Дифференцировка стромальных клеток, полученных из жировой ткани, в эндокринные клетки поджелудочной железы и их использование

Изобретение относится к области биотехнологии, конкретно к дифференцировке клеток, и может быть использовано в медицине. Из жировой ткани получают дифференцированную стромальную клетку, которая экспрессирует один или несколько белков, характерных для эндокринной клетки поджелудочной железы, таких как инсулин, глюкагон, соматостатин и панкреатический полипептид. Изобретение позволяет получить дифференцированную и функционально дееспособную клетку для проведения исследований, имплантации, трансплантации и развития полученных из тканей продуктов для лечения болезней поджелудочной железы и восстановления тканей поджелудочной железы. 9 н. и 15 з.п. ф-лы.

Реферат

Ссылка на родственные заявки

В настоящей заявке заявлен приоритет на основании патентной заявки США с серийным номером 60/344913, поданной 9 ноября 2001 г.

Область изобретения

В настоящем изобретении представлены выделенные стромальные клетки, полученные из жировой ткани, у которых индуцируют экспрессию по крайней мере одного признака клетки поджелудочной железы. Приводятся также способы лечения эндокринных заболеваний поджелудочной железы.

Предпосылки изобретения

Масса эндокринных клеток поджелудочной железы, образованных островками Лангерганса, состоит из клеток четырех типов, которые классифицируют по основному продукту секреции, который они регулируют. Они включают глюкагонпродуцирующие α-клетки, инсулинпродуцирующие β-клетки, продуцирующие панкреатический полипептид γ-клетки и соматостатинпродуцирующие δ-клетки (Henquin, 2000, Diabetes 49, 1751-1760; Slack, 1995, Development 121, 1569-1580). Считается, что в процессе развития эти различные клеточные популяции возникают из общих предшественников стволовых клеток, связанных с эпителием панкреатических протоков (Rao et al., 1989, Am. J. Pathol. 134, 1069-1086; Rosenberg and Vinik, 1992, Adv. Exp. Med. Biol. 321:95-104; Swenne, 1992, Diabetologia 35, 193-201; Hellerstrom, 1984, Diabetologia 26, 393-400; Gu and Sarvetnick, 1993, Development 118, 33-46). В процессе постадийной дифференцировки в разные клеточные линии клетки-предшественники приобретают свойства различных клеточных популяций. Ранее проведенные наблюдения показали, что первыми обнаруживаемыми популяциями островков являются α-клетки, за которыми последовательно возникают β-клетки, δ-клетки и γ-клетки (Slack, 1995, Development 121, 1569-1580). Островок образуется вдоль эпителия протока как масса β-клеток, окруженных α- или γ-клетками и охватывающих их δ-клеток. Незрелый островок затем мигрирует в окружающую ацинарную ткань и васкуляризируется (Slack, 1995, Development 121, 1569-1580).

Основной функцией островковых клеток является гомеостаз физиологических питательных веществ. Например, нормально функционирующие β-клетки синтезируют и секретируют инсулин с целью поддержания уровня глюкозы в крови. Это осуществляется с помощью чувствительного к глюкозе эндогенного аппарата, который связан с путями секреции при регулируемом высвобождении инсулина. В этом примере сочетания стимулирования и секреции повышенное содержание глюкозы в плазме (например, возникающее после приема пищи) меняет метаболизм β-клеток и приводит к изменению потенциала мембраны за счет закрытия АТФ-чувствительных каналов K+. Указанная деполяризация вызывает открытие чувствительных к электрическому напряжению каналов Ca2+, и приток ионов Ca2+ запускает процесс регулируемого выделения инсулина (Henquin, 2000, Diabetes 49, 1751-1760). Инсулин в плазме затем стимулирует захват глюкозы скелетными мышцами и жировыми тканями и ингибирует продукцию глюкозы печенью, так что конечным результатом является понижение содержания глюкозы в плазме (Cheatham and Kahn, 1995, Endocr. Rev. 16, 117-142).

I. Инсулин

Диабет I типа (инсулинзависимый диабет) является основным заболеванием, связанным с потерей эндокринной функции поджелудочной железы. В большинстве случаев это происходит как аутоиммунная атака на островки. Применяемая в настоящее время терапия диабета I типа заключается в однократных или многократных ежедневных инъекциях инсулина. В большинстве случаев этот режим недостаточен для осуществления адекватного контроля уровня глюкозы в крови, что позднее приводит к многочисленным диабетическим осложнениям, которые значительно увеличивают скорость развития заболевания и уровень смертности у больных людей. Альтернативной терапией ежедневным инъекциям инсулина является лечение диабета путем трансплантации поджелудочной железы или островков (Serup et al., 2001, BMJ 322, 29-32; Soria et al., 2001, Diabetologia 44, 407-415). Исследования показывают: несмотря на то, что трансплантация здоровой ткани поджелудочной железы является эффективным методом лечения, эта процедура имеет три основных недостатка: 1) дефицит донорного материала; 2) требование проведения обширных хирургических операций и 3) необходимость длительной иммуносупрессивной терапии, которая дает лишь кратковременное улучшение. Аналогично, трансплантация островков эффективна лишь до известной степени. Этот процесс включает выделение островков из поджелудочной железы донора и их инъекцию через воротную вену. Более того, эта процедура включает многократные инъекции, для проведения которых пациентов необходимо несколько раз помещать в стационар (Serup et al., 2001, BMJ 322, 29-32; Soria et al., 2001, Diabetologia 44, 407-415). Кроме того, эти пациенты также должны проходить курс интенсивной иммуносупрессивной терапии. Далее, как и при трансплантации ткани поджелудочной железы, метод с использованием выделенных островков также имеет недостаток, вызванный в значительной степени ограниченным количеством доноров. Ведутся исследования по использованию ксенотрансплантантов островков, однако иммунное отторжение при таком подходе все еще остается существенным препятствием (Serup et al., 2001, BMJ 322, 29-32; Soria et al., 2001, Diabetologia 44, 407-415).

Все вместе приведенные выше данные свидетельствуют о необходимости разработки альтернативных методов клеточной терапии. В соответствии с этим, с целью получения клеточных линий, подобных островковым, путем регулируемой индукции дифференцировки по эндокринному панкреатическому пути, были опробованы стволовые клетки панкреатических протоков, полученные как от мышей, так и от человека, а также эмбриональные стволовые клетки (Assady et al., 2001, Diabetes 50, 1691-1697; Serup et al., 2001, BMJ 322, 29-32; Lumelsky et al., 2001, Science 292, 1389-1394; Soria et al., 2001, Diabetologia 44, 407-415). Полученные от мышей стволовые клетки, в которых индуцировали дифференцировку в островковые гормонпродуцирующие клетки, были успешно использованы для реконструкции диабетических мышиных моделей (Serup et al., 2001, BMJ 322, 29-32; Soria et al., 2001, Diabetologia 44, 407-415). Однако препятствия, вновь встающие при таком подходе, включают иммунное отторжение и ограниченность источников клеток-предшественников для использования при лечении людей.

Эмбриональные стволовые клетки человека (HES) были успешно дифференцированы в клетки, которые продуцируют инсулин (Assady et al., 2001, Diabetes 50, 1691-1697). Использование плюрипотентных недифференцированных клеток HES потенциально является источником дифференцированных β-клеток поджелудочной железы, которые применяют при таких заболеваниях, как диабет. Однако указанные методы имеют ряд недостатков. В первую очередь возникает проблема источника самих клеток HES. Несмотря на недавнее широкое обсуждение настоятельной потребности в проведении научно-исследовательских разработок в области клеток HES, политические и этические споры продолжаются. Вследствие этого не обеспечена доступность подходящих клеток HES. Вторым недостатком использования клеток HES для получения дифференцированных островковых клеток поджелудочной железы является непредсказуемость в проявлении чувствительности к глюкозе у культивированных дифференцированных клеток. Действительно, Assady с коллегами (Diabetes 50, 1691-1697) предположили, что клетки, дифференцированные из клеток HES, не проявляют чувствительности к глюкозе. Нечувствительность можно объяснить отличиями в неоднородности клеточных популяций, выращенных в культуре, трудностью в нормализации ответной инсулиновой реакции к таким параметрам, как содержание белка или ДНК или длительное действие больших концентраций глюкозы в культуре. Таким образом, для использования дифференцированных β-клеток необходимо показать, что дифференцированные клетки обладают сочетанием стимулирования и секреции по отношению к инсулину. Терапия с использованием клеток HES также имеет недостаток, связанный с потенциально высоким риском развития тератомы.

Сама поджелудочная железа является источником недифференцированных островковых клеток-предшественников. В международной заявке WO 01/23528, поданной The University of Florida Research Foundation, приводится использование островковых клеток-предшественников, выращенных in vitro, для имплантации млекопитающим при in vivo терапии диабета.

Дифференцировка стволовых клеток, полученных из панкреатических протоков, или выделенных эмбриональных стволовых клеток по панкреатическим эндокринным линиям дифференцировки характеризуется экспрессией специфических ферментов-маркеров и факторов транскрипции. Интересно отметить, что в процессе эмбрионального развития островки и нейральные клетки используют многие общие маркеры, включая нейронспецифичную энолазу, синафтофизины, катехинсинтезирующие ферменты, тирозингидролазу, нестин и факторы транскрипции HNF3β, Isl-1, Brain-4 Pax-6, Pax-4, Beta2/NeuroD, панкреатический и дуоденальный ген гомеобокса 1 (PDX-1), Nkx6.2, Nkx2.2 и нейрогенин-3 (Ngn-3) (Ramiya et al., 2000, Nat. Med. 6, 278-282; Schwitzgebel et al., 2000, Development 127, 3533-3542; Fernandes et al., 1997, Endocrinology 138, 1750-1762; Zulewski et al., 2001, Diabetes 50, 521-533; Gradwohl et al., 2000, Proc. Natl. Acad. Sci. U.S.A 97, 1607-M611). Функциональными маркерами более зрелых островковых клеток являются экспрессии глюкагона, соматостатина, инсулина, транспортера глюкозы 2 (Glut2) и панкреатического полипептида.

II. Глюкагон

Глюкагон представляет собой пептидный гормон, содержащий 29 аминокислотных остатков, высвобождаемый альфа-клетками в островках Лангерганса. Гюкагонпродуцирующие альфа-клетки представляют собой одну из наиболее ранних обнаруживаемых популяций островковых клеток при развитии эндокринной функции поджелудочной железы. Тканеспецифическое высвобождение проглюкагона контролируется клеточноспецифической экспрессией ферментов прогормонконвертазы (PC). Существенная роль PC2 в процессинге островкового проглюкагона была выявлена при изучении мыши, лишенной PC2. У этой мыши наблюдается слабая гипогликемия, повышенное содержание инсулина, и она имеет серьезные нарушения при процессинге проглюкагона в зрелый панкреатический глюкагон, а островковые α-клетки мыши секретируют проглюкагон из атипичных секреторных гранул (J. Biol. Chem. 1998 Feb 6; 273 (6): 3431-7; J. Biol. Chem. 2001 Jul 20; 276 (29): 27197-202).

Основные биологические действия глюкагона сводятся к регулированию гомеостаза глюкозы посредством усиления синтеза и мобилизации глюкозы в печени. Рецепторы глюкагона экспрессируются также в островковых β-клетках человека и вносят свой вклад в регулирование стимулированной глюкозой секреции инсулина (Diabetologia 2000 Aug; 43(8); 1012-9).

Глюкагон в общем случае действует как контр-регуляторный гормон, который противодействует активности инсулина и поддерживает уровни глюкозы в крови, в частности, у больных гипогликемией. У больных диабетом избыток секреции глюкагона играет главную роль в возникновении метаболических нарушений, связанных с диабетом, таких как гипергликемия. Основной проблемой у больных диабетом с рецидивами гипогликемии является развитие нарушенных контр-регуляторных ответных реакций, которые включают понижение или отсутствие ответной реакции глюкагона на гипогликемию. Таким образом, понимание того, как и почему вегетативная нервная система и островковые α-клетки развивают дефекты секретирования глюкагона, которые приводят к гипогликемической нечувствительности, является одной из основных проблем в исследовании диабета.

Фармакологическое введение глюкагона приводит к быстрому повышению содержания глюкозы в крови, поэтому инъекции глюкагона применяются в качестве фармакологического лечения больных диабетом в случае риска развития значительной гипогликемии. Диабет в течение долгого времени рассматривали как бигормональное расстройство, при котором избыток глюкагона вносит большой вклад в развитие гипергликемии. Shah с коллегами (Am. J. Physiol. 1999 277: E283-E290) изучили значение концентрации инсулина в среде для развития опосредованной глюкагоном гипергликемии у людей после повышения концентрации глюкозы, вызванной приемом пищи. Авторами обнаружено, что избыток глюкагона на фоне относительного дефицита инсулина явно приводит к ослаблению супрессии продукции глюкозы и к гипергликемии. Таким образом, ингибиторы секреции глюкагона или активности глюкагона могут быть полезными при лечении больных диабетом, у которых наблюдается дефицит инсулина и/или избыток глюкагона. Изучение пациентов с диабетом II типа позволяет предположить, что отсутствие супрессии глюкагона приводит к развитию гипергликемии после приема пищи частично за счет повышенного глюкогенолиза. Анализ содержания глюкозы в крови в присутствии или в отсутствие индуцированной соматостатином супрессии глюкагона в процессе проведения орального теста на толерантность к глюкозе выявляет существенное повышение концентрации глюкозы у людей с более высокими уровнями глюкагона (См. J. Clin. Endocrinol. Metab. 2000 Nov; 85(11): 4053-9).

Ряд исследований показал, что глюкагон стимулирует расщепление жира (этот процесс называют липолизом) как в клеточных препаратах, так и in vivo. Так, глюкагон может стимулировать липолиз жировых тканей человека. Однако более ранние исследования были противоречивыми, при этом одни сообщения подтверждали роль глюкагона в липолизе жировых клеток человека. Глюкагон человека и вазоактивный интестинальный полипептид (VIP) стимулируют in vitro высвобождение свободных жирных кислот из жировой ткани человека, в то время как в других экспериментах не удалось показать существенное действие глюкагона на липолиз в выделенных жировых клетках человека (Int. J. Obes. 1985; 9(1): 25-7). Удаление глюкагона или физиологическая гиперглюкагонемия in vivo не приводит к значительному усилению потока пальмитата, который является показателем липолиза, у здоровых людей или больных диабетом (J. Clin. Endocrinol. Metab. 1991 Feb; 72(2): 308-315). Об аналогичных отрицательных наблюдениях сообщалось недавно, когда 7 здоровым мужчинам в брюшную стенку имплантировали постоянные микродиализные катетеры и изучали влияние вливаний глюкагона на внутритканевое содержание глицерина и содержание глицерина и свободных жирных кислот в плазме. Никакого влияния на глицерин или свободные жирные кислоты не было обнаружено при системных инфузиях глюкагона как в присутствии, так и в отсутствие экзогенной глюкозы (J. Clin. Endocrinol. Metab. 2001 May 1; 86(5): 2085-2089). Аналогичные отрицательные результаты были получены при изучении липолиза у здоровых мужчин, в брюшную жировую ткань которых были имплантированы постоянные микродиализные катетеры (J. Clin. Endocrinol. Metab. 2001 May; 86(5): 2085-2089). Таким образом, имеющиеся данные не подтверждают важную роль глюкагона в липолизе.

Глюкагон при фармакологическом введении человеку оказывает антисократительное воздействие на желудочно-кишечный тракт (пищевод, желудок, тонкую и толстую кишку) (Dig. Dis. Sci. 1979 Jul; 24(7): 501-8; Gut. 1975 Dec; 16(12): 973-8; N. Engl. J. Med. 1999 Nov 11; 341(20): 1496-503). Глюкагон может также вызвать релаксацию гладкой мускулатуры в желчном пузыре и мочеточнике и поэтому иногда используется при радиологических исследованиях желчного пузыря и почки.

III. Соматостатин

Соматостатин представляет собой эндогенный пептид, продуцируемый дельта-клетками, который осуществляет многочисленные важные функции в организме. Соматостатин является очень гибким циклическим пептидом, имеющим весьма короткий биологический период полураспада. Первоначально было обнаружено, что соматостатин играет роль классического эндокринного гормона гипоталамо-гипофизарной системы, но с тех пор было показано, что он дополнительно выполняет функцию паракринного и аутокринного сигнального вещества в широком разнообразии клеточных типов. Многочисленные физиологические процессы, на которые, как теперь известно, оказывает влияние соматостатин, включают секрецию гормонального и пептидного фактора, нейротрансмиссию, пролиферацию клеток, сокращение гладкой мускулатуры, усвоение питательного вещества и воспаление. Гормоны и пептиды, регулируемые соматостатином, включают гормон роста (GH), тиреотропный гормон (TSH), пролактин (PRL), инсулин и вещество Р (SP).

Соматостатин воздействует на функции многих важных биологических систем, таких как эндокринная, желудочно-кишечная, сосудистая и иммунная системы, а также на центральную и периферическую нервную систему. В эндокринной системе соматостатин играет важную роль в регуляции секреции гормона роста, инсулина и глюкагона (Koerker et al., Science 1974, 184, 482-484). Влияние соматостатина на желудочно-кишечную и сердечно-сосудистую биологические системы привело к тому, что терапия с применением соматостатина находит клиническое использование в обеих этих областях. Как выяснилось, в центральной нервной системе (ЦНС) соматостатин является важным регулятором распознавательной функции (Schettini, Pharmacological Research 1991, 23, 203-215), а в специфических областях мозга выполняет функцию нейротрансмиттера или нейромодулятора, регулирующего высвобождение таких нейротрансмиттеров, как ацетилхолин (Gray et al., J. of Neuroscience 1990, 10, 2687-2698) и допамин (Thal et al., Brain Research 1986, 372, 205-209). В периферической нервной системе (ПНС) соматостатин вместе с веществом Р присутствует в катехинаминсодержащих волокнах и чувствительных окончаниях (Green et al., Neuroscience 1992, 50, 745-749) и играет роль ингибитора их высвобождения и опосредуемых ими эффектов.

Как и сам соматостатин, рецепторы соматостатина располагаются в большом количестве тканей и клеточных типах, включая те, что принадлежат эндокринной, желудочно-кишечной, сосудистой, иммунной, ЦНС и ПНС. Широкая сфера действия рецепторов соматостатина также была обнаружена в большом количестве опухолей человека. Нейроэндокринные опухоли являются одним из классов опухолей, которые содержат в большом количестве функционально активные рецепторы соматостатина. Вследствие избыточного выделения гормона из клеток опухоли функционально-активные нейроэндокринные опухоли проявляют такие клинические симптомы, как ульцерогенная аденома поджелудочной железы и глюкагомный синдром. Указанные симптомы можно лечить путем активации рецепторов соматостатина.

IV. Панкреатический полипептид

Известно, что гамма-клетки поджелудочной железы секретируют панкреатический полипептид (РР), который является членом белкового семейства нейропептидов Y. О точном физиологическом механизме этого пептида известно мало. Известно, что РР непосредственно воздействует на поджелудочную железу путем подавления секреции пищеварительных ферментов поджелудочной железы за счет ингибирования стимуляции блуждающего нерва. Предполагают, что это влияние РР осуществляется как путем прямого воздействия на блуждающий нерв, так и путем опосредованного центральной нервной системой воздействия на дорсально-вагусный комплекс и дуговидное ядро (Deng et al., Brain Res. 2001; 902: 18-29). Полагают также, что посредством своего действия на блуждающий нерв РР ингибирует высвобождение инсулина. Как установлено, РР ингибирует также гипертрофию островковых клеток, которая наблюдается в инсулиннезависимых диабетических состояниях. Уровни РР в кровотоке также оказывают воздействие на печень и приводят к снижению продукции глюкозы печенью. Таким образом, введение РР может сыграть роль при лечении инсулиннезависимого сахарного диабета.

V. Неэмбриональные источники стволовых клеток

Взрослые клетки обладают способностью к дифференцировке. Например, недавние исследования показали специфическую способность выделенных из костного мозга стромальных клеток претерпевать in vitro нейронную дифференцировку (Woodbury et al. (2000) J. Neuroscience Research 61: 364; Sanchez-Ramos et al. (2000) Exp. Neurology 164: 247). В этих исследованиях обработка стромальных клеток костного мозга антиоксидантами, эпидермальным фактором роста (EGF) или мозговым нейротрофическим фактором (BDNF) индуцировала в клетках морфологические изменения, что соответствует нейральной дифференцировке, т.е. приводила к распространению длительного ингибирования клеточных процессов в ростовых колбочках и филоподии (Woodbury et al. (2000) J. Neuroscience Research 61: 364; Sanchez-Ramos et al. (2000) Exp. Neurology 164: 247). Кроме того, эти агенты индуцировали экспрессию нейронспецифических белков, включая нестин, нейронспецифичную энолазу (NSE), нейрофиламент M (NF-M), NeuN и рецептор фактора роста нервной ткани trkA (Woodbury et al. (2000) J. Neuroscience Research 61: 364; Sanchez-Ramos et al. (2000) Exp. Neurology 164: 247).

Другие примеры взрослых клеток, которые обладают способностью к дифференцировке, приведены в следующих патентах:

Патент США № 5486359, выданный компании Osiris, посвящен выделенным гомогенным популяциям стволовых мезенхимных клеток человека, которые могут быть дифференцированы в клетки более чем одного типа соединительных тканей. В патенте приводится способ выделения, очистки и значительной репликации указанных клеток в культуре, т.е. in vitro.

В патенте США № 5942225, выданном компаниям Case Western и Osiris, приводится композиция для индуцирования дифференцировки, направляемой линией дифференциации, выделенных стволовых мезенхимных клеток человека в одном определенном мезенхимном направлении дифференцировки, которая включает стволовые мезенхимные клетки человека и один или более биоактивных факторов для индуцирования дифференцировки стволовых мезенхимных клеток в одном определенном направлении дифференцировки.

В патенте США № 5736396, выданном компании Case Western, приводится способ ex vivo индуцирования дифференцировки, направляемой линией дифференциации, выделенных мезенхимных стволовых клеток человека, который включает контактирование мезенхимных стволовых клеток с биоактивным фактором с тем, чтобы индуцировать ex vivo дифференцировку стволовых мезенхимных клеток в одном определенном мезенхимном направлении дифференцировки. В патенте также приводится способ лечения пациента, нуждающегося в мезенхимных клетках определенного направления дифференцировки, который включает введение нуждающемуся в этом пациенту композиции, содержащей выделенные мезенхимные стволовые клетки человека, у которых индуцировали дифференцировку в условиях ex vivo путем контактирования с биоактивным фактором с тем, чтобы индуцировать ex vivo дифференцировку указанных клеток в одном определенном мезенхимном направлении дифференцировки.

В патенте США № 5908784, выданном компании Case Western, приводится композиция для in vitro хондрогенезиса клеток-предшественников мезенхимы человека в условиях in vitro и образования из них хондроцидов клеток человека, при этом композиция включает выделенные мезенхимные стволовые клетки человека в виде плотно спрессованной из клеток гранулы и по крайней мере один контактирующий с ними хондроиндуцирующий агент. В патенте также приводится способ индуцирования хондрогенезиса в мезенхимных стволовых клетках путем контактирования мезенхимных стволовых клеток с хондроиндуцирующим агентом in vitro, при этом мезенхимные стволовые клетки плотно спрессованы в гранулу.

В патенте США № 5902741, выданном компании Advanced Tissue Science, Inc., приводится полученная in vitro жизнеспособная хрящевая ткань, которая включает продуцирующие хрящевую ткань стромальные клетки и белки соединительной ткани, обычно секретируемые стромальными клетками, которые присоединены к по существу их покрывающему трехмерному каркасу, образованному биосовместимым материалом неживого происхождения и сформированному в виде трехмерной структуры, в которой внутритканевые пространства соединены стромальными клетками. В патенте также приводится композиция для выращивания новой хрящевой ткани, которая включает мезенхимные стволовые клетки в полимерном носителе, подходящем для пролиферации и дифференцировки клеток в хрящевую ткань.

В патенте США № 5863531, выданном компании Advanced Tissue Science, Inc., приводится трубчатая жизнеспособная ткань стромы, полученная в условиях in vitro, которая включает стромальные клетки и белки соединительной ткани, обычно естественно секретируемые стромальными клетками, которые присоединены к по существу их покрывающему трехмерному трубчатому каркасу, образованному биосовместимым материалом неживого происхождения, в котором внутритканевые пространства соединены стромальными клетками.

В патенте США № 6022743, выданном компании Advanced Tissue Science, Inc., приводится трехмерная система культуры на основе стромальной клетки, полученная из культуры паренхиматозных клеток поджелудочной железы на каркасе из живой стромальной ткани. Стромальные клетки могут включать клетки пупочного канатика, клетки плаценты, мезенхимные стволовые клетки и зародышевые клетки. Таким образом, систему культуры используют для получения функционально способной ткани поджелудочной железы и материала органов.

В патенте США № 5811094, выданном компании Osiris, приводится способ получения соединительной ткани, который включает формирование соединительной ткани у нуждающегося в этом пациента путем введения указанному пациенту клеточного препарата, содержащего мезенхимные стволовые клетки человека, которые извлекают из костного мозга человека и которые по существу не содержат клеток крови.

В патенте США № 6030836, выданном Thiede et al., приводится способ in vitro поддержания кроветворных стволовых клеток человека, включающий совместное культивирование мезенхимных стволовых клеток человека и кроветворных стволовых клеток таким образом, чтобы по крайней мере в некоторых из кроветворных стволовых клеток поддерживался фенотип своих стволовых клеток.

В патенте США № 6103522, выданном Torok-Storb et al., приводится линия полученных облучением иммортализованных стромальных клеток человека в комбинированной in vitro культуре с кроветворными клетками-предшественниками человека.

В международной заявке WO 9602662A1 и патенте США № 5879940, выданном Torok-Storb et al., приводятся линии стромальных клеток костного мозга человека, которые поддерживают гематопоэз.

В патенте США № 5827735, выданном компании Morphogen, приводятся очищенные плюрипотентные мезенхимные стволовые клетки, которые по существу не содержат подвергнутые дифференцировке многоядерные миогенные клетки и которые преимущественно имеют звездообразную форму, при этом в среде для культивирования клеточной ткани, содержащей 10% сыворотки плода коровы, мезенхимные стволовые клетки при контакте с мышечными морфогенными белками преимущественно образуют клетки фибробластов и преимущественно образуют в клеточной культуре со средой, содержащей 10% сыворотки плода коровы, разветвленные многоядерные структуры, которые спонтанно сокращаются при контактировании с мышечным морфогенетическим белком и фактором задержки рубцевания.

В международной заявке WO 99/43286, поданной Hahnemann University, описывается использование мезенхимных стволовых клеток для лечения центральной нервной системы и способ проведения дифференцировки стромальных клеток костного мозга.

В международной заявке WO 98/20731, поданной компанией Osiris, приводится композиция мезенхимного предшественника мегакариоцита и способ выделения мезенхимных стволовых клеток, связанных с выделенными мегакариоцитами, путем выделения мегакариоцитов.

В международной заявке WO 99/61587, поданной компанией Osiris, приводится клеточная линия CD45 человека и/или стволовые клетки фибробластов или мезенхимы.

В международной заявке WO 01/079457, поданной компанией Ixion Technology, описывается использование выделенных из костного мозга и крови стволовых клеток, которые культивируют и in vitro дифференцируют в клетки, подобные панкреатическим. В международной заявке WO 01/78752, поданной University of Texas, описывается использование нейральных стволовых клеток, имплантированных в поджелудочную железу, для лечения заболеваний поджелудочной железы.

Тем не менее, методы, описанные в предыдущих абзацах, основаны на источниках клеток-предшественников, таких как костный мозг, которые трудно получить, а кроме того, их выделение представляет собой болезненную процедуру для донора. Поэтому целью настоящего изобретения является клетка, материал и способ, помогающий при лечении эндокринных заболеваний поджелудочной железы.

Краткое описание изобретения

В настоящем изобретении представлена выделенная стромальная клетка, полученная из жировой ткани человека или другого млекопитающего, индуцированная по экспрессии по крайней мере одного генотипического или фенотипического признака клетки поджелудочной железы, предпочтительно эндокринной клетки поджелудочной железы. Указанная клетка может обладать свойствами глюкагонпродуцирующей α-клетки, инсулинпродуцирующей β-клетки, продуцирующей панкреатический полипептид γ-клетки или соматостатинпродуцирующей δ-клетки. В предпочтительном варианте осуществления настоящего изобретения получают инсулинпродуцирующую β-клетку. В клетке по настоящему изобретению можно индуцировать дифференцировку в условиях in vitro либо после имплантации пациенту.

Клетку по настоящему изобретению можно включить в двумерную или трехмерную структуру с целью создания пригодной для имплантации или имплантированной матрицы, как детально описывается далее. В настоящем изобретении, например, предлагается способ инкапсулирования дифференцированных взрослых стволовых клеток, выделенных из жировой ткани, или дифференцированных клеток в биоматериал, совместимый с методами трансплантации млекопитающему, преимущественно человеку. Материал для инкапсулирования не должен препятствовать высвобождению белков или гормонов, секретируемых взрослыми стволовыми клетками, выделенными из жировой ткани, или дифференцированными клетками. Используемые материалы включают, однако ими не ограничиваются, производные коллагена, гидрогели, альгинат кальция, агарозу, хилауроновую кислоту, производные полимолочной/полигликолевой кислоты и фибрин.

Клетку по настоящему изобретению можно получить методами генной инженерии с тем, чтобы она могла включать экзогенный генетический материал. В одном из вариантов осуществления изобретения используется вектор, который способен интегрировать требуемые последовательности гена в хромосому клетки-хозяина. В предпочтительном варианте осуществления изобретения вводимая молекула нуклеиновой кислоты встраивается в плазмидный или вирусный вектор, способный к автономному реплицированию в клетке-хозяине реципиента. С этой целью может быть использовано широкое разнообразие векторов. Предпочтительные эукариотные векторы включают, например, вирус коровьей оспы, SV40, ретровирусы, аденовирусы, аденоассоциированные вирусы и большое разнообразие коммерчески доступных векторов экспрессии млекопитающих на основе плазмиды, которые известны специалистам в данной области техники. Как только вектор или нуклеиновая кислота подготовлены для экспрессии, конструкцию (конструкции) ДНК можно ввести в соответствующую клетку-хозяин с помощью любых разнообразных средств, т.е. трансформацией, трансфекцией, вирусным инфицированием, конъюгацией, слиянием протоплазмы, электропорацией, с помощью технологии «генного ружья», преципитацией фосфата кальция, прямой микроинъекцией и т.п. После введения вектора клетки-реципиенты культивируют в выбранной среде, в которой селективно растут клетки, содержащие вектор. Экспрессия молекул(ы) клонированного гена приводит к продукции гетерологичного белка.

В настоящем изобретении предлагается также способ дифференцировки выделенных стромальных клеток, полученных из жировой ткани, так чтобы они могли экспрессировать по крайней мере один генотипический или фенотипический признак клетки поджелудочной железы, например, глюкагонпродуцирующей α-клетки, инсулинпродуцирующей β-клетки, продуцирующей панкреатический полипептид γ-клетки или соматостатинпродуцирующей δ-клетки, который включает стадию контактирования выделенной стромальной клетки, полученной из жировой ткани, с веществом, индуцирующим функцию поджелудочной железы, предпочтительно индуцирующим эндокринную функцию поджелудочной железы. Указанное вещество находится в имеющей химически заданный состав среде для выращивания клеточной культуры, что более подробно описывается далее, которая может содержать факторы роста, цитокины, химические агенты и/или гормоны с концентрацией, эффективной для того, чтобы индуцировать в выделенных стромальных клетках, полученных из жировой ткани, экспрессию по крайней мере одного маркера эндокринной клетки поджелудочной железы.

В настоящем изобретении предлагается также способ лечения расстройства, опосредованного панкреатической функцией глюкагонпродуцирующей α-клетки, инсулинпродуцирующей β-клетки, продуцирующей панкреатический полипептид γ-клетки или соматостатинпродуцирующей δ-клетки у реципиента, включающий индуцирование у выделенной стромальной клетки, полученной из жировой ткани, экспрессии по крайней мере одного генотипического или фенотипического признака клетки поджелудочной железы, что оказывает терапевтически благотворное воздействие на реципиента; и затем трансплантирование индуцированных клеток реципиенту. Преимущество настоящего изобретения заключается в том, что полученные из жировой ткани стромальные клетки можно взять непосредственно от реципиента, дифференцировать их и реимплантировать аутогенно. В качестве альтернативы терапию можно проводить аллогенно.

Не ограничивающими настоящее изобретение примерами расстройств эндокринной функции поджелудочной железы или дегенеративных состояний, для лечения которых может быть использовано данное изобретение, включают сахарный диабет I типа, сахарный диабет II типа, заболевание, вызванное липодистрофией, химически индуцированное заболевание, заболевание, вызванное панкреатитом, или заболевание, вызванное травмой.

Клетку по настоящему изобретению можно использовать как в качестве гомогенной или в значительной степени гомогенной популяции клеток, так и как часть популяции, в которой другие клетки секретируют вещества, поддерживающие рост или дифференцировку клетки, подобной эндокринной клетке поджелудочной железы, или вместе с другими клетками, которые секретируют или проявляют другие требуемые терапевтические факторы.

Настоящее изобретение включает также способы продуцирования гормонов с помощью полученных из жировой ткани стромальных клеток. Включены также методы кондиционирования среды с культурой путем воздействия клетки по настоящему изобретению на среду с культурой. Среда затем может быть использована для культивирования других клеток, полученных из жировой ткани.

В изобретении также рассматривается набор для продуцирования полученных из жировой ткани стромальных клеток, у которых индуцируют экспрессию по крайней мере одного генотипического или фенотипического признака клетки поджелудочной железы, который может включать инструкции по отделению стромальных клеток или стволовых клеток от остатков жировой ткани, а также включает среду для проведения дифференцировки стволовых клеток, причем указанная среда заставляет клетку экспрессировать по крайней мере один генотипический или фенотипический признак клетки поджелудочной железы или же в общем случае стать панкреогенной. Предлагается также набор, который содержит все необходимые компоненты для получения ткани по настоящему изобретению. Указанный набор включает клетку или популяцию клеток по настоящему изобретению, биологически совместимую решетку, а также компоненты, содержащие гидратирующие агенты, субстраты клеточной культуры, среды для выращивания клеточной культуры, другие клетки, антибиотики и гормоны.

Другие цели настоящего изобретения станут более понятны из следующего описания.

Подробное описание изобретения

В настоящем изобретении предлагается выделенная стромальная клетка, полученная из жировой ткани человека или другого млекопитающего, в которой индуцируют экспрессию по крайней мере одного генотипического или фенотипического признака клетки поджелудочной железы и предпочтительно эндокринной клетки поджелудочной железы. Клетка может обладать свойствами глюкагонпродуцирующей α-клетки, инсулинпродуцирующей β-клетки, продуцирующей панкреатический полипептид (PP) γ-клетки или соматостатинпродуцирующей δ-клетки. В предпочтительном варианте осуществления настоящего изобретения получают инсулинпродуцирующую β-клетку. В клетке по настоящему изобретению можно индуцировать дифференцировку в условиях in vitro либо после имплантации пациенту.

Клетки, полученные способами по настоящему изобретению, могут служить источником частично или полностью дифференцированных, функционально дееспособных клеток, обладающих свойствами зрелых