Новые соединения, обладающие функцией антикоагулянтов, фармацевтические композиции на их основе для лечения тромботических состояний и плазмозамещающий раствор для коррекции гиперкоагуляционных нарушений при гемодилюции

Иллюстрации

Показать все

Настоящее изобретение описывает новые химические соединения, обладающие свойством замедлять свертывание плазмы крови, общей структурной формулы (I), его фармацевтически приемлемые соли или сольваты: , где значение радикалов А, С, R9, такие как указано в формуле изобретения, R1, R2, R3, R4 независимо друг от друга представляют собой водород или C1-6 алкил; В представляет собой -(СН2)n-, где n принимает целые значения от 1 до 5; где R5 выбирают из группы, содержащей водород, C1-6алкокси, CH2NR10R11, СН(СН3)HR10R11 и другие значения, указанные в формуле изобретения, R6 и R7 независимо представляют собой водород, C1-6алкил; C1-6алкокси; галоген; R8 представляет собой водород или C1-6алкил; R10, R12 независимо друг от друга выбирают из группы, состоящей из водорода, C1-6алкила; (СН2)mCOOR13, (CH2)mCON(R13)2 и др. значения, указанные в формуле изобретения, где m принимает целые значения от 1 до 4, R13 представляет собой водород или C1-6алкил, R11 представляет собой C1-6алкил; Ar; Ar представляет собой фенил, пиридил, оксазолил, тиазолил, тиенил, фуранил, пиримидинил, пиридазинил, пиразинил, индолил, бензофуранил, бензотиофенил, замещенные от одного до пяти заместителей, выбранных из группы: водород, C1-6алкил, C1-6алкокси, галоген, N(R13)2, ОН, NO2, CN, COOR13, CON(R13)2, SO2R13; применение этих соединений в качестве антикоагулянтов для лечения тромботических состояний, фармацевтическая композиция на их основе и плазмозаменяющий раствор для коррекции гиперкоагуляционных нарушений. Технический результат: получены новые соединения, которые могут быть полезны для лечения тромбоэмболических осложнений и профилактики возникновения гиперкоагуляционных состояний. 4 н.и 1 з.п. ф-лы, 3 табл., 12 ил.

Реферат

Настоящее изобретение описывает новые химические соединения, применение этих соединений в качестве антикоагулянтов, фармацевтические композиции и плазмозамещающие растворы на их основе и может быть использовано для лечения тромбоэмболических осложнений при таких болезнях, как инфаркт миокарда, инсульт, тромбоз глубоких вен или легочной артерии; для профилактики возникновения гиперкоагуляционных состояний при травмах, хирургических операциях, сепсисе, различных акушерских патологиях, в медицине катастроф, в условиях реанимации и т.п.

Огромное число самых разнообразных патологических состояний организма связано с возникновением нарушений в системе гемостаза. Тромбоэмболические осложнения, возникающие при таких болезнях, как инфаркт миокарда, инсульт, тромбоз глубоких вен или легочной артерии, являются одной из основных причин смерти во всем мире. Неудивительно, что на протяжении большого количества лет ведется интенсивный поиск препаратов, которые могли бы служить в клинике эффективными и безопасными лекарствами. В первую очередь это различные антитромботические агенты, обладающие антикоагулянтными свойствами.

Тромбин является ключевым ферментом системы свертывания крови. Он не только осуществляет превращение растворимого белка плазмы фибриногена в нерастворимый фибриновый сгусток, но и запускает большинство положительных и отрицательных обратных связей в этой системе, активируя тромбоциты, факторы V, VIII и XIII, а также протеин Ц. Тромбин инициирует также разнообразные клеточные и сосудистые реакции, в том числе пролиферацию клеток эндотелия, выброс из них активаторов плазминогена и т.д. Именно из-за того, что тромбин участвует в большом числе важнейших биорегуляторных событий, ингибирование тромбина по его активному центру должно быть очень эффективным и многообещающим в контроле многих патофизиологических состояний.

Существуют три основных направления воздействия на систему гемостаза с целью предупреждения нежелательного тромбообразования: применение прямых и непрямых ингибиторов сериновых протеаз свертывающего каскада (в первую очередь тромбина и фактора Ха); применение антитромбоцитарных препаратов (антагонистов GPIIb/IIIa, аспирина, антагонистов тромбинового рецептора и т.п.), снижающих агрегационные свойства тромбоцитов и препятствующих таким образом дальнейшей активации свертывания; применение антагонистов витамина К, которые снижают синтез предшественников факторов свертывания печенью.

В настоящее время в клинике чаще всего используют три основных антитромботических препарата: нефракционированный гепарин, оральный антикоагулянт варфарин (витамин К-антагонист) и ингибитор агрегации тромбоцитов аспирин. Однако каждый из этих препаратов имеет свои ограничения применения и нежелательные побочные эффекты.

Нефракционированный гепарин (UFH) - природный анионный полисахарид, представляющий собой смесь полисахаридных цепочек различной длины, построенных из повторяющихся дисахаридных единиц, состоящих из остатков уроновой кислоты (L-идуроновой и/или D-глюкуроновой) и остатков D-глюкозамина. Его молекулярный вес распределяется по данным разных литературных источников от 3-5 до 30-40 тысяч дальтон с пиком на 12-15 тысячах дальтон.

Нефракционированный гепарин и его более легкие аналоги (гепарины низкого молекулярного веса (LMWH)) являются непрямыми антикоагулянтами. Они не ингибируют тромбин самостоятельно, а ускоряют действие природного плазменного ингибитора свертывания антитромбина III (ATIII). Таким образом, если содержание ATIII в плазме больного по каким-то причинам сильно снижено, гепарины оказывают слабое антикоагулянтное действие.

Клиническое применение нефракционированного гепарина имеет ряд недостатков:

1. Действие нефракционированного гепарина короткоживущее. Оно проходит очень быстро после отмены лекарства, поэтому использование UFH не может снизить риска повторных тромботических событий.

2. Гепарин осуществляет свой антитромботический эффект непрямо, а опосредовано, для чего ему необходимо присутствие в системе антитромбина.

3. Гепарин активен только против циркулируещего тромбина, но практически не ингибирует тромбин, сорбированный на сгустке.

4. При одинаковой дозе гепарин имеет непредсказуемый антикоагулянтный ответ у разных пациентов, что связано с целым рядом причин, в том числе уровнем ATIII в плазме, индивидуальной скоростью выведения препарата, связыванием и нейтрализацией гепарина под действием различных белков плазмы и активированных тромбоцитов (тромбоцитарный фактор 4, гепариназа и т.п.). Это определяет необходимость частого мониторинга статуса коагуляционной системы.

5. Риск геморрагических осложнений и возможность появления тромбоцитопении.

6. При длительной гепаринотерапии (более 6 месяцев) и достаточно высоких дозах гепарина (>15000 единиц) возможно проявление такого осложнения, как остеопороз.

7. Гепарин может быть введен только внутривенно в условиях стационара.

Непрямыми ингибиторами свертывания являются и антагонисты витамина К (типа варфарина). Механизм действия этих препаратов на систему свертывания крови связан с тем, что они эффективно блокируют синтез витамин К-зависимых факторов свертывания печенью. Для синтеза нормальной молекулы фактора необходимо посттрансляционное γ-карбоксилирование N-терминального конца будущего фактора. Это карбоксилирование совершенно необходимо для того, чтобы синтезированные молекулы фактора могли в ходе свертывания связываться (при посредстве ионов Са+2) с отрицательно заряженной фосфолипидной поверхностью активированных тромбоцитов и осуществлять свою функцию. Витамин К является необходимым кофактором этого карбоксилирования. В ходе реакции он попеременно переходит из своей гидроксихиноновой формы, которая и участвует в реакции карбоксилирования, в окисленную эпоксидную форму. Под действием фермента витамин К-редуктазы эта эпоксидная форма восстанавливается и может вновь участвовать в реакции карбоксилирования. Препараты группы кумаринов блокируют это восстановление.

Применение варфарина тоже имеет ряд ограничений и недостатков. Во-первых, ответ на терапию развивается медленно. Он начинает проявляться через сутки, но максимального уровня достигает только через несколько дней. Кроме того, этот препарат довольно сильно связывается с различными компонентами пищи и сильно перекрывается со многими лекарственными веществами. Существует также большая генетическая вариабельность в активности варфарин-метаболизирующего фермента. Это объясняет большую индивидуальную вариабельность в ответе на варфарин и означает, что при его приеме нужны определенные диетарные ограничения и систематический мониторинг.

Антитромбоцитарные препараты (аспирин, антагонисты GPIIb/IIIa и т.п.), как уже говорилось выше, препятствуют полноценной активации тромбоцитов и их участию в ускорении реакций свертывания, ограничивая, таким образом, дальнейшее производство тромбина. Однако они никак не влияют на работу уже образовавшегося тромбина.

Таким образом, все рассмотренные выше, стандартно применяемые антитромботические агенты имеют свои недостатки. Часть из них не является прямыми ингибиторами тромбина, поэтому либо требует для проявления своего действия присутствия в плазме антитромбина III (UFH, LMWH), либо действует медленно, ингибируя синтез необходимых факторов свертывания (варфарин и т.п.), другие вообще не действуют на уже образовавшийся тромбин (антитромбоцитарные агенты). Это способствует тому, что на протяжении многих лет ведутся интенсивные поиски "идеальных" ингибиторов, которые обладали бы не меньшей эффективностью, но были бы свободны от многих недостатков стандартных препаратов.

Очень привлекательной в этом смысле оказалась стратегия разработки небольших синтетических ингибиторов тромбина - антикоагулянтов. Подобные ингибиторы быстро действуют прямо на присутствующий в крови тромбин, что позволяет надеяться на то, что они будут эффективны для купирования остро развивающихся тромботических осложнений даже в условиях сниженного содержания ATIII в плазме.

Стратегия поиска новых прямых синтетических ингибиторов сериновых протеаз свертывающего каскада ориентируется на следующие требования, которым должен удовлетворять такой ингибитор:

- Высокое сродство к ферменту-мишени (т.е. высокая эффективность ингибирования).

- Высокая селективность по отношению к ферменту-мишени в сравнении с другими родственными сериновьми протеазами.

- Химическая и метаболическая стабильность.

- Отсутствие токсичности.

- Слабое (или не очень сильное) связывание с белками плазмы.

- Высокая биодоступность при приеме через рот.

- Достаточно большое время полужизни препарата, позволяющее при его оральном приеме поддерживать терапевтический уровень в плазме настолько долго, чтобы можно было ограничиться приемом препарата 1-2 раза в день.

- Возможность простого метода мониторинга уровня препарата. К настоящему времени в литературе опубликовано большое количество обзоров, посвященных разработке низкомолекулярных ингибиторов тромбина (Shafer J.A., Cardiovascular chemotherapy: anticoagulants, Curr. Opin. Chem. Biol., 1998, 2:458-465; Steinmetzer Т., Hauptmann J., Sturzebecher J., Advances in the development of thrombin inhibitors, Exp.Opin. Invest. Drugs, 2001, 10(5):845-864; Edmunds JJ, Rapundalo ST, Siddiqui MA, Thrombin and factor Xa inhibition, Ann. Rep. Med. Chem., 1996, 31:51-60; Wiley M.R., Fisher M.J., Small molecule direct thrombin inhibitors. Expert Opin. Ther. Patents, 1997, 7:1265-1282; Hauptmann J, Sturzebecher J., Synthetic inhibitors of thrombin and factor Xa: from bench to bedside, Thromb Res., 1999, 93(5):203-241; Vacca JP., New advances in the discovery of thrombin and factor Xa inhibitors, Curr Opin Chem Biol., 2000, 4(4):394-400).

Однако разработка лекарств на основе новых химических соединений требует не только определения их возможного фармакологического действия, но и тщательной проверки токсикологических свойств препаратов, их возможного влияния на наследственность и выявления других отдаленных последствий применения.

Задача осложняется также тем, что не каждый ингибитор, снижающий активность тромбина в водных буферных растворах, может являться реальным антикоагулянтом при свертывании крови в организме. Это может быть связано, например, с механизмом ингибирования. Так, если ингибитор является неконкурентным, то даже при 100%-ном связывании всех активных центров присутствующего в плазме тромбина с таким ингибитором активность фермента не будет подавлена полностью. Остаточная активность тромбина может быть не очень высокой, однако, в некоторых случаях, она не может быть до конца подавлена в плазме природным ингибитором тромбина - ATIII. Это происходит из-за определенного изменения конформации молекулы тромбина при связывании с таким ингибитором, которое не позволяет ATIII подойти к активному центру фермента. В результате в крови длительное время сохраняется остаточная активность тромбина. Это приводит к тому, что из-за присутствия такого соединения в организме, интегральный коагуляционный ответ не только не снизится, но может суммарно даже усилиться. Если предполагаемый ингибитор тромбина взаимодействует также с другими компонентами системы свертывания (факторами или ингибиторами свертывания), то суммарный ответ системы также невозможно предсказать заранее. Сильное связывание ингибитора с различными белками плазмы может значительно повысить дозу ингибитора, которая должна быть введена в организм для получения желаемого антикоагуляционного эффекта.

Если учесть все вышесказанное, то становится понятным, почему при существовании большого числа синтезированных соединений, которые способны ингибировать тромбин, до настоящего времени полностью прошел все необходимые испытания и реально разрешен для применения в клинике только один препарат этого типа - синтезированный в Японии ингибитор тромбина аргатробан (патент США 5214052, 1993; Schwarz R.P., The preclinical and clinical pharmacology of Novastan (Argatroban), In: "New Anticoagulants for the CardiovascularbPatient, Pifarre R., editor, Hanley and Belfus, Inc., Philadelphia, PA, US, 1997, p.231-249; Okamoto S, Hijikata A, Kikumoto R, Tonomura S, Hara Н, Ninomiya K, Maruyama A, Sugano M, Tamao Y., Potent inhibition ofthrombin by the newly synthesized arginine derivative No.805. The importance of stereo-structure of its hydrophobic carboxamide portion, Biochem Biophys Res Commun. 1981, 101(2):440-446).

Таким образом, поиск новых антикоагулянтов среди низкомолекулярных синтетических ингибиторов тромбина продолжает оставаться актуальнейшей задачей.

Эти ингибиторы - антикоагулянты могут быть прямо использованы для лечения острых тромботических состояний, возникающих в организме в результате различных патологий.

Кроме того, они могут быть использованы и для профилактики возникновения гиперкоагуляционных состояний. В настоящей заявке предлагается использовать низкомолекулярный синтетический ингибитор тромбина, обладающий антикоагулянтной активностью в плазме, для добавления в стандартный плазмозамещающий раствор.

В клинике часто возникают ситуации, когда достаточно большие объемы потерянной крови приходится быстро восполнять искусственными плазмозамещающими растворами (ПЗР). Это происходит при травмах, хирургических операциях, сепсисе, различных акушерских патологиях, в медицине катастроф, в условиях реанимации и т.п. При этом преследуются следующие основные цели:

1. Восполнение объема циркулирующей крови (ОЦК) для поддержания артериального давления, объема сердечного выброса, предупреждения коллапса сосудов, сохранения нормальных реологических характеристик крови и нормальной перфузии органов и тканей.

2. Поддержание нормального коллоидно-осмотического давления плазмы и ее кислотно-щелочного равновесия.

3. Поддержание кислородтранспортной функции крови и функций системы свертывания.

Для достижения первых двух целей обычно переливают различные плазмозамещающие растворы и растворы альбумина. Обеспечение кислородтранспортной функции достигается переливанием эритроцитов, модифицированного гемоглобина или кислородпереносящих растворов типа перфторанов, а поддержание функций системы свертывания - переливанием свежезамороженной плазмы (СЗП), концентратов тромбоцитов, концентратов факторов протромбинового комплекса или отдельных факторов свертывания.

Искусственные ПЗР делятся на два класса: кристаллоидные и коллоидные. Первые представляют собой солевые растворы (например, 0.9%-ный раствор NaCl-физиологический раствор), тогда как вторые содержат добавки высокомолекулярных полимеров (декстранов, гидроксиэтилкрахмалов, производных желатины и т.п.).

Инфузии больших объемов стандартных ПЗР приводят к разбавлению крови этими растворами (гемодилюции). Т.к. ни один стандартный ПЗР на сегодняшний день не содержит факторов и ингибиторов свертывания, то в результате гемодилюции происходит снижение концентраций компонентов системы свертывания в крови. Ранее было показано, что при массивных переливаниях стандартных ПЗР, возникающая в крови гемодилюция вызывает разбаланс работы системы свертывания и усиление коагуляции. Оно связано с тем, что при разбавлении система оказывается более чувствительной к снижению концентраций ингибиторов свертывания, в то время как прокоагулянтные предшественники факторов свертывания присутствуют в плазме в достаточно большом избытке, в результате чего при умеренных степенях разбавления снижение их концентраций практически не оказывает влияния на скорость свертывания. Для коррекции возможных гиперкоагуляционных нарушений, связанных с объемными переливаниями ПЗР, авторами был предложен новый ПЗР, в состав которого был введен природный ингибитор тромбина - антитромбин III (Патент РФ, решение о выдаче по заявке №2005140841 от 27.12.2005). Предложенный раствор является первым представителем нового поколения ПЗР, которые способны частично корректировать гиперкоагуляционные нарушения, вызываемые объемными переливаниями ПЗР. Недостатком этого раствора является то, что антитромбин III - это природный белок, который необходимо выделять из плазмы человека. Это, с одной стороны, достаточно дорого, а с другой - не позволяет полностью исключить возможность вирусного заражения препарата (ВИЧ, гепатит и т.п.). Хорошей альтернативой антитромбина III может служить синтетический низкомолекулярный ингибитор тромбина - антикоагулянт.

Отбор соединений, представляющих интерес, с точки зрения практического применения в качестве антикоагулянтов, то есть обладающих способностью замедлять и/или предотвращать свертывание крови, производился на основании следующих критериев:

1. Вещество должно являться ингибитором тромбина, т.е. предотвращать катализируемую тромбином амидолитическую реакцию расщепления молекулы фибриногена.

2. Вещество должно иметь приемлемые физико-химические свойства (липофильность, гидрофильность), чтобы присутствовать в плазме крови в свободном виде в достаточной концентрации. Иными словами, связывание с другими белками плазмы крови (альбумины, глобулины и т.д.) должно быть умеренным.

3. Вещество должно обладать достаточным временем жизни в плазме крови, чтобы мог проявиться присущий ему терапевтический эффект.

Отбор по первому критерию осуществлялся в две ступени. Сначала была построена виртуальная библиотека, сфокусированная на структурах, описываемых общей структурной формулой (I), с последующим докингом полученных структур в активный центр молекулы тромбина. В результате отбирались наиболее перспективные кандидаты («виртуальные хиты»), то есть те молекулы, которые демонстрировали значение скоринг-функции (определяемой в процессе докинга) не хуже, чем -5.0 ккал/моль. Второй ступенью отбора было экспериментальное измерение прямого ингибирующего действия отобранных соединений на активность тромбина в водном буферном растворе, где тромбин расщеплял специфичный хромогенный (или флюорогенный) субстрат. В присутствии ингибитора скорость этой реакции снижалась. Для последующих испытаний антикоагулянтного действия новых соединений в плазме крови были отобраны соединений формулы (I), которые в достаточно небольших концентрациях (<1 мМ) ингибировали активность тромбина в буферном растворе более чем на 60%.

При конструировании молекул новых ингибиторов тромбина, которые могли бы являться эффективными антикоагулянтами в организме, учитывали, что для придания молекуле ингибитора приемлемых физико-химических свойств, определяющих благоприятную фармакокинетику, желательно частично уравновесить в целом гидрофобный характер молекулы ингибитора формулы (I) путем выбора гидрофильных линкеров. С этой же целью возможна модификация гидрофобных фрагментов, размещаемых в кармане S3 молекулы тромбина, гидрофильными остатками, которые размещаются в кармане со стороны, экспонированной в растворитель.

Достаточное время жизни в плазме крови можно получить, избегая в структуре ингибитора лабильных химических групп, легко расщепляемых в химических или биохимических процессах. Примером таких нежелательных групп служит, например, сложноэфирная группа.

Таким образом, можно отобрать для химического синтеза и последующей экспериментальной проверки в качестве антикоагулянтов молекулы, оптимальным образом сочетающие в себе вышеперечисленные требования (иногда противоречивые).

Окончательно решение о синтезе принималось, исходя из оценки его возможной сложности.

В настоящем изобретении, если не определено иное, используются следующие определения:

Активный центр представляет собой участок белковой макромолекулы, играющий ключевую роль в биохимических взаимодействиях.

Белок или протеин представляет собой белковую макромолекулу.

Белок-мишень представляет собой белковую макромолекулу, участвующую в процессе связывания.

Лиганды представляют собой коллекцию низкомолекулярных химических структур.

Процесс связывания - это образование Ван-дер-Ваальсового или ковалентного комплекса лиганда с активным центром белка-мишени.

Скрининг - это выявление из коллекции химических структур набора соединений, избирательно взаимодействующих с определенным участком белковой макромолекулы.

Правильное позиционирование - это позиционирование, когда лиганд находится в положении, соответствующем минимуму свободной энергии связывания с белком.

Избирательно взаимодействующий лиганд - это лиганд, специфично связывающийся с данным белком-мишенью.

Реперный белок представляет собой белок, используемый либо для корректировки параметров скора в соответствии с экспериментальными данными, либо в процессе валидации работы системы, либо для оценки специфичности связывания данного ингибитора.

Валидация - это набор расчетов и методика сравнений, позволяющая судить о качестве работы системы, оценить насколько эффективно система отбирает из произвольного набора лигандов те из них, которые хорошо связываются с заданным белком-мишенью.

Специфично связывающийся лиганд - это лиганд, связывающийся только с данным белком и не связывающийся с другими белками.

Ингибитор - это лиганд, связывающийся с активным центром заданного белка-мишени и блокирующий нормальный ход биохимических реакций.

Докинг - это позиционирование лиганда в активном центре белка.

Скоринг - это расчет для оценки свободной энергии связывания лиганд-белок.

ΔG связывания - результат расчета выигрыша свободной энергии при связывании лиганда с белком мишенью (с помощью программы SOL).

C1-6алкил представляет собой алкильную группу, содержащую неразветвленную или разветвленную углеводородную цепь, содержащую от 1 до 6 атомов углерода, например, метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил и так далее.

С1-6алкокси представляет собой алкоксильную группу, содержащую неразветвленную или разветвленную углеводородную цепь, содержащую от 1 до 6 атомов углерода, например, метокси, этокси, н-пропокси, изопропокси и так далее.

Галоген означает хлор, бром, йод или фтор.

Фармацевтически приемлемая соль - любая соль, образуемая активным соединением Формулы (I), если она не токсична и не препятствует адсорбции и фармакологическому действию активного соединения. Эта соль может быть получена действием на соединение Формулы (I) органического или неорганического основания, такого как гидроксид натрия, гидроксид калия, гидроксид аммония, метиламин, этиламин и тому подобных.

Сольват представляет собой кристаллическую форму активного соединения Формулы (I), в состав кристаллической решетки которой входят молекулы воды или иного растворителя, из которого кристаллизовалось активное соединение Формулы (I).

Фармацевтически приемлемый носитель означает, что носитель должен являться совместимым с другими ингредиентами композиции и не наносить вреда его реципиенту, то есть быть нетоксичным для клеток или млекопитающих в тех дозах и концентрациях, в которых его применяют. Часто фармацевтически приемлемый носитель представляет собой водный рН буферный раствор. Примеры физиологически приемлемых носителей включают буферы, такие как фосфаты, цитраты и другие соли органических кислот, антиоксиданты, включающие аскорбиновую кислоту; полипептиды с низким молекулярным весом (меньше 10 остатков); протеины, такие как сывороточный альбумин, желатин или иммуноглобулины; гидрофильные полимеры, такие как поливинилпирролидон; аминокислоты, такие как глицин, глютамин, аспарагин, аргинин или лизин; моносахариды, дисахариды и другие углеводы, включая глюкозу, маннозу или декстрины; хелатообразующие агенты, такие как ЭДТА; сахарные спирты, такие как маннитол или сорбитол.

Терапевтически эффективное количество - это количество, необходимое для проявления лечебного эффекта (т.е.достижения нужной степени ингибирования тромбообразования) в организме млекопитающего.

Млекопитающее, как используется здесь, включает в себя представителей отряда приматов (например, человек, человекообразные обезьяны, нечеловекообразные обезьяны, низшие обезьяны), отряда хищных (например, кошки, собаки, медведи), отряда грызунов (например, мышь, крыса, белка), отряда насекомоядных (например, землеройка, крот) и др.

Технической задачей настоящего изобретения было получение новых низкомолекулярных соединений, обладающих высокой антикоагулянтной активностью.

В настоящей заявке описан ряд таких новых низкомолекулярных соединений, обладающих высокой антикоагулянтной активностью, а именно, соединений общей структурной формулы (I), их фармацевтически приемлемых солей или сольватов:

где С выбирают из группы, содержащей структуры:

где R1, R2, R3, R4 независимо друг от друга представляют собой водород или С1-6алкил;

В представляет собой -(СН2)n-, где n принимает целые значения от 1 до 5;

А выбирают из группы, содержащей структуры:

где R5 выбирают из группы, содержащей водород, С1-6-алкокси, СН2NR10R11, СН(СН3)R10R11,

, , , ,

где R6 и R7 независимо представляют собой водород, С1-6алкил, С1-6алкокси, галоген;

R8 представляет собой водород или С1-6алкил;

R9 выбирают из следующей группы, состоящей из:

, ,

R10, R12 независимо друг от друга выбирают из группы, состоящей из водорода, С1-6алкила, (CH2)mCOOR13, (CH2)mCON(R13)2,

, ,

где m принимает целые значения от 1 до 4;

R13 представляет собой водород или С1-6алкил;

R11 представляет собой С1-6алкил или Ar;

Ar представляет собой фенил, пиридил, оксазолил, тиазолил, тиенил, фуранил, пиримидинил, пиридазинил, пиразинил, индолил, бензофуранил, бензотиофенил, имеющие от одного до пяти заместителей, выбранных из группы:

водород, С1-6алкил, C1-6алкокси, галоген, N(R13)2, ОН, NO2, CN, COOR13, CON(R13)2, SO2R13;

за исключением:

Исключенные соединения являются известными. 4-амино-1-[3-[(2-метилфенил) амино]-3-оксопропил] пиридиниум хлорид описан в Journal of Medicinal Chemistry, 17(7), 739-744, 1974 в статье Carbocyclic Derivatives related to indoramin (Карбоциклические производные, относящиеся к индорамину). 4-амино-1-(2-феноксиэтил)-пиридиниум бромид описан в Journal of Organic Chemistry, 26, 2740-7, 1961 в статье Application of sodium borohydride reduction to synthesis of substituted aminopiperidines, aminopiperazines, aminopyridines and hydrazines (Применение восстановления боргидридом натрия для синтеза замещенных аминопиперидинов, аминопиперазинов, аминопиридинов и гидразинов). Однако следует отметить, что в указанных источниках не описана возможность использования этих соединений в качестве антикоагулянтов.

В предпочтительном варианте осуществления изобретения описаны следующие соединения по пункту 1, их фармацевтически приемлемые соли или сольваты:

а)

,

б)

,

в)

где Y выбирают из группы, состоящей из водорода, галогена, COOR13, CON(R13)2, SO2R13;

r принимает целые значения от 2 до 5.

Настоящее изобретение описывает также применение соединения формулы (I), его фармакологически приемлемых солей и сольватов в качестве антикоагулянтов для лечения и профилактики различных тромботических состояний, а также фармацевтическую композицию для лечения тромботических состояний, содержащую терапевтически эффективное количество соединения по пункту 1, и/или его фармацевтически приемлемых солей и/или сольватов, и фармацевтически приемлемый носитель.

Изобретение описывает также новый плазмозамещающий раствор, содержащий в качестве антикоагулянта соединение формулы (I), его приемлемые фармакологические соли или сольваты. Для создания такого раствора в стандартные плазмозамещающие растворы добавляют соединение формулы (I), его фармакологически приемлемые соли или сольваты. Концентрация добавляемого антикоагулянта зависит от его ингибирующей способности, и может меняться для разных соединений в широких пределах (от 0.01 нМ до 1 мМ). Раствор, содержащий антикоагулянт, позволяет частично корректировать те гиперкоагуляционные нарушения, которые возникают в организме при объемных переливаниях стандартных ПЗР, не содержащих факторов, а главное, ингибиторов свертывания. Предлагаемый новый ПЗР, содержащий искусственный синтетический низкомолекулярный антикоагулянт, выгодно отличается от аналогичного раствора, содержащего природный ингибитор тромбина ATIII, т.к. содержит вместо дорогого природного белка (ATIII) стандартный по составу и более дешевый ингибитор, который, кроме того, не создает опасности вирусного заражения пациента при инфузии ПЗР.

Соединения по изобретению могут быть введены любым подходящим образом, который обеспечил бы их бионакопление в крови. Это может быть достигнуто парентеральными способами введения, включая внутривенные, внутримышечные, внутрикожные, подкожные и внутрибрюшинные инъекции. Могут быть использованы и другие способы введения. Например, абсорбцией через желудочно-кишечный тракт, осуществляемой путем перорального введения соответствующих составов. Пероральное введение имеет преимущество за счет более легкого использования. Альтернативно, могут быть использованы способы введение через мышечную ткань - вагинальный и ректальный. Кроме того, соединения по изобретению могут быть введены через кожу (например, трансдермально) или ингаляцией. Понятно, что предпочтительный способ введения зависит от состояния, возраста и восприимчивости пациента.

Для перорального введения фармацевтические композиции могут представлять собой, например, таблетки или капсулы с фармацевтически приемлимыми добавками, такими как связующие агенты (например, пептизированный маисовый крахмал, поливинилпирролидинон или гидроксипропил метилцеллюлоза); наполнители (например, лактоза, микрокристаллическая целлюлоза, гидрофосфат кальция; стеарат магния, тальк или оксид кремния; картофельный крахмал или крахмальный гликолят натрия); или увлажнители (например, лаурилсульфат натрия). Таблетки могут быть покрыты оболочкой. Жидкие составы для орального введения могут быть выполнены в форме, например, растворов, сиропов или суспензий. Такие жидкие составы могут быть получены обычными средствами с фармацевтически приемлемыми добавками, такими как суспендирующие агенты (например, производные целлюлозы); эмульгаторы (например, лецитин), разбавители (очищенные растительные масла); и консерванты (например, метил или пропил-п-гидроксибензоаты или сорбиновая кислота). Составы могут также содержать соответствующие буферные соли, ароматизаторы, красители и подсластители.

Токсичность представленных антикоагулянтов была определена, используя стандартные фармацевтические процедуры на экспериментальных животных для определения LD50 (доза, летальная для 50% популяции). Для предпочтительных соединений по изобретению LD50 оказалось больше 367 мк/кг, что соизмеримо с летальной дозой прошедшего клинические испытания аргатробана, имеющего LD50=475 мк/кг.

Для того чтобы предмет настоящего изобретения был более понятен, ниже приведены некоторые примеры получения новых соединений, описаны методы исследования антикоагулянтной активности этих соединений и результаты данных исследований. Примеры носят иллюстративный характер, причем сущность изобретения ни в коей мере не ограничивается представленными примерами.

Пример 1

Синтез промежуточного продукта 3-(3-хлорпропокси)-5-метилфенола

Смесь 3.8 г (27 ммоль) орцин гидрата, 4.8 г (30 ммоль) 1-бром-3-хлорпропана и 4.0 г (29 ммоль) карбоната калия кипятили в 30 мл ацетонитрила при перемешивании в течение 36 часов. Затем реакционную смесь упарили, растворили в 20 мл эфира, промыли два раза по 15 мл насыщенным раствором карбоната калия, водный слой отбросили, эфирный слой экстрагировали 3 раза по 15 мл 10% раствора гидроксида натрия. Эфирный слой отбросили, водный осторожно подкислили конц. HCl и затем экстрагировали 3×15 мл эфира. Эфирные экстракты объединили, промыли небольшим количеством насыщенного раствора гидрокарбоната натрия и сушили безводным сульфатом натрия, разбавили примерно 1/3 частью (по объему) гексана и профильтровали через слой силикагеля. После упаривания получили 1.7 г желтого масла, представляющего из себя смесь, состоящую из ~70% орцина (Rf 0.10), ~30% 3-(2-хлорпропокси)-5-метилфенола (Rf 0.26, выход ~1.2 г (22% на чистое вещество)).

Аналогичным образом из орцин гидрата и 1-бром-2-хлорэтана получен 3-(2-хлорэтокси)-5-метилфенол (Rf 0.26, выход ~1.1 г (20% на чистое вещество)), а из орцин гидрата и 1-бром-4-хлорбутана получен 3-(4-хлорбутокси)-5-метилфенол.

Пример 2

Синтез промежуточного продукта 3-(3-хлорпропокси)-5-метилфенилового эфира 2-фторбензолсульфокислоты.

К раствору 1.3 г смеси из опыта 1А в 30 мл сухого ТГФ добавили 2.05 г (10 ммоль) 2-фторбензолсульфохлорида и 1.1 г (11 ммоль) триэтиламина. Смесь перемешивали в течение 6 часов, отфильтровали осадок гидрохлорида триэтиламмония и упарили. Полученное масло растворили в 20 мл эфира и несколько раз промыли 10 мл ~10-12% водным раствором аммиака для отделения избытка непрореагировавшего бензолсульфохлорида (контроль по ТСХ) и затем 10 мл ~20% соляной кислоты. После сушки безводным сульфатом натрия и упаривания получено 2.4 г светло-желтого масла, представляющего смесь целевого продукта и дибензолсульфонилированного орцина в соотношении ~2:1, выход на чистый целевой продукт 1.6 г (97% по реакции) (ТСХ пластинки Мерк 60, гексан-этилацетат 2:1. Rf 0.35 - продукт, Rf 0.25 - примесь дибензилового эфира.

Аналогичным образом из 3-(2-хлорэтокси)-5-метилфенола, 3-(3-хлорпропокси)-5-метилфенола, 3-(4-хлорбутокси)-5-метилфенола и соответствующих арилсульфохлоридов получены:

3-(3-хлорпропокси)-5-метилфениловый эфир 2-хлор бензолсульфокислоты (77% на чистое вещество).

3-(3-хлорпропокси)-5-метилфениловый эфир бензолсульфокислоты (60%).

3-(3-хлорпропокси)-5-метилфениловый эфир 2-карбметокси бензолсульфокислоты (56%).

3-(2-хлорэтокси)-5-метилфениловый эфир бензолсульфокислоты (72%).

3-(2-хлорэтокси)-5-метилфениловый эфир 2-хлор бензолсульфокислоты (35%).

3-(2-хлорэтокси)-5-метилфениловый эфир 2-фтор бензолсульфокислоты (34%).

3-(2-хлорэтокси)-5-метилфениловый эфир 2-карбметоксибензолсульфокислоты (37%).

3-(4-хлорбутокси)-5-метилфениловый эфир бензолсульфокислоты (45%).

3-(4-хлорбутокси)-5-метилфениловый эфир 2-хлор бензолсульфокислоты (27%).

3-(4-хлорбутокси)-5-метилфениловый эфир 2-фтор бензолсульфокислоты (32%).

3-(4-хлорбутокси)-5-метилфениловый эфир 2-карбметокси бензолсульфокислоты (21%).

Пример 3

Синтез промежуточного продукта 3-(3-иодпропокси)-5-метилфенилового эфира 2-фторбензолсульфокислоты.

К 2.4 г смеси из предыдущего опыта (2А) в 30 мл сухого ацетона добавили 2 г (13 ммоль) прокаленного иодида натрия и кипятили в течение 27 часов. Затем разбавили реакционную смесь 10 мл гексана и профильтровали и упарили. Полученное темно-желтое масло растворили в 20 мл смеси эфир-гексан (2:3), профильтровали через слой силикагеля (2 см, Lancaster) и упарили. Получили 2.45 г желтого масла, содержащего 3-(2-иодэтокси)-5-метилфениловый эфир 2-фторбензолсульфокислоты (Rf 0.35), и дибензоилсульфоновый