Смеси полиолов и полученные из них полиуретаны

Иллюстрации

Показать все

Изобретение относится к смеси полиолов, которые могут быть использованы для получения полиуретановых пенопластов. Данная смесь состоит из полиолов, выраженных структурами (I) и (II):

и . Также описан способ получения смеси полиолов, включающий (i) смешивание инициатора, представляющего собой полиол, полиамин, аминоспирт или их смесь, и мономера, имеющего, по меньшей мере, одну из формул (I), (II) и (III):

,

причем количество соединения (III) составляет, по меньшей мере, 0,05% мас. от смеси полиолов, и (ii) нагревание смеси до температуры реакции, в течение времени реакции, в вакууме и в присутствии катализатора, и способ получения смеси полиолов, включающий (i) нагревание, в присутствии катализатора, мономера, имеющего, по меньшей мере, одну из формул (I), (II) и (III), причем количество соединения (III) составляет, по меньшей мере, 0,05% мас. от смеси полиолов, до тех пор, пока некоторая часть мономеров не прореагирует, и затем (ii) добавление инициатора в течение времени и при температуре, достаточных для получения смеси полиолов в условиях вакуума, а также полиуретан, содержащий продукт взаимодействия полиизоцианата и заявленной смеси полиолов. Заявленные способы позволяют получать смесь полиолов с высокой молекулярной массой без гелеобразования, при этом, использование такой смеси полиолов при получении пенополиуретанов улучшает размер пор пенопластов, структуру пор, ощущение на ощупь или тактильное качество и его износоустойчивость. 4 н. и 28 з.п. ф-лы, 20 табл., 3 ил.

Реферат

Область изобретения

Изобретение относится к усовершенствованным способам получения растительных полиолов, которые можно использовать, например, для получения полиуретановых пенопластов.

Предпосылки создания изобретения

Полиуретаны получают путем взаимодействия полиизоцианатов и полиолов. В первом крупномасштабном коммерческом производстве полиуретанов использовали сложные полиэфиры полиолов, получаемые сложноэфирной конденсацией диолов или полиолов и дикарбоновых кислот с получением эластичного пенопласта. Сложные полифиры полиолов были вытеснены простыми полиэфирами полиолов, так как они имеют низкую стоимость и позволяют получать широкий диапазон полиолов. Простые полиэфиры получают путем полимеризации эпоксидов (оксиранов), получаемых из нефтяного сырья, содержащего исходные соединения с активным водородом (полиолы и полиамины).

Жесткие полиуретановые пенопласты получают с использованием касторового масла или побочных продуктов производства касторового масла. Касторовое масло используют для получения жестких пенопластов, так как оно имеет низкую молекулярную массу (короткую цепь) и большое количество функциональных групп (три гидроксильные группы).

Были предприняты попытки получения полиолов из растительного или возобновляемого сырья, например, описанные в Peerman et al., патенты США №№ 4423162; 4496487 и 4543369. Peerman et al. описывают способ взаимодействия сложного гидроксиэфирного мономера с полиолом или полиамином. Однако Peerman et al. особо описывают проблемы гелеобразования, которых можно избежать путем ограничения степени превращения или путем применения реагентов в количествах, сильно отличающихся от стехиометрических. Поэтому из полученных ими полиолов Peerman et al. описывают только эластомеры (поперечно-сшитые жесткие полиуретаны). Кроме того, описано, что присутствие вторичных гидроксильных групп вызывает запотевание, при этом продукт выглядит влажным и не полностью отвержденным, что ограничивает применение дешевых возобновляемых инициаторов, таких как глицерин.

Соответственно, было бы желательно предложить и способ получения, и растительный полиол, который позволит решить одну или несколько из проблем предыдущего уровня техники, например, одну из описанных выше. В особенности, было бы желательно предоставить полиол на основе растительного масла (VOB), который можно использовать для получения жестких полиуретановых пенопластов в отсутствие любых других полиолов.

Краткое описание изобретения

Первый аспект данного изобретения представляет собой способ получения полиола на основе растительного масла, где указанный способ включает в себя

i) смешивание инициатора, который представляет собой полиол, полиамин, аминоспирт или их смесь, и мономера, полученного из растительного масла (VOB), имеющего, по меньшей мере, одну из формул:

где m, n, v, r и s означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18, и

ii) нагревание смеси до температуры реакции, в течение времени реакции, в вакууме и в присутствии количества катализатора, достаточного для получения полиола на основе растительного масла. Понятно, что инициатор не содержит сложноэфирной группы, которая может участвовать в переэтерификации в условиях реакции.

Неожиданно было обнаружено, что с помощью способа первого аспекта можно получить незагущенный (в результате гелеобразования) полиол с достаточным количеством гидроксильных функциональных групп и достаточной молекулярной массой для получения жесткого пенопласта после взаимодействия с полиизоцианатом. В данном способе, несмотря на то, что он проводится в вакууме, можно использовать инициаторы, которые могут относительно быстро улетучиваться при температуре реакции, используемой для получения VOB-полиола. Неожиданно было обнаружено, что данный способ позволяет получать новые незагущенные VOB-полиолы, даже если присутствуют VOB-мономеры с тремя гидроксильными группами. Наконец, неожиданно было обнаружено, что данный способ позволяет получить уникальный VOB-полиол, где весь VOB-мономер вступает в реакцию, но данный полиол содержит несколько гидроксильных или аминогрупп инициатора, которые не участвуют в реакции, даже если используется большой избыток VOB-мономера по отношению к стехиометрическому количеству, необходимому для осуществления взаимодействия.

Второй аспект данного изобретения представляет собой способ получения полиола на основе растительного масла, причем указанный способ включает в себя

i) нагревание, в присутствии катализатора, мономера, полученного из растительного масла, имеющего, по меньшей мере, одну из формул:

где m, n, v, r и s означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18, до тех пор, пока некоторая часть VOB-мономеров не прореагирует, и затем

ii) добавление инициатора, который представляет собой полиол, полиамин, аминоспирт или их смесь, к прореагировавшим VOB-мономерам стадии (i) в вакууме, в течение времени и при температуре, достаточных для получения растительного полиола. Неожиданно было обнаружено, что данный аспект изобретения позволяет получать подобные VOB-полиолы, даже если инициатор добавляют после того, как VOB-мономеры, например, составят значительную молекулярную массу. Считается, что данный способ позволяет лучше контролировать молекулярную массу образующегося VOB-полиола.

Третий аспект данного изобретения представляет собой полиол на основе растительного масла, состоящий из

где R означает остаток полиольного, полиаминового или аминоспиртового инициатора; X и X' могут быть одинаковыми или разными и означают О, N или NH; p означает целое число от 1 до 5; q означает целое число от 1 до 5, где p+q находится в интервале от 3 до 8, t означает целое число от 3 до 8, а A могут быть одинаковыми или разными и выбраны из группы, состоящей из A1, A2 и A3, где

А1 означает

А2 означает

А3 означает

где m, n, v, r, s, a, b и c означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18, а находится в интервале от 0 до 35, b находится в интервале от 0 до 35, и c находится в интервале от 0 до 35, при условии, что не все значения a, b и c в любой молекуле полиола на основе растительного масла равны нулю, и что соотношение (a+b+c)/(p+q+t) в полиоле на основе растительного масла находится в интервале приблизительно от 5 до 100. Следует понимать, что каждая гидроксильная группа или все гидроксильные группы могут взаимодействовать с метиловым сложным эфиром другого VOB-мономера. Следует понимать, что приведенные выше структуры только моделируют реальную степень взаимодействия (т.е., показывают взаимодействие одной гидроксильной группы VOB-мономера). Однако в условиях полимеризации способны взаимодействовать любая гидроксильная группа или все доступные гидроксильные группы. Другими словами, рост цепи может происходить не только по гидроксильной группе, изображенной в вышеприведенных структурах, но и по любому гидроксилу VOB-мономера. Также понятно, что ацилированию может подвергаться несколько гидроксильных групп VOB-мономера.

Четвертый аспект данного изобретения представляет собой полиол на основе растительного масла, состоящий из

где R означает остаток инициатора, полиола, полиамина или аминоспирта; X и X' могут быть одинаковыми или разными и обозначают О, N или NH; p означает целое число от 1 до 5; q означает целое число от 1 до 5, где p+q находится в интервале от 2 до 8, t означает целое число от 2 до 8, а A могут быть одинаковыми или разными и выбраны из группы, состоящей из A1, A2 и A3, где

А1 означает

А2 означает

А3 означает

где m, n, v, r, s, a, b и c означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18, а находится в интервале от 0 до 35, b находится в интервале от 0 до 35 и c находится в интервале от 0 до 35, при условии, что не все значения a, b и c равны нулю, по меньшей мере, часть А представляет собой А3, а соотношение (a+b+c)/(p+q+t) в полиоле на основе растительного масла находится в интервале приблизительно от 0 до 100.

Полиолы на основе растительных масел можно использовать во всех случаях, в которых применяются полиолы. Примеры включают в себя любое применение полиуретанов, например, эластомеры, покрытия, адгезивы, герметики, жесткие пенопласты и, в особенности, эластичные пенопласты.

Подробное описание изобретения

Растительные полиолы настоящего изобретения получают путем взаимодействия инициатора с мономером, полученным из растительного масла (VOB). Инициатор имеет, по меньшей мере, один активный водород, который взаимодействует с VOB-мономером. Инициатор может быть представлен формулой:

R(XH)p,

где X означает О, N или NH, а p находится в интервале от 1 до 8. В данной формуле X могут быть одинаковыми или разными. Таким образом, инициатор включает в себя полиолы, полиамины и аминоспирты. R, как правило, означает алкановую (C-C), алкеновую (C=C) и эфирную (C-O-C) связи или их сочетания, в соединениях, содержащих линейную цепь, циклическую цепь, или их сочетания. Атомы углерода в вышеупомянутой цепи могут быть замещены метильной или этильной группой. Как правило, молекулярная масса инициатора чаще всего находится в интервале от 32 до приблизительно 2000. Предпочтительно, молекулярная масса находится в интервале от, по меньшей мере, приблизительно 50, более предпочтительно, по меньшей мере, приблизительно 60, наиболее предпочтительно, по меньшей мере, приблизительно 90, до, предпочтительно, не более, чем приблизительно 1400, более предпочтительно, не более, чем приблизительно 1200, и наиболее предпочтительно, не более, чем приблизительно 800.

Примеры полиольных инициаторов включают в себя неопентилгликоль; 1,2-пропиленгликоль; триметилолпропан; пентаэритрит; сорбит; сахарозу; глицерин; алкандиолы, такие как 1,6-гександиол; 2,5-гександиол; 1,4-бутандиол; 1,4-циклогександиол; этиленгликоль; диэтиленгликоль; триэтиленгликоль; 9(1)-гидроксиметилоктадеканол, 1,4-бисгидроксиметилциклогексан; 8,8-бис(гидроксиметил)трицикло[5,2,1,02,6]децен; спирт димерол (диол, содержащий 36 атомов углерода, доступный от Henkel Corporation); гидрированный бисфенол; 9,9(10,10)-бисгидроксиметилоктадеканол; 1,2,6-гексантриол; любое из указанных выше соединений, в котором, по меньшей мере, одна из присутствующих спиртовых или аминогрупп прореагировала с этиленоксидом, пропиленоксидом, или их смесью, а также сочетания перечисленных соединений.

Если, по меньшей мере, одна из спиртовых групп, присутствующих в любом из указанных выше соединений, взаимодействует с этиленоксидом или пропиленоксидом, это означает, что активный водород гидроксильной группы взаимодействует с образованием простого полиэфирного спирта, представленного следующей формулой:

где R такой, как определено выше. Следует понимать, что вместо этиленоксида или пропиленоксида можно использовать другие алкоксилирующие агенты. Аминогруппы тоже могут взаимодействовать с алкоксилирующим агентом.

Примеры полиаминовых инициаторов включают в себя этилендиамин; неопентилдиамин, 1,6-диаминогексан; бисаминометилтрициклодекан; бисаминоциклогексан; диэтилентриамин; бис-3-аминопропилметиламин и триэтилентетрамин.

Примеры аминоспиртов включают в себя этаноламин, диэтаноламин и триэтаноламин.

Другие пригодные инициаторы включают в себя полиолы, полиамины или аминоспирты, описанные в патентах США №№ 4216344; 4243818 и 4348543, а также в патенте Великобритании № 1043507.

Предпочтительно, инициатор выбирают из группы, состоящей из неопентилгликоля; триметилолпропана; пентаэритрита; сорбита; сахарозы; глицерина; 1,2-пропиленгликоля; 1,6-гександиола; 2,5-гександиола; 1,6-гександиола; 1,4-циклогександиола; 1,4-бутандиола; этиленгликоля; диэтиленгликоля; триэтиленгликоля; бис-3-аминопропилметиламина; этилендиамина; диэтилентриамина; 9(1)-гидроксиметилоктадеканола; 1,4-бисгидроксиметилциклогексана; 8,8-бис(гидроксиметил)трицикло[5,2,1,02,6]децена; спирта димерол; гидрированного бисфенола; 9,9(10,10)-бисгидроксиметилоктадеканола; 1,2,6-гексантриола; любого из указанных выше соединений, в котором, по меньшей мере, одна из присутствующих спиртовых или аминогрупп прореагировала с этиленоксидом, пропиленоксидом или их смесью, а также сочетаний перечисленных соединений.

Более предпочтительно, инициатор выбирают из группы, состоящей из неопентилгликоля; 1,2-пропиленгликоля; триметилолпропана; пентаэритрита; этоксилированного пентаэритрита; пропоксилированного пентаэритрита; сорбита; сахарозы; глицерина; этоксилированного глицерина; пропоксилированного глицерина; диэтаноламина; алкандиолов, таких, как 1,6-гександиол, 1,4-бутандиол; 1,4-циклогександиола; 2,5-гександиола; этиленгликоля; диэтиленгликоля, триэтиленгликоля; бис-3-аминопропилметиламина; этилендиамина; диэтилентриамина; 9(1)-гидроксиметилоктадеканола, 1,4-бисгидроксиметилциклогексана; 8,8-бис(гидроксиметил)трицикло[5,2,1,02,6]децена; спирта димерол; гидрированного бисфенола; 9,9(10,10)-бисгидроксиметилоктадеканола; 1,2,6-гексантриола и их сочетаний.

Еще более предпочтительно, инициатор выбирают из группы, состоящей из глицерина; этиленгликоля; 1,2-пропиленгликоля; триметилолпропана; этилендиамина; пентаэритрита; диэтилентриамина; сорбита; сахарозы; или любого из указанных выше соединений, в котором, по меньшей мере, одна из присутствующих спиртовых или аминогрупп прореагировала с этиленоксидом, пропиленоксидом или их смесью, а также сочетаний перечисленных соединений.

Наиболее предпочтительно, инициатор представляет собой глицерин, пентаэритрит, сахарозу, сорбит, этоксилированный глицерин, пропоксилированный глицерин, этоксилированный пентаэритрит, пропоксилированный пентаэритрит или их смеси.

Неожиданно было обнаружено, что при применении способа настоящего изобретения предпочтительно использовать инициатор, который содержит, по меньшей мере, одну вторичную гидроксильную группу, или вторичную аминогруппу (например, глицерин). Это является неожиданным, поскольку в данной реакции VOB-мономер может взаимодействовать, например, с глицерином, таким образом, что полученный полиол на основе растительного масла имеет, по меньшей мере, несколько молекул полиола, в которых, по меньшей мере, одна из первичных гидроксильных групп глицерина не прореагировала с VOB-мономером, а вторичная гидроксильная группа прореагировала. Это подробно описано ниже.

VOB-мономер представляет собой мономер, полученный из растительного масла, имеющий, по меньшей мере, одну из формул:

где m, n, v, r и s означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18.

VOB-мономер может быть получен из любого животного жира или растительного масла, содержащего триглицериды, которые при омылении основанием, таким, как водный раствор гидроксида натрия, дают жирную кислоту и глицерин, причем, по меньшей мере, часть жирных кислот составляют ненасыщенные жирные кислоты (т.е., содержащие, по меньшей мере, одну углерод-углеродную двойную связь). Предпочтительные растительные масла дают, по меньшей мере, приблизительно 70 процентов по массе ненасыщенных жирных кислот. Более предпочтительно, растительные масла дают, по меньшей мере, приблизительно 85 процентов, более предпочтительно, по меньшей мере, 87 процентов, и наиболее предпочтительно, по меньшей мере, приблизительно 90 процентов по массе ненасыщенных жирных кислот. Следует понимать, что можно использовать определенные жирные кислоты, полученные из растительного масла, животного жира или любого другого источника. Другими словами, для непосредственного получения VOB-мономера можно использовать, например, алкильные эфиры пальмитолеиновой, олеиновой, линолевой, линоленовой и арахидоновой кислот. Предпочтительно, однако, как указано ранее, использовать растительное масло. Предпочтительные масла включают в себя, например, соевое масло, сафлоровое масло, хлопковое масло, льняное масло, арахисовое масло, оливковое масло, подсолнечное масло, масло канолы, рапсовое масло, кукурузное масло, пальмовое масло или их сочетание. Более предпочтительно, растительное масло представляет собой соевое масло, подсолнечное масло, масло канолы, кукурузное масло, рапсовое масло или их сочетание. Наиболее предпочтительно, растительное масло представляет собой соевое масло, подсолнечное масло, масло канолы или их сочетание. Понятно, что растительное масло может быть получено из генетически модифицированного организма, такого, как генетически модифицированные соя, подсолнечник или канола.

Затем из алкильных эфиров ненасыщенных жирных кислот с помощью любых подходящих способов, таких, как известные в данной области, можно получить VOB-мономеры (гидроксиметиловые сложные эфиры). Например, гидроксиметильную группу можно ввести методом гидроформилирования с использованием кобальтового или родиевого катализатора с последующим гидрированием формильной группы и получением гидроксиметильной группы после каталитического или химического восстановления. Способы получения гидроксиметиловых сложных эфиров описаны в патентах США №№ 4216343; 4216344; 4304945 и 4229562, особенно, 4083816. Можно использовать другие известные способы получения гидроксиметиловых эфиров жирных кислот, такие, как описанные в патентах США №№ 2332849 и 3787459.

При получении VOB-мономеров формилирование алкильных эфиров жирных кислот может быть полным или частичным. Другими словами, в алкильных эфирах жирных кислот конкретного растительного масла может остаться несколько ненасыщенных (C=C) связей. Предпочтительно, однако, чтобы количество ненасыщенных связей, оставшихся после формилирования, было таким, как описано в одновременно поданной заявке под названием "ALDEHYDE AND ALCOHOL COMPOSITIONS DERIVED FROM SEED OILS", авторы Donald Morrison et al., номер дела 63104, в предварительной заявке США № 60/465663, поданной 25 апреля 2003, и в одновременно поданной не предварительной заявке, заявляющей приоритет на ее основании, включенных в данное описание в качестве ссылки. После формилирования алкильные эфиры жирных кислот гидрируют так, чтобы по существу не осталось ненасыщенных связей (т.е., самое большее, следовые количества и, предпочтительно, отсутствие детектируемого уровня ненасыщенности).

VOB-мономер и инициатор смешивают вместе с помощью подходящих средств, таких, как известные в данной области. Например, простое перемешивание является достаточным.

VOB-мономер и инициатор нагревают до температуры реакции, в течение времени реакции, в вакууме и в присутствии количества катализатора, достаточного для получения растительного полиола. Используемая температура реакции зависит, например, от VOB-мономера, инициатора и катализатора, однако при использовании оловянного или титанового катализатора температура реакции, как правило, находится в интервале, по меньшей мере, приблизительно от 140°C до приблизительно 300°C. Предпочтительно, температура реакции находится в интервале от, по меньшей мере, приблизительно 150°C, более предпочтительно, по меньшей мере, приблизительно 180°C, наиболее предпочтительно, по меньшей мере, приблизительно 190°C, до, предпочтительно, не более чем приблизительно 250°C, более предпочтительно, не более чем приблизительно 220°C и, наиболее предпочтительно, не более чем приблизительно 210°C.

Катализатором может быть любой подходящий катализатор, такой как оловянный, титановый, ферментный катализатор (например, липаза), карбонатный катализатор (например, K2CO3, NaHCO3) или их сочетание.

В предпочтительном воплощении катализатором является фермент, такой как липаза, который позволяет снизить температуру реакции до интервала от приблизительно ниже 100°C до приблизительно комнатной температуры. Это, в свою очередь, позволяет использовать инициаторы (например, сахар), которые разлагаются при более высоких температурах, используемых в случае оловянных или титановых катализаторов.

Аналогично, время реакции зависит от переменных, описанных выше для температуры реакции. Как правило, время находится в интервале, по меньшей мере, приблизительно от 10 минут до не более чем приблизительно 24 часов. Предпочтительно, время реакции находится в интервале от, по меньшей мере, приблизительно 15 минут, более предпочтительно, по меньшей мере, приблизительно 30 минут, более предпочтительно, по меньшей мере, приблизительно 1 часа, до, предпочтительно, не более чем приблизительно 12 часов, более предпочтительно, не более чем приблизительно 9 часов и, наиболее предпочтительно, не более чем приблизительно 5 часов.

Было обнаружено, что при получении VOB-полиола ключевым условием является проведение реакции в вакууме. Это справедливо, даже если инициатор является летучим при температуре реакции. Летучесть означает, что инициатор может испариться в вакууме в течение существенно меньшего времени, чем общее время реакции. Например, если инициатором является глицерин, глицерин в реакционном сосуде без VOB-мономера испарится в вакууме, составляющем приблизительно 20 торр, в течение приблизительно 120 минут при 200°C. Как правило, вакуум составляет, по меньшей мере, приблизительно 100 торр. Предпочтительно, вакуум составляет, по меньшей мере, приблизительно 50 торр, более предпочтительно, вакуум составляет, по меньшей мере, приблизительно 20 торр.

В предпочтительном воплощении, особенно, при использовании летучего инициатора, VOB помещают в реактор под вакуумом при температуре реакции и в течение времени, значения которых достаточны для переэтерификации значительного количества VOB-мономера (например, по меньшей мере, приблизительно 10 процентов сложноэфирных групп VOB-мономера подвергаются переэтерификации), и затем добавляют инициатор для получения VOB-полиола. Данный способ позволяет осуществлять точный контроль за молекулярной массой без существенной потери летучего инициатора.

Также обнаружено, что количество катализатора является критическим условием при использовании только оловянного или титанового катализатора. Это особенно справедливо, если инициатор является летучим, как описано ранее. Количество катализатора должно представлять собой некоторое минимальное количество, ускоряющее взаимодействие инициатора с VOB-мономером в достаточной степени, чтобы получить VOB-полиол. Количество катализатора зависит, например, от конкретного типа катализатора, VOB-мономера и инициатора.

Если используется оловянный катализатор, количество катализатора обычно находится в интервале, по меньшей мере, приблизительно от 100 ч./млн до не более чем приблизительно 2500 ч./млн массы олова по отношению к общей массе реакционной смеси. Предпочтительно, количество оловянного катализатора обычно находится в интервале от, по меньшей мере, приблизительно 250 ч./млн, более предпочтительно, по меньшей мере, приблизительно 500 ч./млн, и, наиболее предпочтительно, по меньшей мере, приблизительно 1000 ч./млн, до предпочтительно не более чем приблизительно 2000 ч./млн, более предпочтительно, не более чем приблизительно 1500 ч./млн. Оловянным катализатором может быть любой подходящий оловянный катализатор, например, известный в данной области. Примеры оловянных катализаторов включают в себя октаноат олова (II), 2-этилгептаноат олова (II), дилаурат дибутилолова (IV), а также другие оловянные катализаторы, которые функционируют подобным образом. Предпочтительно, оловянный катализатор представляет собой октаноат олова (II), 2-этилгептаноат олова (II), дилаурат дибутилолова (IV) или их сочетание.

Если используется титановый катализатор, количество катализатора обычно находится в интервале, по меньшей мере, приблизительно от 100 ч./млн до не более чем приблизительно 2500 ч./млн массы титана по отношению к общей массе реакционной смеси. Предпочтительно, количество титанового катализатора составляет от, по меньшей мере, приблизительно 250 ч./млн, более предпочтительно, по меньшей мере, приблизительно 500 ч./млн, и, наиболее предпочтительно, по меньшей мере, приблизительно 1000 ч./млн, до предпочтительно, не более чем приблизительно 2000 ч./млн, более предпочтительно, не более чем приблизительно 1500 ч./млн. Титановым катализатором может быть любой подходящий катализатор, например, известный в данной области. Примеры титановых катализаторов включают в себя тетраизопропоксид титана, тетраизобутоксид титана, или любой алкоксид титана (IV), функционирующий подходящим образом. Предпочтительно, титановый катализатор представляет собой тетраизопропоксид титана.

Отношение VOB-мономера к реакционноспособным группам инициатора, как правило, находится в интервале от, по меньшей мере, стехиометрического (т.е., если в качестве инициатора используют 1 моль глицерина, количество VOB-мономера составляет, по меньшей мере, 3 моля) до не более чем приблизительно 100. Предпочтительно, отношение VOB-мономера к реакционноспособным группам инициатора находится в интервале от, по меньшей мере, 2, более предпочтительно, по меньшей мере, приблизительно 5, еще более предпочтительно, по меньшей мере, приблизительно 7, и, наиболее предпочтительно, по меньшей мере, приблизительно 10, до, предпочтительно, не более чем приблизительно 50, более предпочтительно, не более чем приблизительно 25, и, наиболее предпочтительно, не более чем приблизительно 20. Неожиданно было обнаружено, что при использовании указанных повышенных соотношений, даже если в реакции участвует VOB-мономер, содержащий несколько гидроксильных групп, может образоваться незагущенный и даже жидкий VOB-полиол.

При применении способа настоящего изобретения неожиданно было обнаружено, что может образовываться VOB-полиол, по меньшей мере, часть которого включает в себя молекулу полиола, которая содержит, по меньшей мере, одну непрореагировавшую функциональную группу инициатора, даже если во всем VOB-полиоле отношение VOB-мономера к реакционноспособным участкам инициатора составляет, по меньшей мере, 5. Другими словами, VOB-полиол включает в себя

где R означает остаток полиольного, полиаминового или аминоспиртового инициатора;

X и X' могут быть одинаковыми или разными и означают О, N или NH; p означает целое число от 1 до 5; q означает целое число от 1 до 5, где p+q находится в интервале от 3 до 8, t означает целое число от 3 до 8, а A могут быть одинаковыми или разными и выбраны из группы, состоящей из A1, A2 и A3, где

А1 означает

А2 означает

А3 означает

где m, n, v, r, s, a, b и c означают целые числа, причем m больше 3, n больше или равно нулю, а m+n находится в интервале от 11 до 19, v больше 3, r больше или равно нулю, s больше или равно нулю, а v+r+s находится в интервале от 10 до 18, а находится в интервале от 0 до 35, b находится в интервале от 0 до 35 и c находится в интервале от 0 до 35, при условии, что не все значения a, b и c в любой молекуле полиола на основе растительного масла равны нулю, и что отношение (a+b+c)/(p+q+t) в полиоле на основе растительного масла находится в интервале приблизительно от 5 до 100. Отношение (a+b+c)/(p+q+t) соответствует отношению VOB-мономера к реакционноспособным группам инициатора.

В предпочтительном воплощении, по меньшей мере, часть VOB-полиола содержит заместитель A3. Данное конкретное воплощение является предпочтительным, поскольку оно позволяет получить полиол, содержащий достаточное количество гидроксильных функциональных групп и имеющий достаточную молекулярную массу, для применения в получении, например, эластичных полиуретановых пенопластов с использованием VOB-полиола в качестве единственного полиола, взаимодействующего с изоцианатом с получением полиуретанового пенопласта. Предпочтительно, количество заместителя A3 в VOB-полиоле находится в интервале от, по меньшей мере, приблизительно 0,01 массовых процентов по отношению к общей массе VOB-полиола, более предпочтительно, по меньшей мере, приблизительно 0,02 массовых процентов, наиболее предпочтительно, по меньшей мере, приблизительно 0,05 массовых процентов, до предпочтительно, не более чем приблизительно 25 массовых процентов, более предпочтительно, не более чем приблизительно 20 массовых процентов, и, наиболее предпочтительно, не более чем приблизительно 10 массовых процентов, по отношению к общей массе VOB-полиола.

Если VOB-полиол содержит A3, отношение (a+b+c)/(p+q+t) находится в интервале от более чем 0 до приблизительно 100. Предпочтительно, отношение (a+b+c)/(p+q+t) находится в интервале от, по меньшей мере, приблизительно 0,25, более предпочтительно, по меньшей мере, приблизительно 0,5, наиболее предпочтительно, по меньшей мере, приблизительно 1, до, предпочтительно, не более чем приблизительно 50, более предпочтительно, не более чем приблизительно 25, и, наиболее предпочтительно, не более чем приблизительно 20.

В другом предпочтительном воплощении, при применении инициатора, содержащего, например, вторичную гидроксильную или аминогруппу, часть VOB-полиола может содержать структуру

где, по меньшей мере, одна группа X'-H означает первичную гидроксильную группу или первичную аминогруппу, и, по меньшей мере, один X-A-H находится в положении, соответствующем вторичной гидроксильной группе или вторичной аминогруппе инициатора. Предпочтительно, VOB-полиол, по меньшей мере, частично, состоит из указанной выше структуры, где все группы X'-H представляют собой первичные гидроксильные группы или первичные аминогруппы, а все группы X-A-H находятся в положении, соответствующем вторичной гидроксильной группе или вторичной аминогруппе инициатора.

VOB-полиол можно использовать для получения полиуретанов путем взаимодействия с полиизоцианатами, такими, как известные в данной области, с помощью известных способов получения таких полиуретанов. Предпочтительно, полиуретан представляет собой эластичный пенопласт. Более предпочтительно, полиуретан представляет собой эластичный пенопласт, полученный в результате взаимодействия VOB-полиола с полиизоцианатом в отсутствие какого-либо другого полиола. Другими словами, VOB-полиол является единственным полиолом, используемым для получения эластичного пенопласта.

Как правило, VOB-полиол может иметь средневзвешенную молекулярную массу приблизительно от 350 до приблизительно 10000. Предпочтительно, средневзвешенная молекулярная масса находится в интервале от, по меньшей мере, приблизительно 500, более предпочтительно, по меньшей мере, приблизительно 1000, и, наиболее предпочтительно, по меньшей мере, приблизительно 1200, до, предпочтительно, не более чем приблизительно 10000, более предпочтительно, не более чем приблизительно 6000, и, наиболее предпочтительно, не более чем приблизительно 3000. Предпочтительно VOB-полиол является жидкостью, и неожиданно было обнаружено, что используемый способ позволяет получать полиолы с высокой молекулярной массой без гелеобразования.

VOB-полиолы можно использовать вместе с любыми добавками, широко используемыми в данной области для получения полиуретановых полимеров. В объеме данного изобретения можно использовать любой диапазон добавок, таких как вспенивающие средства, катализаторы, поверхностно-активные вещества, средства, открывающие поры, красители, наполнители, добавки, увеличивающие несущую нагрузку, такие как сополимерные полиолы, воду, внутренние антиадгезионные смазочные средства (для выемки из форм), антистатические средства, противомикробные средства и другие средства, известные специалистам в данной области.

Хотя можно использовать весь диапазон поверхностно-активных веществ, которые обычно применяются для получения полиуретановых пенопластов, некоторые поверхностно-активные вещества предпочтительны для получения пенопластов, содержащих в качестве полиольного компонента композиции пенопласта высокий процент растительных полиолов. В частности, неожиданно обнаружено, что при получении блоков эластичных пенопластов высокоэффективные алкоксилсилановые поверхностно-активные вещества, такие, как используемые обычно для получения особых категорий эластичного пенопласта, таких как пенопласты с низкой эластичностью или "вязкоупругие" пенопласты, значительно улучшают свойства блоков эластичных пенопластов, в том случае, если полиольная составляющая пенопласта на 100 процентов состоит из VOB-полиола. Предпочтительны такие поверхностно-активные вещества, как L626, доступный от Crompton Corporation, или другие боковые цепи полиолов с привитым силиконовым фрагментом. Наблюдается улучшение таких свойств, как размер пор пенопласта, структура пор, ощущение на ощупь или "тактильное ощущение", которое определяется как эстетическое ощущение или тактильное качество пенопласта, которое отражает его дисперсность, структуру и износоустойчивость, а также пористость пенопласта. При использовании предпочтительных поверхностно-активных веществ можно получать блоки пенопластов, которые содержат полиолы, на 100% состоящие из VOB-полиолов, указанные свойства которых сравнимы с аналогичными свойствами блоков пенопластов, которые содержат полиолы, состоящие на 100% из традиционных технических EO/PO полиолов.

Также было обнаружено, что из VOB-полиолов данного изобретения можно получать полиуретановые пенопласты с широким диапазоном концентраций воды. Как правило, концентрация воды может варьировать от приблизительно 1 части на тысячу до приблизительно 10 частей на тысячу частей полиола по массе. Предпочтительно, концентрация воды находится в интервале от, по меньшей мере, приблизительно 2, более предпочтительно, 3 и, наиболее предпочтительно, по меньшей мере, приблизительно 4, до предпочтительно, не более чем приблизительно 9, более предпочтительно, не более чем 8, и, наиболее предпочтительно, не более чем приблизительно 6 частей на тысячу частей полиола по массе.

Примеры

Примеры 1-27. Способы получения полиолов из метиловых эфиров жирных кислот растительного происхождения

Гидроксиметилированные метиловые эфиры жирных кислот соевого масла и 9,(10)-гидроксиметилстеарат (из метилолеата) получают по способу, описанному в указанной выше одновременно поданной заявке под заголовком "ALDEHYDE AND ALCOHOL COMPOSITIONS DERIVED FROM SEED OILS", изобретатели Donald Morrison, et al., номер дела 63104.

Глицерин получают от Sigma-Aldrich Chemical Company (CAS# [56-81-5]) и перегоняют в вакууме при 20 мм/183°C. Перегнанный глицерин до использования хранят в атмосфере азота.

CEI-625 представляет собой полиол EO со средней молекулярной массой 625, получаемый с использованием глицерина в качестве инициатора. Он производится Dow Chemical Company.

Триметилолпропан [77-99-6] получают от Sigma-Aldrich Chemical Co.

1,6-гександиол [629-11-8] получают от Sigma-Aldrich Chemical Co.

CEI-1200 представляет собой полиол EO со средней молекулярной массой 1200, получаемый с использованием глицерина в качестве инициатора. Он производится Dow Chemical Company.

PE-270 представляет собой полиол на основе пентаэритрита, этоксилированный этиленоксидом с получением средней молекулярной массы 270. PE-270 получают от Aldrich Chemical Company, Milwaukee, WI.

Тетрол 600 представляет собой пе