неподвижный слой ванадийсодержащего катализатора, на котором диоксид серы окисляется в триоксид серы, и введение расплавленной серы в указанный поток, так что (i) испаренная сера образуется вблизи расположенного выше по потоку участка указанного слоя катализатора и (ii) испаренная сера вместе с диоксидом серы, триоксидом серы и кислородом и/или воздухом транспортируется в указанный слой катализатора; Е) выдерживание катализатора в указанном неподвижном слое при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, так что указанная расплавленная сера испаряется в верхнем концевом участке указанного неподвижного слоя катализатора или вблизи него, и образующиеся пары переносятся в указанный неподвижный слой катализатора, так что из расположенной ниже по потоку части указанного слоя катализатора выходит второй поток, обогащенный триоксидом серы; и F) смешивание указанного второго потока с менее концентрированным олеумом, извлеченным в В), с образованием концентрированного олеума для применения в А).
В еще одном варианте данное изобретение относится к способу получения триоксида серы из диоксида серы, который включает а) подачу первого газового потока, включающего диоксид серы, триоксид серы и кислород и/или воздух, в слой промотированного цезием ванадийсодержащего катализатора, в котором диоксид серы окисляется в триоксид серы и который выделяет второй газовый поток, содержащий триоксид серы; b) введение испаренной серы в указанный первый газовый поток, так чтобы образующаяся смесь входила в слой катализатора, и поддержание по меньшей мере части слоя катализатора при одной или нескольких температурах в интервале от приблизительно 390 до приблизительно 410°С, так что второй газовый поток, выходящий из расположенного ниже по потоку конца указанного слоя катализатора, обогащен триоксидом серы.
В различных вариантах данного изобретения используемый катализатор - это предпочтительно неподвижный слой ванадийсодержащего катализатора, который окисляет диоксид серы до триоксида серы и выделяет газообразный поток продукта, состоящий из триоксида серы.
Другие варианты, особенности и преимущества данного изобретения будут в дальнейшем очевидны из следующего описания, приложенной формулы изобретения и сопровождающих чертежей.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Фиг.1 - это схематическая последовательность технологических операций по данному изобретению для предпочтительного пути выполнения процесса получения SO3 из газового потока SO2, содержащего кислород и/или воздух и незначительное количество SO3.
Фиг.2 - это схема вида сбоку реактора, в котором могут быть выполнены последовательные реакции по уравнениям (1) и (2) выше.
Фиг.3 - это схематическая последовательность технологических операций предпочтительного способа по данному изобретению для образования олеума и использования олеума как среды реакции в приготовлении коммерчески важного пламегасителя.
Фиг.4 - это схематическая последовательность технологических операций по данному изобретению выполнения процесса получения SO3 из газового потока SO2, содержащего кислород и/или воздух и предпочтительно незначительное количество SO3, в котором боковой поток, включающий произведенный системой диоксид серы, подают в систему, такую как система по Фиг.1, но без подачи серы в систему, как на Фиг.1.
Фиг.5 - это схематическая диаграмма лабораторного аппарата, применяемого в подготовке информации и данных, полезных в увеличении масштаба технологического процесса по данному изобретению.
Если иначе не определено, одинаковые цифры представляют одинаковые части Фигур 1-4. На Фиг.5 главные части лабораторного аппарата, используемого для сбора информации и данных, идентифицируют отличающимся набором цифр.
ОПРЕДЕЛЕНИЕ ТЕРМИНОВ
Здесь делается попытка сделать понятия настолько ясными, насколько это возможно, и обсуждаются несколько терминов, чтобы избежать неверных истолкований, которые могут теперь быть предусмотрены в настоящее время. Так, термин "ванадийсодержащий катализатор," стоящий отдельно, означает катализатор, который может быть или не быть по меньшей мере частично на поверхности носителя катализатора и который в любом таком случае (i) содержит ванадий в одной или нескольких химических формах, которые не должны быть металлическим ванадием непосредственно, (ii) который при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С может, в присутствии воздуха, кислорода или воздуха, обогащенного кислородом, вызывать превращение (т.е., преобразование или изменение) всего или по меньшей мере части количества диоксида серы в контакте с катализатором в триоксид серы, и (iii) который в форме слоя, имеющего по меньшей мере часть такого слоя при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, причем через по меньшей мере часть такого слоя течет газовый поток, содержащий диоксид серы, позволяет выделение из слоя газовый поток, содержащий триоксид серы.
Далее в настоящем описании имеется ссылка, сделанная к описанию определенных катализаторов в бюллетене продуктов Monsanto Enviro-Chem, которые являются полезными в практике настоящего изобретения. В такой брошюре указано, что их катализаторы правильно называются "ванадийсодержащие катализаторы", так как они не являются ванадийпентоксидными катализаторами. Ванадийпентоксидные катализаторы также полезны в практике существующего изобретения. Поэтому, как вполне ясно выражено в предыдущем параграфе, используемый здесь термин "ванадийсодержащие катализаторы", стоящий отдельно, не должен рассматриваться как ограниченный только материалами, упомянутыми в бюллетене продуктов Monsanto Enviro-Chem. Скорее термин, как здесь используют и если иначе не определено, применяют как родовой термин, который не только включает материалы, упомянутые в бюллетене продуктов Monsanto Enviro-Chem, но и дополняется другими ванадийсодержащими катализаторами, которые будут работать в способе, описанном здесь в условиях и с материалами, описанными здесь, такими как, например, нанесенный или ненанесенный ванадийпентоксидный катализатор.
Термин «испаренный» в отношении серы, как, например, в выражениях «серу испаряют» или «испаренная сера» или тому подобное, не означает, что пары должны состоять исключительно из элементной серы в испаренной форме. Скорее пары состоят из того, что получается, когда расплавленная сера приближается и/или контактирует с горячими поверхностями ванадийсодержащего слоя катализатора, которые находятся при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, в присутствии газообразного потока, содержащего диоксид серы, триоксид серы, воздух, кислород или воздух, обогащенный кислородом.
Термин "ванадийсодержащий катализатор, который окисляет диоксид серы в триоксид серы", не означает, что в практике данного изобретения катализатор служит только для окисления диоксида серы в триоксид серы. Из-за сложности газообразных смесей в контакте с катализатором могут иметь место другие реакции, упомянутые в тексте данного документа. Таким образом, определение, состоящее в том, что катализатор "окисляет диоксид серы в триоксид серы", является ключевым словом, чтобы идентифицировать одну функцию, которую катализатор должен быть в состоянии выполнить.
Термин "общее число молей кислорода на общее число молей серы" (во фразах типа "общее число молей кислорода на общее число молей серы, присутствующих в газовом потоке, к которому добавляют серу" и "общее число молей кислорода на общее число молей серы, присутствующей в газовом потоке до добавления к нему расплавленной серы") относится к мольному отношению (а) общего количества молей элементного кислорода, кислорода в диоксиде серы и кислорода в триоксиде серы к (b) общему количеству молей элементной серы, серы в диоксиде серы и серы в триоксиде серы, в котором компоненты (а) и (b) - это компоненты, присутствующие в описываемой системе.
ПОДРОБНОЕ ОПИСАНИЕ, ВКЛЮЧАЮЩЕЕ ДОПОЛНИТЕЛЬНЫЕ ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ
Прежде всего, реактор, в котором находится неподвижный слой ванадийсодержащего катализатора, может быть в любом положении относительно уровня земли. Несколько неограничивающих положений включают, например, горизонтальное, по существу горизонтальное, вертикальное, по существу вертикальное, кверху наклонное, книзу наклонное и так далее. В предпочтительных вариантах реактор находится в прямом (вертикальном) положении. Также реактор может иметь любую форму и конфигурацию поперечного сечения, которая удовлетворяет цели проведения процесса по настоящему изобретению, как описано здесь. Естественно, реактор будет нуждаться в участке входа газа и участке выхода газа и должен быть сформирован таким образом, что весь или по существу весь поступающий газовый поток будет проходить через неподвижный слой катализатора, который в нем (реакторе) находится. Кроме того, реактор должен быть оборудован нагревателем, который нагревает катализатор (например, до одной или нескольких температур в интервале от приблизительно 450 до приблизительно 700°С, и предпочтительно в интервале от приблизительно 450 до приблизительно 600°С) во время запуска, чтобы вызывать инициируемый процесс. Будучи инициирован, процесс является достаточно экзотермическим, чтобы не требовать дополнительного или дальнейшего нагревания в ходе реакции, поскольку температурный контроль может быть поддержан регулированием скоростей подачи в реактор. Хотя слой катализатора поддерживают при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, могут обычно допускаться короткие отклонения от этого интервала, если период отклонения достаточно краток. В этой связи, в слое катализатора могут быть зоны при других температурах в пределах этого интервала. Другими словами, слой катализатора не должен везде иметь одну и только одну температуру.
Так как на реактор непрерывно воздействуют внутренние высокотемпературные условия во время работы и так как внутри реактора обрабатываются и производятся коррозийные газы, то реактор должен быть изготовлен из подходящих коррозионно-стойких материалов. Реакторы из алонизированной (alonized) нержавеющей стали и реакторы, построенные из высоконикелевых сплавов, служат неограничивающими примерами реакторов, сделанных из подходящих конструкционных материалов. Два или больше реактора могут использоваться в тандеме, если желательно. Действительно, реально вполне возможно иметь несколько слоев катализатора, расположенных последовательно, с подачей серы, кислорода или воздуха между каждым из них, чтобы уменьшить экзотермическую природу реакции окисления.
Различные типы ванадийсодержащих катализаторов могут использоваться в практике данного изобретения при условии, что катализатор имеет способность окислять диоксид серы в триоксид серы. Например, в дополнение к пентоксиду ванадия могут применяться модифицированные ванадийпентоксидные катализаторы, такие как описанные в патентах США №№3793230 и 4285927. Кроме того, ванадийпентоксидный катализатор может быть на подходящем носителе, так чтобы поддерживалась структурная целостность и так чтобы катализатор мог иным образом противостоять высокой температуре (температурам), при которой работает слой. Неограничивающие примеры таких носителей включают высокотемпературностойкую керамику, оксид алюминия, оксид кремния, оксид алюминия - оксид кремния, цеолиты и подобные им материалы.
Среди предпочтительных ванадийсодержащих катализаторов, применяемых в практике данного изобретения, находятся серно-кислотные катализаторы, такие как катализаторы, доступные от Monsanto Enviro-Chem, такие как LP 120, LP 110, LP 220, Т-210, Т-516, Т-11, Cs-120, Cs-110, Cs-210, и по-видимому LP 1150. Согласно рекламной брошюре Monsanto Enviro-Chem относительно таких серно-кислотных катализаторов и информации, полученной с их вебсайта 13 апреля 2004, LP 120, LP 110, LP 220, Cs-120 и Cs-110 доступны в форме колец, тогда как Т-210, Т-516, Т-11 и Cs-220 доступны в форме таблеток. Размеры колец и таблеток приводятся в данной брошюре. Ссылка на LP 1150 в этой брошюре не сделана. Согласно данной брошюре, главные компоненты этих катализаторов включают SiO2 (оксид кремния как носитель), ванадий (V), калий (К) и/или цезий и различные другие добавки. Из этой брошюры видно, что данные катализаторы могут быть сформированы из расплавленной смеси солей сульфатов калия/цезия и сульфатов ванадия, нанесенных на твердый кремнийоксидный носитель. Monsanto Enviro-Chem далее заявляет, что из-за уникальной химии этой расплавленной солевой системы ванадий присутствует как сложная смесь сульфатных солей, а НЕ как пентоксид ванадия (V2O5). Брошюра далее утверждает, что катализатор следует более правильно называть "ванадийсодержащим" катализатором, а не обычно используемым "ванадийпентоксидным" катализатором. Далее из этих брошюр видно, что катализаторы LP 120, Т-210, LP 110 и Т-11 промотированы калием, тогда как Cs-120, Cs-110 и Cs-210 промотированы цезием. Указывают, что катализаторы, промотированные цезием, более дорогие, но способны работать в слое катализатора при более низких температурах в интервале 390-410°С. Согласно спискам данных по безопасности материалов (MSDS) Monsanto Enviro-Chem, относящихся к серно-кислотным катализаторам, Т-516, Т-210, Т-11, LP 120, LP 110, LP-220 и LP 1150 имеют химическое название "смесь комплексных неорганических солей (оксосульфатованадатов), содержащая соли натрия, калия и ванадия на носителе, кристаллическом оксиде кремния". Как указано, в состав этих материалов входит 39-45 вес.% комплекса соли ванадия (CAS номер отсутствует), 24-32 вес.% кристаллического оксида кремния (CAS номер 14464-46-1) и 26-28 вес.% аморфного оксида кремния (CAS номер 68855-54-9). Есть также указание, что кристаллический оксид кремния может включать кристобалит и кварц. Типичные физические данные для этих катализаторов, как приведено в MSDS, следующие:
Внешний вид: | Таблетки от желтого до светло-зеленого цвета диаметра 7/32" или 5/16" и средней длины 3/8" (Тип 16, Тип 210, Тип 11), диаметра 1/2" или 3/8" и средней длины 1/2" (Тип LP 120, Тип LP 110, Тип LP 220), диаметра 1/2" на длину 5/8", Кольца Рашига (Тип, LP 1150) |
Растворимость: | 65-75% SiO2, нерастворим, 25-35% неорганические соли, частично растворимые в воде |
Объемная плотность: | 1,15 фунт/л (Тип LP 220) |
Объем удельной массы: | (Н2О=1) 0,60-0,70 (Типы 516, 210, 11) 0,50-0,55 (Типы LP 120, LP 110, LP 1150) |
Время пребывания газов в пределах слоя катализатора должно быть достаточным, чтобы дать возможность высокой конверсии в триоксид серы, и, следовательно, ограниченные времена пребывания (до 5-10 секунд) обычно достаточны.
Одним из предпочтительных вариантов данного изобретения является использование неподвижного слоя ванадийсодержащего катализатора, чтобы окислить диоксид серы в триоксид серы в прямом реакторе (вертикально направленном, другими словами, реактору не требуется быть совершенно вертикальным, так как он может быть наклонным или несколько наклоненным) поступающим газовым потоком, содержащим диоксид серы и кислород и/или воздух (поток предпочтительно также содержит триоксид серы) и входящим в верхнюю часть реактора в свободное пространство выше слоя катализатора, и ввод расплавленной серы выше части катализатора у его верхнего конца, предпочтительно выше или в верхнюю часть свободного пространства. Таким образом, расплавленная сера движется по существу вниз к верхней части слоя катализатора и по меньшей мере часть серы, если не практически вся сера, испаряется по мере того, как контактирует и/или входит в тесный контакт с горячей верхней частью катализатора. Условие свободного пространства выше слоя катализатора обеспечивает зону, в которой по меньшей мере некоторое количество паров, произведенных испарением серы, и по меньшей мере часть поступающего газового потока могут войти в контакт друг с другом и перенестись силой поступающего газового потока в слой катализатора. Без связи с теорией, можно считать, что некоторое окисление паров серы может быть начато даже в более низких областях свободного пространства. Но независимо от того, что имеет место в свободном пространстве, конечным результатом является выпуск или выход из нижней части слоя катализатора газового потока, обогащенного триоксидом серы, причем сам слой катализатора остается свободным от значительного накопления или отложения покрывающих слоев серы на каталитических поверхностях.
В предпочтительных вариантах данного изобретения, в которых поступающий газовый поток, приближающийся к месту, в котором расплавленная сера подается в газовый поток, состоит из диоксида серы, триоксида серы и кислорода и/или воздуха, причем количество выделяющегося или выходящего триоксида серы из конца слоя катализатора ниже по потоку является более высоким, чем количество триоксида серы, которое выходило бы из того же самого конца слоя катализатора ниже по потоку, при тех же самых эксплуатационных условиях и с тем же самым поступающим газовым потоком в отсутствие добавки серы. Такое повышенное количество триоксида серы, выделяющегося или входящего из части слоя катализатора, расположенной ниже по потоку, происходит, очевидно, из-за возникновения по меньшей мере двух реакций в процессе, когда поступающий газовый поток сырья содержит триоксид серы, а также диоксид серы и воздух и/или кислород. Более определенно, в отсутствие добавки серы каждый моль SO3, будучи подан через катализатор окисления, остается неизмененным и дает один моль SO3 в продукте, выделяющемся или выходящем из нижней части катализатора. Однако с добавлением серы в этот поступающий поток сырья, в соответствии с данным изобретением, теоретически каждый моль SO3 выше по потоку от катализатора превращается по двухстадийной реакции в 1,5 моля SO3 в продукте, выходящем из катализатора. Эти две последовательных реакции могут быть выражены следующим образом:
Таким образом, в дополнение к конверсии первоначального SO2 в SO3 имеется теоретическое 50%-ое увеличение образования SO3 из последовательных реакций по уравнениям (1) и (2) выше, то есть 2 моля SO3 дают 3 моля SO3. Кроме того, обе реакции по уравнениям (1) и (2) могут быть выполнены вместе с каталитическим окислением начального SO2 в газовом потоке до SO3, которое также протекает по уравнению (2) без потребности в дорогом вспомогательном оборудовании реакции. Другими словами, реакция по уравнению (1), которую можно рассматривать как окисление серы в SO2, очевидно имеет место вначале, по меньшей мере до некоторой степени, и затем как первоначальный SO2, так и новообразованный SO2 каталитически окисляются по уравнению (2) с образованием SO3, за счет чего имеет место повышение общего содержания SO3 по сравнению с той же самой операцией и с теми же самыми количествами материалов, за исключением того, что никакой серы не подают. Фактически, предпочтительно проводить эти реакции в простом реакторе, например таком, который схематически изображен на Фиг.3. Таким образом, в дальнейших предпочтительных вариантах данного изобретения как окисление серы в SO2, так и последующее каталитическое окисление SO2 в SO3 может иметь место по меньшей мере частично в единственном двухстадийном реакторе или зоне реакции, в которой есть свободное пространство выше или "мертвое" пространство перед слоем катализатора. Таким образом, предпочтительные варианты данного изобретения, описанные в этом абзаце, заключают в себе дихотомию, состоящую в том, что хотя желательно получить триоксид серы из диоксида серы, оказывается, что способ по таким предпочтительным вариантам сначала фактически уменьшает количество триоксида серы, первоначально присутствующего в поступающем газовом потоке за счет превращения триоксида серы в диоксид серы, с последующим окислением по меньшей мере части новообразованного диоксида серы в триоксид серы. Кроме того, в соответствии с настоящим изобретением, в дополнение к возможности производить большие количества триоксида серы на основе подачи серы выше по потоку, или предпочтительно сразу перед окислением диоксида серы в триоксид серы, такая обработка не приводит ни к существенному отравлению ванадийсодержащего катализатора, ни к ухудшению процесса или экономической эффективности. Вместо этого рентабельность всего процесса может быть значительно улучшена.
Те же самые соображения применимы в вариантах данного изобретения, в которых усовершенствование обеспечивается в процессе, в котором первый газовый поток, состоящий из диоксида серы, триоксида серы и кислорода и/или воздуха, пропускают через слой и приводят в контакт со слоем ванадийсодержащего серно-кислотного катализатора, такого как ванадийсодержащий катализатор, такой как пентоксид ванадия, а предпочтительно слой смеси комплексных неорганических солей (оксосульфатованадатов), содержащий соли натрия, калия и ванадия на кристаллическом кремнийоксидном носителе, или катализатор, содержащий оксид кремния как носитель в составе солевой смеси, содержащей сульфаты калия и/или цезия, и сульфаты ванадия, нанесенные на твердый кремнийоксидный носитель, который окисляет диоксид серы до триоксида серы и который выделяет газовый поток продукта, содержащий триоксид серы. В этих вариантах усовершенствование включает окисление серы воздухом, кислородом и/или триоксидом серы (предпочтительно газовым потоком, который содержит (i) по меньшей мере триоксид серы и воздух или кислород, или (ii) триоксид серы, воздух и добавленный кислород) с образованием второго газового потока, обогащенного диоксидом серы, и введение по меньшей мере части второго газового потока в первый газовый поток с образованием смешанного газового потока, и подачу смешанного газового потока в расположенную выше по потоку часть вышеупомянутого слоя катализатора, поддерживаемую при одной или нескольких температурах в интервале от приблизительно 450 до приблизительно 700°С, и предпочтительно в интервале от приблизительно 450 до приблизительно 600°С. Это приводит к образованию потока продукта, выходящего из части слоя катализатора ниже по потоку, который обогащен триоксидом серы. Количество триоксида серы в потоке продукта имеет тенденцию быть больше, чем могло бы быть предсказано из окисления всего количества диоксида серы в смешанном газовом потоке в триоксид серы. Окисление серы в этом варианте изобретения обычно выполняется в отдельном реакторе.
Что касается предпочтительного варианта, показанного на Фиг.1, газообразный поток SO2 в 10, который необязательно содержит некоторое количество SO3, и рециркулируемый газовый поток, содержащий кислород и/или воздух, обедненный кислородом (главным образом азот), и, необязательно (но предпочтительно), незначительное количество SO3 в 12, смешивают со свежим воздухом или кислородом из 14 и образующуюся газовую смесь подают в нагнетатель 15. Нагнетатель 15 продвигает образующуюся смесь через косвенный теплообменник 20, который частично нагревает эту газовую смесь. В горячую газовую смесь затем вводят расплавленную серу из 16, посредством чего, как полагают, когда в рециркулируемом газовом потоке в 12 присутствует SO3, образуется дополнительный SO2 по реакции серы с SO3. Полученный поток, обогащенный SO2, затем подают в реактор 25, содержащий подходящий ванадийсодержащиий катализатор (наиболее предпочтительно неподвижный слой нанесенного ванадийсодержащего катализатора), для того чтобы окислить SO2 в SO3. Эту газовую смесь продуктов, обогащенную SO3, пропускают из реактора 25 по линии 27 и через теплообменник 20, в котором высокая температура от экзотермической реакции в реакторе 25 используется для того, чтобы нагреть смесь, поступающую из нагнетателя 15, и таким образом уменьшить температуру газовой смеси, поступающей из реактора 25. Эту последнюю смесь затем далее охлаждают в охладителе 30 и затем подают в колонну дистилляции 35. Колонна дистилляции работает так, чтобы удалить более летучие компоненты смеси в виде головного погона, который, таким образом, составляет рециркулируемый газовый поток, упомянутый в начале абзаца. Целевой SO3 берут с низа колонны 35 по линии 37.
Состав рециркулируемого газового потока будет несколько изменяться в зависимости от того, подают ли воздух, кислород или воздух, обогащенный кислородом, в газовую смесь выше по потоку, чем место, где вводят серу из 16. Если подают чистый кислород, то рециркулируемый газовый поток будет содержать непрореагировавшие газы, а в предпочтительных вариантах будет также содержать некоторое количество SO3. Если применяют воздух или воздух, обогащенный кислородом, рециркулируемый газовый поток будет содержать азот, а также другие непрореагировавшие газы, а в предпочтительных вариантах будет также содержать некоторое количество SO3. В любом случае, когда присутствует SO2, SO3 в рециркулированном газовом потоке обычно будет меньше, чем приблизительно 10 объемных процентов.
В газовом потоке, движущемся к месту, где вводится сера из 16, могут также измениться отношения SO2 к SO3. Обычно это отношение на мольной основе будет в интервале от приблизительно 15:1 до приблиз