Термоэлектрические системы производства электроэнергии

Иллюстрации

Показать все

Термоэлектрическая система производства энергии состоит из множества термоэлектрических элементов, образующих массив и имеющих более холодную и более разогретую стороны во время работы. Рабочая среда собирает отбросное тепло от холодной стороны по меньшей мере нескольких термоэлектрических элементов, и после сбора названного отбросного тепла рабочая среда в дальнейшем нагревается и отдает по меньшей мере часть своего тепла разогретой стороне по меньшей мере нескольких элементов из множества термоэлектрических элементов, производя таким образом энергию с помощью по меньшей мере нескольких из множества термоэлектрических элементов. Использование изобретения позволит обеспечить использование потерь тепла. 2 н и 25 з.п. ф-лы, 34 ил.

Реферат

Область техники

Настоящее изобретение относится к области производства энергии с использованием термоэлектрических устройств.

Уровень техники

Несмотря на то что о возможности применения термоэлектрических устройств для производства энергии было известно давно, термоэлектрическое производство энергии мало использовалось, так как эффективность существующих конструкций генераторов и плотность мощности таких генераторов является слишком низкой.

Обычно твердотельные системы производства электрической энергии конструируются из термоэлектрических (ТЭ) модулей или отдельных ТЭ элементов, расположенных между источником тепла и теплоотводом. Элементы конструкции генератора энергии разрабатываются таким образом, что конструкция не содержит движущихся частей. Обычно в системах, в которых в качестве источников тепла и холода используют горячие и холодные рабочие среды, для транспортировки среды к устройству применяют вентиляторы и насосы.

В других случаях внутри генератора сжигаются сжатый воздух и топливо. В то же время в других областях применения, например в преобразователях энергии выхлопных отходов автомобилей, тепло передается генератору с помощью выхлопной системы. В этих устройствах тепло отработавших газов отводится либо внешними вентиляторами, подающими охлаждающие средства, либо свободной конвекцией через ребристые радиаторы.

В случаях применения генераторов, использующих в качестве источника энергии ядерные изотопы, отдельные ТЭ элементы сконструированы таким образом, чтобы производить электроэнергию. Каждый термоэлемент прикреплен к источнику изотопного тепла на горячей стороне и к радиатору с отходящим теплом на холодной стороне. Во время работы ни одна часть конструкции не находится в движении.

Статьи, описывающие производство энергии с использованием твердотельных ТЭ генераторов, ориентированных на применение в области космоса (Angrist, Stanley W., Direct Energy Conversion, Third Edition, Allyn and Bacon, Inc. (Boston, 1976),. Chapter 4, pp.140-165), либо касались случаев наземного применения, для которых надежность является более приоритетной целью по сравнению с эффективностью, либо использовали традиционные типовые модели (Ikoma, К. et al., "Thermoelectric Module and Generator for Gasoline Engine Vehicles," 17th International Conference on Thermoelectrics, Nagoya, Japan (1998), pp.464-467), которые не всегда оптимизируют функционирование системы для современных применений. Существует необходимость разработки и использования периодических процессов ТЭ производства энергии для настоящего и будущего использования, включающего вторичное использование потерь тепла, имеющих место при выхлопе газов в транспортных средствах и при охлаждении двигателей, в промышленных процессах и в совместных системах генерации тепла и электрической энергии, получающих преимущества в процессе производства электроэнергии.

Сущность изобретения.

Новые термоэлектрические материалы с гетероструктурой, использующие эффект квантового туннелирования, тонкопленочные и осажденные термоэлектрические материалы функционируют при значительно больших плотностях мощности, чем обычные объемные материалы, и представляют собой потенциал для повышения эффективности системы. Кроме того, последние достижения в области термоэлектрических материалов и систем возобновили интерес к потенциальному использованию ТЭ элементов для производства электроэнергии. Свойства, присущие ТЭ системам, - малое количество или полное отсутствие движущихся частей, бесшумная работа и такие характеристики, как бережное отношение к окружающей среде и возможность возмещения потерь энергии - повысили дальнейший интерес к ТЭ системам.

Успешное функционирование термоэлектрических устройств с высокой плотностью энергии требует высоких скоростей передачи тепла как на холодной, так и на горячей стороне ТЭ модулей. Один из путей достижения этого - использование роторных конструкций, обеспечивающих высокие скорости потока текучей среды, и как следствие, большой выход тепловой энергии. В одной из предпочтительных реализаций роторные системы, в которых часть теплообменника работает как лопасти вентилятора и благодаря этому способствует работе потока жидкости, могут уменьшить энергию в вентиляторе, упростить конструкцию системы и уменьшить ее размеры.

Кроме того, скорость передачи тепла во многих системах может быть увеличена за счет применения тепловых труб, что хорошо известно специалистам. Такие устройства используют двухфазный (жидкий и газообразный) поток для переноса теплоносителя от одной поверхности к другой. В случаях, когда тепло должно быть отведено от поверхности источника тепла, теплота парообразования жидкости используется для выделения тепловой энергии. Пар перемещается к поверхности, имеющей более низкую температуру, на стороне поглощающей тепло, где он конденсируется и таким образом выделяет свою теплоту парообразования. Конденсированная жидкость возвращается к поверхности теплового источника за счет капиллярного эффекта и/или гравитации.

Должным образом сконструированные тепловые трубы очень эффективны и транспортируют большие тепловые потоки при очень низком перепаде температур. Эффективность использования тепловых труб объясняется эффективностью возврата жидкости и постоянным смачиванием всей поверхности теплового источника, обеспечивающим постоянное испарение жидкости и отвод тепловой энергии. Кроме того, очень важно, чтобы холодная сторона, принимающая тепло, не накапливала жидкость, так как рабочая среда в тепловой трубе обычно является относительно плохим проводником тепла. Следовательно, принимающая сторона должна эффективно избавляться от жидкости для того, чтобы поддерживать эффективную поверхностную теплопроводность.

Генераторы энергии, конструкция которых совмещена с термической изоляцией, согласно патентной заявке США №09/844818 под названием "Высокоэффективные термоэлектрические элементы, использующие термическую изоляцию", могут дополнительно повысить производительность работы.

Согласно одному из аспектов изобретения настоящее изобретение направлено на создание термоэлектрической системы производства энергии, содержащей множество термоэлектрических элементов, образующих устройство, которое в процессе работы имеет более холодную и более разогретую стороны. Рабочая среда собирает использованную теплоту от более холодной стороны по меньшей мере нескольких термоэлектрических элементов. После сбора использованной теплоты рабочая среда нагревается еще больше и затем отдает по меньшей мере часть своей теплоты более разогретой стороне по меньшей мере нескольких элементов из множества термоэлектрических элементов, производя таким образом энергию с помощью по меньшей мере нескольких элементов из множества термоэлектрических элементов. Предпочтительно, чтобы по меньшей мере одна электрическая система передавала энергию от указанного устройства и был предусмотрен контроллер для оптимизации процесса или для управления процессом в конкретных случаях применения.

В одном из примеров реализации изобретения рабочая среда нагревается от источника тепла, например, от солнечной энергии, от тепла, полученного в процессе сгорания, изотопного тепла или других источников тепла. В одном из примеров реализации изобретения рабочая среда является твердой, текучей или комбинацией твердого и текучего материала.

В одном из примеров реализации изобретения по меньшей мере несколько из множества термоэлектрических элементов сконструированы таким образом, чтобы позволять рабочей среде проходить через них, например, имеют отверстия или являются пористыми. В этом случае желательно, чтобы тепло конвектировалось рабочей средой в направлении более нагретой стороны термоэлектрического элемента.

В другом примере реализации множество теплообменников находятся в термическом взаимодействии по меньшей мере с несколькими термоэлектрическими элементами. Желательно, чтобы по меньшей мере несколько теплообменников были теплоизолированы в направлении перемещения рабочей среды.

Еще в одном примере реализации по меньшей мере один из множества термоэлектрических элементов сконструирован так, чтобы позволять транспортировку конвекционного тепла рабочей средой в направлении более нагретой стороны термоэлектрического элемента, и по меньшей мере множество остальных термоэлектрических элементов сконструированы таким образом, чтобы обеспечивать термоизоляцию в направлении перемещений рабочей среды.

Согласно другому аспекту настоящее изобретение представляет собой способ производства энергии с использованием термоэлектрического эффекта, при этом способ включает несколько этапов. Рабочая среда перемещается таким образом, чтобы термически взаимодействовать с множеством термоэлектрических элементов, образующих массив, имеющий более холодную и более разогретую сторону в процессе работы. Тепло передается рабочей среде от более холодной стороны по меньшей мере нескольких элементов из множества термоэлектрических элементов, и, таким образом, рабочей среде сообщается дополнительная теплота. Затем рабочая среда отдает теплоту более нагретой стороне по меньшей мере нескольких из множества термоэлектрических элементов, чтобы произвести таким образом энергию с помощью по меньшей мере нескольких элементов из множества термоэлектрических элементов.

В одном из примеров реализации дополнительное тепло сообщается за счет сжигания рабочей среды, за счет солнечного тепла, с помощью изотопов, за счет использования отходов тепла от других процессов или за счет какой-либо комбинации этих или других источников тепла. В другом примере реализации тепло конвектируется рабочей средой по меньшей мере через один термоэлектрический элемент в направлении более горячей стороны термоэлектрического элемента.

Предпочтительно, чтобы способ дополнительно включал процесс контроля производства энергии, обеспечивающий достижение некоторых критериев, таких как максимальная эффективность, максимальная выходная мощность, какие-либо комбинации указанных критериев или какие-либо другие критерии, важные для конкретного применения. Например, может контролироваться скорость рабочей среды для оптимизации параметров работы, таких как эффективность.

Эти и другие аспекты и преимущества настоящего изобретения будут очевидны из приведенного ниже более подробного описания предпочтительных примеров реализации изобретения.

Краткое описание чертежей

Фигура 1А отображает компоненты традиционного ТЭ генератора.

Фигура 1B-1G изображает общее устройство термоэлектрического генератора, содержащего горячую и холодную текучие среды, двигатель и ребра теплообменника для создания разницы температур на ТЭ модуле. Электрическая энергия производится из термической энергии внутри потока текучей среды горячей стороны.

Фигура 1Н далее иллюстрирует основное устройство термоэлектрического генератора, в котором поток и давление рабочей среды вращает конструкцию генератора, исключая таким образом необходимость электродвигателя, показанного на фигурах 1C и 1 D.

Фигура 2А изображает ТЭ модуль, тепловые трубы и массив теплообменников для общего случая осевого потока текучей среды в роторном твердотельном генераторе энергии.

Фигура 2В дает подробный вид сечения массива, изображенного на фигуре 2А.

Фигура 2С представляет второй вид сегмента массива, изображенного на фигуре 2А.

Фигура 3А изображает вид ТЭ модуля в разрезе, тепловые трубы и массив теплообменников для общего случая радиального потока рабочей среды в роторном генераторе энергии.

Фигура 3В показывает детальный вид в разрезе массива, изображенного на фигуре 3А.

Фигура 4 изображает генератор энергии с осевым потоком, где горячий и холодный потоки жидкости в общем случае параллельны друг другу в одном и том же направлении. Генератор использует термическую изоляцию и тепловые трубы для того, чтобы улучшить эффективность преобразования энергии.

Фигура 5 изображает генератор энергии с радиальным потоком, где горячие и холодные потоки рабочей среды в общем случае параллельны друг другу в одном и том же направлении. Генератор использует термическую изоляцию и тепловые трубы для того, чтобы улучшить эффективность.

Фигура 6 изображает осевой генератор с протеканием холодной и горячей рабочей среды в общем случае в противоположных друг другу направлениях. Преимущественно, ТЭ модули и теплообменники термически изолированы для того, чтобы улучшить эффективность и увеличить плотность энергии.

Фигура 7 изображает радиальный генератор с горячей и холодной рабочей средой, текущими в общем случае в разных направлениях. Преимущественно, ТЭ модули температурно изолированы. Тепловые трубы использованы для увеличения как эффективности, так и плотности рассеиваемой мощности.

Фигура 8 изображает генератор энергии для общего случая как радиального, так и осевого потоков. Твердотельный проводящий тепло компонент используется для передачи теплоты между ТЭ модулем и ребрами горячей стороны.

Фигура 9 изображает часть генератора энергии с осевым потоком, в котором ток течет через ТЭ элементы или модули и тепловые трубы в круговом направлении вокруг оси вращения ротора.

Фигура 10 изображает системную блок-схему термоэлектрического генератора энергии.

Фигура 11 изображает компоненты конвективного ТЭ генератора согласно патенту США №6598405.

Фигура 12А описывает работу обычного ТЭ генератора, в котором горячая и холодная стороны ТЭ элемента имеют одинаковую температуру. Холодная сторона термически соединена с большим теплопоглотителем, а горячая сторона является нагретой перемещающейся средой.

Фигура 12В изображает генератор энергии, аналогичный генератору, изображенному на фигуре 12А, но с рабочей средой, охлаждаемой путем прохождения над пластиной более разогретой стороны.

Фигура 12С изображает ТЭ генератор с перемещающейся средой как с горячей, так и с холодной стороны. И холодный, и горячий края ТЭ генератора находятся при постоянной температуре.

Фигура 13А изображает ТЭ систему с блочной конструкцией, в которой используется регенерация потерь тепловой энергии для улучшения эффективности.

Фигура 13В изображает вид в перспективе конструкции, показанной на фигуре 13А.

Фигура 13С изображает работу системы, показанной на фигуре 13А.

Фигура 14А изображает ТЭ генератор энергии, который работает эффективно при относительно низкой температуре и использует достаточно высокотемпературный источник тепла конвективной среды.

Фигура 14В изображает работу системы, показанной на фигуре 14А.

Фигура 15А изображает совместный генератор энергии, который использует как конвективную, так и термическую изоляцию.

Фигура 15В изображает работу системы, показанной на фигуре 15А.

Фигура 16 изображает систему генерации энергии, в которой конвективная среда является твердой.

Фигура 17А изображает систему возмещения потерь энергии, которая использует конвективную среду в закрытом контуре.

Фигура 17В дает дополнительное представление о работе системы, показанной на фигуре 17А.

Подробное описание предпочтительных вариантов реализации настоящего изобретения

Ниже приведено детальное описание предпочтительных примеров реализации генераторов энергии с использованием новых термодинамических циклов, в которых тепло, отходящее от ТЭ элементов, может быть перенаправлено повторно к горячей стороне вместе с дополнительным теплом. Кроме того, предлагается описание способов совмещения процесса сгорания с термоэлектрическим генератором энергии. Сделаны акценты на факторы, которые влияют на эффективность, включая такие состояния горячей и холодной сторон, которые повышают эффективность при использовании с новыми термодинамическими циклами (Белл Л.Е., "Использование термоизоляции для повышения эффективности работы термоэлектрической системы", Материалы 21-ой Международной конференции по термоэлектрическим системам, Лонг Бич, Канада, август 2002, и Белл Л.Е., "Повышение термодинамической эффективности термоэлектрической системы за счет использования передачи конвективного тепла", материалы 21-ой Международной конференции по термоэлектрическим системам, Лонг Бич, Канада, август 2002). Источник тепловой энергии (теплота) имеет особое преимущество при использовании для генерации энергии в системах, где допустимые значения отводимых потерь тепла от холодной стороны значительно влияют на эффективность работы системы.

Такие конструкции имеют также важное применение в некоторых соответствующих твердотельных технологиях производства энергии, включая термоионные, фотонные, магнитокалорические, а также термоэлектрические преобразователи энергии.

Следующие концепции в соответствии с их подробными описаниями в упомянутых патентных заявках или патентах, включенных в данное описание в качестве ссылок, являются предпосылками настоящего изобретения: (1) конвекционное ТЭ производство энергии и совместное производство (патент США №6598405); (2) ТЭ системы с изолированными элементами (патент США №6539725); (3) конструкции массивов с изолированными элементами и конструкции с высокой плотностью энергии (заявка США №10/227398, поданная 23 августа 2002)).

В контексте данного описания термины Термоэлектрический Модуль, ТЭ модуль, ТЭ элемент или ТЭ использованы в широком смысле их обычного значения и понимания. В контексте данного описания они могут иметь следующие значения: (1) обычные термоэлектрические преобразователи, такие как производимые компанией Hi Z Technologies, Inc. в Сан-Диего, Калифорния; (2) преобразователи с квантовым туннельным эффектом; (3) термоионные преобразователи; (4) магнитокалорические модули; (5) элементы, использующие один эффект или любую комбинацию термоэлектрического, магнитокалорического, квантового, туннельного и термоионного эффектов; (6) любая комбинация, массив или другая структура из названных в пунктах с (1) по (6).

В настоящем описании слова холодный, горячий, более охлажденный, более нагретый и подобные являются родственными понятиями и не обозначают диапазон температур. Например, теплообменник с холодной стороны может на деле быть очень горячим для человека при прикосновении, но тем не менее более холодным, чем с горячей стороны. Эти термины использованы лишь для обозначения того, что на краях ТЭ модуля существует перепад температур.

Кроме того, примеры, рассмотренные в настоящем описании, являются только примерами и не ограничивают изобретение, рамки которого определяются его формулой.

Основы функционирования ТЭ генератора энергии могут стать более понятными при обращении к фигуре 1А. Один или несколько ТЭ элементов 161 и 162 находятся в хорошем тепловом контакте с источником 164 тепловой энергии QH на одном конце, а первый и второй теплопоглотители 166 для отвода потерь тепла Qc 167 расположены на другом конце. Источник 164 тепловой энергии при температуре Тн 165, является более горячим, чем теплопоглотители 166 при температуре Тс 168. Благодаря разнице температур ΔT 169 тепловая энергия передается от источника 164 тепловой энергии к теплопоглотителям 166. Часть тепловой энергии может быть преобразована в электроэнергию соответствующими ТЭ элементами 161, 162.

Эффективность преобразования энергии ψ равна выходной нагрузке 171, поделенной на тепловую входную мощность QH 164.

Эффективность может быть записана также как

Первое выражение с правой стороны уравнения, в скобках, представляет собой эффективность цикла Карно и является максимально достижимой эффективностью согласно второму закону термодинамики. Второе выражение ηgt - это фактор эффективности для отдельного процесса преобразования (и он меньше 1). Эти свойства генератора применимы в любом случае, независимо от того, является ли он термоионным, термоэлектрическим (в узком смысле), фотонным, основанным на эффекте квантового туннелирования, магнитокалорическим или создан на основе любой комбинации из перечисленных.

Фактор ηgt отображает характерную работу конкретного типа генератора.

Нижний индекс "GT" используется для обозначения "типа генератора". Например, "GT" меняется на "ТЕ", чтобы обозначить, что форма ТЕ принята для термоэлектрических (в узком смысле) материальных систем.

Случаи, когда значение теоретически оптимальной эффективности не включает потери, описываются формулой:

где

(6) α = чистый коэффициент термоэдс материальной системы,

(7) ρ = среднее электрическое сопротивление материальной системы,

(8) λ = средняя тепловая проводимость материальной системы.

Это хорошо известный результат, который описан более детально в статье: Angrist, Stanley W., Direct Energy Conversion, Third Edition, Allyn and Bacon, Inc. (Boston, 1976). Chapter 4, pp.140-165).

Как правило, желательно оптимизировать или эффективность, или мощность на выходе генератора, для краткости, термоэлектрические системы и их работу при высокой эффективности согласно описанию. Тем не менее, описанный подход применим и к работе при других условиях и, в общем случае, к другим ТЭ системам.

Фиг.1B-1G изображают общее устройство роторного термоэлектрического генератора 100 энергии. Фигура 1В представляет собой вид в перспективе. Фигура 1C - это вид роторного узла 135, как он виден через пазы 126, показанные на фигуре 1В. Фигура 1D изображает роторный термоэлектрический генератор 100 энергии в разрезе. Фигуры 1E-1G дают детальное представление о различных частях генератора. Роторный узел 135 (лучше всего представлен на фигурах 1C и 1D) содержит ТЭ модуль 101, который находится в хорошем тепловом контакте с одной стороны с находящимся на горячей стороне теплообменником 102, таким, например, как теплопередающие ребра, и с другой стороны с находящимся на холодной стороне теплообменником 103, таким, например, как теплопередающие ребра. Изолятор 109 отделяет горячую и холодную стороны. Изолятор 109 жестко соединяет части ротора с ротором двигателя 110. ТЭ модуль 101 изображен здесь в целях разъяснения и состоит из ТЭ элементов 104 и схемы 129. В точках контакта 124, 125, провода 123 электрически соединяют ТЭ модуль 101 с деталями 117, 119 конструкции вала 130, которые электрически изолированы друг от друга. ТЭ модуль 101, находящийся на горячей стороне теплообменник 102, находящийся на холодной стороне теплообменник 103, изоляторы 107 и 109, электрические провода 123, схема 129 и части 117, 119 вала образуют жесткий вращающийся блок.

Узел 111 двигателя соединен с ротором 110 двигателя подшипниками 144 (фигура 1G). Контакт 118 токособирательных колец электрически соединен с концом 119 вала, а контакт 120 токособирательных колец электрически соединен с частью 117 вала. Электрические провода 122 присоединены к контактам 118 и 120 токособирательных колец через электрическую схему 132 и другие, не показанные здесь, схемы, такие как дорожки на печатной плате или другие традиционные соединения электрических схем. Электрические провода 122 контактируют также с узлом 111 двигателя через печатную плату 112 и другие, не показанные здесь, электрические схемы.

Спицы 113 (лучше всего показаны на фигуре 1В) механически скрепляют внутреннюю стенку 114 (фигура 1D) с основанием 116 двигателя и, таким образом, с узлом 111 двигателя. Находящийся на горячей стороне фильтр 128 текучей среды прикреплен к внешнему кожуху 131, а находящийся на холодной стороне фильтр 127 текучей среды поддерживается лопастями 115 и прикреплен к дополнительной части 133 внешнего кожуха 131. Отверстия 126 во внешнем кожухе, такие как щели, позволяют текучей среде 106, 108 проходить через кожух 131. Горячая рабочая среда 105, 106 (фигуры 1D и 1Е) заключена в камеру, образованную внешней стенкой 131, отверстиями 126, изоляцией 109, фильтром 128 и ТЭ модулем 101. Холодная рабочая среда 107, 108 ограничена внутренней стенкой 114, лопастями 115, дополнительной частью 133 внешнего кожуха, основанием 116 двигателя и фильтром 127.

Горячая текучая среда 105 проходит через находящийся на горячей стороне фильтр 128 и передает тепло находящемуся на горячей стороне теплообменнику 102. Таким образом, область между находящимся на горячей стороне теплообменником 102 и ТЭ модулем 101 нагревается. Аналогично, холодная текучая среда 107 проходит через находящийся на холодной стороне фильтр 127 и забирает тепло от теплообменника 103, находящегося на холодной стороне. Следовательно, область между находящимся на холодной стороне теплообменником 103 и ТЭ модулем 101 охлаждается. Температурный градиент (горячий поток) на краях ТЭ модуля 101 обеспечивает получение электрической энергии. Электрическая энергия передается через провода 123 к точкам 124, 125 проводника, к частям 117, 118 вала и через контакты 118 и 120 токособирательных колец к проводам 122 (лучше всего показано на фигуре 1G).

Узел 111 двигателя, действуя на ротор 110 двигателя, вращает роторный узел. В одном из примеров реализации теплообменники 102, 103 сконструированы в виде ребер, ориентированных продольно в сторону от оси вращения конструкции ротора. В этой конфигурации теплообменники 102, 103 преимущественно работают как лопатки радиального вентилятора или компрессора и поэтому постоянно накачивают рабочие среды 105, 107 для поддержания разницы температур на краяях ТЭ модуля 101. Часть теплового потока, проходящего через ТЭ модуль 101, постоянно преобразуется в электрическую энергию. Горячая среда 105 охлаждается во время прохождения через находящийся на горячей стороне теплообменник 102 и выходит в виде отходов текучей среды 106 через отверстия 126. Аналогично, холодная рабочая среда 107 нагревается во время прохождения через находящийся на холодной стороне теплообменник 103 и выходит в виде отходов текучей среды 108 через отверстия 126.

Преимущества такого вращающегося термоэлектрического генератора энергии со специальной конструкцией роторного узла 135 будут объяснены более подробно со ссылками на последующие фигуры. Вращение термоэлектрического модуля с теплообменником как единого узла позволяет использовать один или несколько теплообменников в качестве лопаток вентилятора для нагнетания рабочей среды. В дополнение, как будет объяснено далее, могут быть получены другие преимущества и применения процесса вращения вследствие увеличения эффективности системы генерации энергии и увеличения плотности мощности.

Фигура 1Е показывает более увеличенное изображение перемещений проточных сред, находящихся на холодной и горячей сторонах генератора 100 энергии. ТЭ модуль 101 находится в хорошем тепловом контакте с находящимся на горячей стороне теплообменником 102 и находящимся на холодной стороне теплообменником 103. Две стороны отделены изоляцией 109. Текучая среда 105 и 106 на горячей стороне удерживается внешней стенкой 131 и изолятором 109. Аналогично, текучая среда 107, 108 на холодной стороне удерживается каналом 114 внутренней стенки и изоляцией 109. Ротор 110 двигателя жестко прикреплен к изолятору 109 так, что изолятор 109, ТЭ модуль 101 и теплообменники 102, 103 двигаются, как единый блок. Провода 123 соединяют ТЭ модуль 101 с вращающимися токосъемниками 118, 120, как описано более детально в подробном обсуждении фигуры 1G. Ротор 110 двигателя подсоединен через опоры 144 (фигура 1G) к вращательному электроприводу и валу 130 (показано подробно на фигуре 1G). Электрические провода 123 соединяются с ТЭ модулем 101 и валом 130.

Перепад температур создается на ТЭ модуле 101 с помощью горячей текучей среды 105, нагревающего теплообменника 102, холодной текучей среды 107 и охлаждающего теплообменника 103. Горячая текучая среда 105 охлаждается и выходит, а холодная текучая среда 107 нагревается и выходит. Перемещение горячей текучей среды 105 инициируется вращением компонентов теплообменника 102, которые действуют как лопасти компрессора или лопасти радиального вентилятора. Ротор 110 двигателя и электропривод 140 двигателя вызывают вращение. Поток текучей среды ограничивается внешним кожухом и изолятором.

Фигура 1F показывает поперечный разрез ТЭ модуля 101 и теплообменников 102,103.

Теплообменники 102, 103 показаны как складчатые ребра, выполненные согласно широко известной технологии, но могут иметь любую другую подходящую конструкцию, например любую предпочтительную конструкцию, описанную в Kays, William M., and London, Alexander L, Compact Heat Exchangers, 3rd Edition, 1984, McGraw-Hill, Inc. Чтобы улучшить передачу тепла, могут быть применены тепловые трубы и какая-нибудь другая технология.

Фигура 1G иллюстрирует дополнительные детали реализации узла токосъемника для передачи электрической энергии, произведенной ТЭ модулем 101, к внешним системам. Узел состоит из проводов 123, находящихся в изоляторе 109, один из которых электрически подсоединен к внутреннему валу 119, а второй - к внешнему валу 117. Электрическая изоляция 142 механически соединяет внутренний и внешний валы 117 и 119.

Преимущественно, внешний вал 119 механически соединен с ротором 110 двигателя и опорой 144. Контакт 118 токосъемника электрически соединен с внутренним валом 119, а контакт 120 токосъемника электрически соединен с внешним валом 117.

Фигура 1Н изображает альтернативную конструкцию термоэлектрического генератора, использующего поток и давление рабочей текучей среды для вращения узла генератора, исключая таким образом необходимость использовать электродвигатель, показанный на фигурах 1D и 1Е.

Как показано на фигуре 1Н, ТЭ 101, теплообменники 102, 103 и относящиеся к ним части, содержащие вращающиеся элементы термоэлектрического генератора, являются такими, как показано на фиг.1Е, за исключением того, что вентилятор 150 и изолятор 109 скреплены таким образом, чтобы образовывать единый вращающийся блок. Опоры 152, вал 130 и спицы 116, 151 образуют подвеску для вращающихся частей.

При работе рабочая среда 105 приводит в движение вентилятор 150. Энергия от вентилятора вращает вращающиеся части. В этом примере реализации изобретения вращение используется, чтобы втянуть холодную рабочую среду 107, а также реализовать другие преимущества вращения, рассмотренные в описании к фигурам 2-7 и 9.

Вентилятор 150 показан как отдельная часть. Такая же функциональность может быть достигнута путем использования других конструкций, которые имеют теплообменники или, кроме них, и другие части, имеющие форму и такое расположение, чтобы сделать возможным использование полезной энергии горячего, холодного и/или выхлопного потоков текучей среды для инициирования вращения. Например, такая система может быть использована в выхлопном потоке двигателя сгорания, такого как, автомобильный двигатель. В этом примере, иначе будут использованы потери тепла, которые конвертируются в электричество, и выхлопной поток вращает вращающийся термоэлектрический узел.

Ротор 110 двигателя, изоляторы 109, 142, и валы 117, 119 вращаются как единый блок и поддерживаются опорой 144. Кольцевые токосъемники 118, 120 передают электрическую энергию, образованную внутри вращающегося блока во внешнюю электрическую цепь. Кольцевые токосъемники 118, 120 могут быть любой конструкции, известной профессионалам, а валы 117, 119 могут иметь любой вариант конструкции, которая является проводящей или содержит электропроводящие провода или части. Передающие электрическую энергию детали и конфигурация могут быть любой конструкции, которая передает энергию от вращающегося блока во внешнюю схему.

Необходимо отметить, что хотя фигуры 1D-1G изображают одиночный вращающийся узел, также может быть предусмотрен и составной вращающийся массив.

Фигура 2А изображает поперечное сечение роторного узла 200 для термоэлектрического генератора энергии, имеющего форму, изображенную в общем виде на фигуре 1. Роторный узел 200 состоит из имеющего форму кольца ТЭ модуля 201, находящегося в хорошем тепловом контакте с кольцевым массивом внешних тепловых труб 202 и кольцевым массивом внутренних тепловых труб 203. Находящийся на горячей стороне теплообменник 204 находится в хорошем тепловом контакте с внешними тепловыми трубами 202, а находящийся на холодной стороне теплообменник 205 имеет хороший тепловой контакт с внутренними тепловыми трубами 203. Узел 200 ротора обычно симметричен относительно своей оси вращения 211.

Во время работы узел 200 ротора вращается вокруг своей оси вращения 211. Горячая жидкость (не показана) находится в контакте с находящимся на горячей стороне теплообменником 204, который передает поток тепла внешним тепловым трубам 202, и внешней поверхности ТЭ модуля 201. Часть теплового потока преобразуется в электрическую энергию ТЭ модулем 201. Отходы теплового потока проходят через внутренние тепловые трубы 203, затем к находящемуся на холодной стороне теплообменнику 205 и, в конечном итоге, к охлаждающей жидкости (не показана), контактирующей с находящимся на холодной стороне теплообменником 205.

Фигура 2В представляет более подробный вид поперечного сечения роторного узла 200 через тепловую трубу. Как и на фигуре 2А, тепловые трубы 202 и 203 находятся в тепловом контакте с ТЭ модулем 201. ТЭ элементы 208 и электрическая схема 209 завершают ТЭ модуль 201. В одном из предпочтительных примеров реализации тепловые трубы 202, 203 состоят из герметизированных корпусов 214, 215, содержащих передающую тепло текучую среду. Во время работы, когда роторный узел 200 вращается вокруг оси 211, силы вращения толкают жидкую фазу передающей тепло текучей среды наружу от оси вращения отдельных тепловых труб 202, 203. Направление ориентированной вовне силы, индуцированной вращением, показано стрелкой 210. Например, в тепловой трубе 202 жидкая фаза 206 образует границу раздела 212 с газообразной фазой. Находящийся на горячей стороне теплообменник 204 имеет хороший тепловой контакт с оболочкой 214 тепловой трубы, находящейся на горячей стороне. Аналогично, находящиеся на холодной стороне тепловые трубы 203, 215 имеют передающую тепло текучую среду 207 в жидкой фазе и границу раздела 213 с газовой фазой. Теплообменник 205, находящийся на холодной стороне, имеет хороший тепловой контакт с оболочками 215 тепловых труб, находящихся на холодной стороне.

Внешняя сила 210, вызванная вращением роторного узла 100, действует таким образом, что вынуждает жидкие фазы 206 и 207 занять положение, показанное на фигуре 2В. Горячий газ (не показан) передает тепло от ребер внешнего теплообменника 204 к внешним оболочкам 214 тепловых труб. Тепловой поток вызывает испарение части жидкой фазы 206 на горячей стороне. Пар движется внутрь, в противоположном к показанному стрелкой 210 направлении, так как он вытесняется более плотной жидкой фазой 206. Текучая среда в парообразной фазе в тепловых трубах 202, находящаяся в контакте с границей раздела между ТЭ модулем 201 и находящимися на горячей стороне оболочками тепловых труб 214, передает часть своего тепла ТЭ модулю 201 и конденсируется в виде жидкой фазы. Сила, вызванная вращением, подталкивает плотную жидкую фазу в направлении, показанном стрелкой 210. Циклы текучей среды повторяются по мере возрастания тепла, которое абсорбируется находящимся на горячей стороне теплообменником 204, передаваясь оболочкам внешних тепловых труб 214 и затем внешней поверхности ТЭ модуля 201.

Аналогично, тепло, отходящее от внутренней стороны ТЭ модуля 201, вызывает кипение жидкой фазы 207 текучей среды внутренней тепловой трубы и конвекцию внутрь, к внутренним частям оболочек 215 внутренних тепловых труб. Холодная проточная среда (не показана) удаляет тепло от находящегося на холодной стороне теплообменника 205 и расположенных рядом частей оболочек 215 тепловых труб, находящихся на холодной стороне. Это вызывает конденсацию жидкости 207. Жидкая фаза направляется центробежной силой в направлении, показанном стрелкой 210, и накапливается на границе раздела между ТЭ модулем 201 и оболочками 215 внутренних тепловых трубы. Этот цикл постоянно повторяется, и текучая среда постоянно испаряется в одном месте, конденсируется в другом и возвращается назад, к исходному месту, центробежной силой.

Силы, вызванные вращением роторного узла 201, могут превышать силу гравитации в диапазоне от нескольких раз до тысячи раз в зависимости от размеров ротора и скорости его вращения. Т