Энергоблок с расширенным диапазоном регулирования
Использование: в области электротехники. Технический результат заключается в расширении диапазона регулирования. В энергоблок введены последовательно соединенные электромагнитное устройство, снабженное датчиком тока, и управляемый реактор с блоком управления и схема управления, причем управляемый реактор соединен с местным электроприемником и через электромагнитное устройство соединен с выводами генератора, датчик тока электромагнитного устройства через схему управления соединен с входом автоматического регулятора возбуждения и с входом блока управления управляемого реактора; при этом схема управления содержит блок задания уставки, функциональный преобразователь и блок разности с двумя входами, причем выход блока задания уставки соединен с входом автоматического регулятора возбуждения и с входом «+» блока разности, выход которого соединен с входом блока управления управляемого реактора, вход «-» блока разности через функциональный преобразователи соединен с датчиками тока электромагнитного устройства; причем электромагнитное устройство выполнено в виде понижающего трансформатора или токоограничивающего реактора. 3 з.п. ф-лы, 1 ил.
Реферат
Изобретение относится к области электротехники, в частности к устройствам регулирования реактивной мощности и стабилизации напряжения в узле электрической сети.
Известны управляемые средства компенсации реактивной мощности (СТК, СТАТКОМ) [В.Н.Ивакин, В.Д.Ковалев. Перспективы силовой преобразовательной техники в электроэнергетике. «Электричество», 2001, №9]. Недостатком указанного технического решения является то, что эти устройства могут работать только при наличии напряжения в электрической сети.
Известны энергоблоки со схемой питания собственных нужд, в которых регулирование напряжения на местных электроприемниках может осуществляться переключением РПН трансформаторов собственных нужд [Б.Н.Неклепаев. Электрическая часть электростанций и подстанций. М., 1986, стр.361-385]. Недостатком этих энергоблоков является то, что при централизованном автоматическом регулировании напряжения в энергосистеме регулирование напряжения на шинах собственных нужд переключением РПН не обеспечивает требуемого быстродействия. Кроме того, механические устройства РПН обладают ограниченным коммутационным ресурсом и низкой эксплуатационной надежностью.
Наиболее близким техническим решением к предлагаемому изобретению являются генераторы электростанций с независимыми средствами регулирования реактивной мощности и напряжения в энергосистеме.
Недостатком данных устройств является то, что при существующих схемах питания собственных нужд электростанций необходимость поддержания напряжения на шинах собственных нужд в жестко заданных пределах ограничивает допустимый диапазон изменения напряжения на выводах генераторов.
Целью предлагаемого изобретения является расширение диапазона регулирования реактивной мощности энергоблока.
Указанная цель достигается тем, что в энергоблок с расширенным диапазоном регулирования, содержащий последовательно соединенные трансформатор и генератор с автоматическим регулятором возбуждения, и местный электроприемник, дополнительно введены последовательно соединенные электромагнитное устройство, снабженное датчиком тока, управляемый реактор с блоком управления и схема управления, причем управляемый реактор соединен с местным электроприемником и через электромагнитное устройство - с выводами генератора, датчик тока электромагнитного устройства через схему управления соединен с входом автоматического регулятора возбуждения и с входом блока управления управляемого реактора; при этом схема управления содержит блок задания уставки, функциональный преобразователь и блок разности с двумя входами, причем выход блока задания уставки соединен с входом автоматического регулятора возбуждения и с входом «+» блока разности, выход которого соединен с входом блока управления управляемого реактора, вход «-» блока разности через функциональный преобразователь соединен с датчиками тока электромагнитного устройства; причем электромагнитное устройство выполнено в виде понижающего трансформатора или токоограничивающего реактора.
Схема энергоблока представлена на чертеже.
Энергоблок содержит последовательно соединенные трансформатор 1, генератор 2 с автоматическим регулятором возбуждения 3, электромагнитное устройство 4, снабженное датчиком тока 5, местный электроприемник 6, управляемый реактор 7 с блоком управления 8 и схему управления 9. Схема управления 9 содержит функциональный преобразователь 10, блок разности 11 с двумя входами и блок задания уставки 12.
Управляемый реактор 7 соединен с местным электроприемником 6 и через электромагнитное устройство 4 соединен с выводами генератора 2. Датчик тока 5 электромагнитного устройства 4 через схему управления 9 соединен с входом автоматического регулятора возбуждения 3 и с входом блока управления 8 управляемого реактора 7. Выход блока задания уставки 12 соединен с входом автоматического регулятора возбуждения 3 и с входом «+» блока разности 11, выход которого соединен с входом блока управления 8 управляемого реактора 7. Вход «-» блока разности 11 через функциональный преобразователь 10 соединен с датчиками тока 5 электромагнитного устройства 4.
Устройство работает следующим образом.
Блок задания уставки 12 изменяет уставку по напряжению одновременно на входе автоматического регулятора возбуждения 3 генератора 2 и на входе «+» блока разности 11. На вход «-» блока разности 11 поступает сигнал коррекции с выхода функционального преобразователя 10, пропорциональный току нагрузки электромагнитного устройства 4. Функциональный преобразователь 10 служит для согласования задающего и корректирующего сигналов на входах блока разности 11 по размерности и величине. Результирующий сигнал с выхода блока разности 11 поступает на вход блока управления 8 реактора 7 и задает величину тока подмагничивания в реакторе, а следовательно, и его рабочего тока. При увеличении уставки по напряжению под действием автоматического регулятора возбуждения 3 возрастает напряжение на выводах генератора 2 и одновременно увеличивается ток подмагничивания в реакторе 7. В результате возрастает рабочий ток реактора 7, создавая дополнительную нагрузку электромагнитного устройства 4 и дополнительное падение напряжения на нем.
При уменьшении уставки происходит процесс, обратный описанному выше. Таким способом реализуется встречное регулирование напряжения на выводах местного электроприемника 6.
В случае увеличения (например, при пуске асинхронного двигателя в составе потребителей собственных нужд энергоблока) или уменьшения (при завершении пуска двигателя) нагрузки электромагнитного устройства 4 корректирующий сигнал, поступающий на вход «-» блока разности 11 с выхода функционального преобразователя 10, вызывает соответственно уменьшение или увеличение рабочего тока реактора 7. Таким путем реализуется встречная коррекция напряжения на выводах местного электроприемника 6 по величине текущей нагрузки.
При одновременном изменении нагрузки электромагнитного устройства 4 и уставки по напряжению сигналы от блока задания уставки 12 и функционального преобразователя 10 благодаря наличию блока разности 11 оказываются направленными встречно, компенсируя друг друга.
Электромагнитное устройство 4 может быть реализовано либо в виде токоограничивающего реактора, либо в виде понижающего трансформатора. При соответствующем выборе реактанса токоограничивающего реактора или понижающего трансформатора с повышенным напряжением короткого замыкания может быть достигнуто снижение токов короткого замыкания на выводах местного электроприемника 6, в частности на шинах собственных нужд энергоблока.
Подключение управляемого реактора 7 к выводам генератора 2 через электромагнитное устройство 4 увеличивает выдаваемую генератором реактивную мощность.
Применение предлагаемого технического решения на всех генераторах тепловой электростанции исключает необходимость установки на шинах высших напряжений дополнительных шунтирующих реакторов для нормализации режима работы турбогенераторов по загрузке реактивной мощностью.
Предлагаемое техническое решение позволяет полностью использовать располагаемую реактивную мощность энергоблока, участвующего в автоматическом регулировании напряжения и реактивной мощности в энергосистеме, повысить скорость, надежность, устойчивость и точность регулирования напряжения на выводах местного электроприемника, например при пусках асинхронных двигателей.
Кроме того, подключение к шинам собственных нужд энергоблока управляемого реактора позволяет применить трансформатор собственных нужд с увеличенным напряжением короткого замыкания, что в свою очередь позволит снизить уровень тока короткого замыкания на шинах собственных нужд энергоблока.
1. Энергоблок с расширенным диапазоном регулирования, содержащий последовательно соединенные трансформатор и генератор с автоматическим регулятором возбуждения, и местный электроприемник, отличающийся тем, что в него дополнительно введены последовательно соединенные электромагнитное устройство, снабженное датчиком тока, управляемый реактор с блоком управления и схема управления, причем управляемый реактор соединен с местным электроприемником и через электромагнитное устройство - с выводами генератора, датчик тока электромагнитного устройства через схему управления соединен с входом автоматического регулятора возбуждения и с входом блока управления управляемого реактора.
2. Устройство по п.1, отличающееся тем, что схема управления содержит блок задания уставки, функциональный преобразователь и блок разности с двумя входами, причем выход блока задания уставки соединен с входом автоматического регулятора возбуждения и с входом «+» блока разности, выход которого соединен с входом блока управления управляемого реактора, вход «-» блока разности через функциональный преобразователь соединен с датчиками тока электромагнитного устройства.
3. Устройство по п.1, отличающееся тем, что электромагнитное устройство выполнено в виде понижающего трансформатора.
4. Устройство по п.1, отличающееся тем, что электромагнитное устройство выполнено в виде токоограничивающего реактора.