Способ быстродействующей максимальной токовой защиты электрических цепей (варианты)

Иллюстрации

Показать все

Использование: для защиты трехфазных электрических цепей. Технический результат заключается в повышении надежности и быстродействия защиты. Согласно способу осуществляют измерение мгновенных значений тока и их аналого-цифровое преобразование, определяют действующее значение симметричной составляющей тока Iф в каждой фазе, после чего определенное методом интегрирования значение Iф сравнивают со значением токовой уставки Isd, при условии Iф≥Isd вырабатывают сигнал на формирование фиксированной выдержки времени tsd. Дополнительно через равные промежутки времени Δt измеряют приращение тока электрической цепи Δij в течение каждого текущего периода изменения тока, определяют сумму квадратов мгновенных значений приращения токов всех трех фаз S(Δi2j) и вычисляют значение симметричной составляющей тока приращения ΔIф, которое прибавляют к значению тока в предыдущий период измерения - тока предыстории Iр, а их сумму Iф=Iр+ΔIф сравнивают с величиной токовой уставки Isd и при условии Iф≥Isd формируют управляющий сигнал на запуск «интегрального» канала защиты, в котором производят расчет величины интеграла квадрата мгновенных значений приращения тока в каждой фазе Qф=ΣΔi2jΔt, которую сравнивают с уставкой Qsd и в момент времени tq, соответствующий равенству их значений - Qф=Qsd, вырабатывают сигнал на отключение аппарата защиты. 2 н. и 2 з.п. ф-лы, 6 ил.

Реферат

Изобретение относится к способам максимальной токовой защиты трехфазных электрических цепей от токов короткого замыкания (КЗ), в частности к способам быстрого определения симметричной составляющей тока КЗ при реализации системы быстродействующей «интегральной» селективной защиты цепей.

Известны способы, в которых максимальную токовую защиту цепей от токов КЗ осуществляют с помощью выключателей с электронными расцепителями, в частности выключателями A3700 селективного исполнения [1]. Расцепители указанных выключателей содержат аналоговые электронные узлы для измерения значений тока, протекающего через измерительные трансформаторы тока, при этом указанные электронные узлы определяют действующее значение протекающего тока как среднее значение выпрямленного напряжения, поступающего с выхода измерительных трансформаторов. Так как величина максимальной токовой уставки Isd задается действующим значением симметричной составляющей тока (без учета апериодической составляющей), для сравнения значения протекающего тока с величиной тока уставки Isd, измерение протекающего тока производят, как минимум, спустя 40 мс (два периода изменения тока частоты 50 Гц) после возникновения КЗ. В расцепителях селективных выключателей А3700С это условие выполняется за счет того, что для обеспечения селективного отключения они имеют минимальное значение фиксированной задержки времени на отключение - tsd=100 мс. При этом сигнал на отключение вырабатывается расцепителем при условии, что в момент времени после возникновения аварийного тока, равного 80% фиксированной задержки tsd, значение пропускаемого тока будет не меньше тока уставки Isd. В этот момент времени апериодическая составляющая тока исчезает и сравнение протекающего через аппарат тока с величиной максимальной токовой уставкой Isd является вполне корректным. Однако, т.к. расцепитель реагирует, по существу, на мгновенное значение тока, при возникновении кратковременного броска тока в указанный момент времени (80% от tsd) произойдет ложное срабатывание защиты.

Указанного недостатка не имеет более близкий по технической сути к заявляемому способу максимальной токовой защиты способ, в котором определение действующего значения тока цепи осуществляют методом интегрирования мгновенных значений тока в каждой из фаз [2]. Для этого производят их аналого-цифровое преобразование, а действующее значение тока Iф в каждой фазе цепи определяют путем интегрирования мгновенных значений тока ij в течение установленного временного интервала tи через равные промежутки времени Δt, при этом определение действующего значения тока Iф осуществляют непрерывно со сдвигом временного интервала tи на величину очередного отсчета значения тока ij. Такое скользящее, с вытеснением более старых мгновенных значений тока вновь поступающими, интегрирование мгновенных значений тока в течение времени, достаточного для затухания апериодической составляющей тока, позволяет устранить негативное влияние на надежность защиты апериодической составляющей тока в переходной период. Метод интегрирования при определении действующего значения тока позволяет также устранить влияние на измерение величины кратковременных бросков тока в одной из фаз (например, при включении емкостной нагрузки).

Указанный способ обеспечения максимальной токовой защиты пригоден только для случая так называемой «временной» селективной защиты разветвленных цепей. В этом случае критерием селективного отключения выключателей, стоящих на более высоких ступенях защиты и выключателей на нижестоящих ступенях, является фиксированное время задержки срабатывания tsd. Действительно, если минимальное время задержки срабатывания защиты селективных выключателей нижестоящей ступени защиты (ближе к потребителю) составляет tsd=0,1 с, то аналогичная задержка срабатывания аппаратов вышестоящих ступеней составляет tsd=0,2 и tsd=0,4 с. Для точного определения симметричной составляющей тока цепи путем интегрирования мгновенных значений тока такого значительного промежутка времени интегрирования оказывается вполне достаточно.

Однако предложенный способ определения действующего значения протекающего через аппарат тока не может быть использован для обеспечения быстродействующей максимальной токовой защиты, в частности, при реализации системы быстродействующей «интегральной» селективной защиты разветвленных цепей [3].

Отличительной особенностью способа реализации «интегральной» селективной защиты от «временного» способа является наличие в структуре защиты, кроме максимальной токовой уставки Isd, также и уставки по максимальному интегралу квадрата величины протекающего тока (максимальная «интегральная» уставка Qsd). При этом «интегральная» защита начинает работать только после того, как максимальная токовая защита определит факт возникновения аварийной ситуации, а именно - когда определят действующее значение симметричной составляющей тока цепи и произведут сравнение его величины со значением токовой уставки Isd. При этом следует отметить, что «интегральная» защита формирует время отключения предельных токов КЗ из условия равенства значения интеграла пропускаемого тока Qп величине «интегральной» уставке Qsd.

Значение «интегральной» уставки Qsd, в общем случае, может определяться следующими условиями.

Во-первых, величиной интеграла тока отключения Qo нижестоящего аппарата - значение «интегральной» уставки Qsd должно быть больше величины интеграла отключения Qo с определенным коэффициентом запаса к. Требование по введению такого коэффициента запаса продиктовано необходимостью обеспечения надежности избирательного (селективного) отключения вышестоящего и нижестоящего аппаратов.

Во-вторых, величиной интеграла квадрата тока, которую обеспечивает защита в зоне перегрузки - QL. Действительно, для защиты тех элементов электроустановки, которые защищает данный аппарат, «интегральная» времятоковая характеристика в зоне токов КЗ, не обязательно должна проходить ниже аналогичной зависимости для зоны перегрузок.

Из последнего требования к величине «интегральной» уставки, а именно Qsd≥QL, следует, что при токах КЗ, близких к уставке Isd, время срабатывания «интегральной» селективной защиты при токах КЗ может быть больше величины фиксированной выдержки времени tsd. Действительно, время срабатывания защиты в зоне перегрузки

tL при токе цепи Iф≤IL (IL - токовая уставка зоны перегрузки) всегда больше времени срабатывания защиты tsd в зоне токов КЗ, при токе цепи Iф≥Isd, как минимум, в два раза больше. А это значит, что при токах КЗ, меньших (1,4÷2,5) Isd, нет необходимости обеспечивать время срабатывания «интегральной» селективной защиты tc меньше величины фиксированной задержки срабатывания tsd. Если учесть также жесткие требования обеспечения точности срабатывания селективной защиты именно в области токов КЗ, близких к величине уставки Isd, то можно констатировать, что при реализации быстродействующей «интегральной» селективной защиты целесообразно иметь два гармонизированных между собой канала токовой защиты.

Один из каналов, который условно можно обозначить как «точный», должен обеспечивать, прежде всего, высокую точность измерения тока цепи в критической зоне токов КЗ - токов, близких к величине максимальной токовой уставке Isd. Необходимость высокой точности обусловлено тем, что параметр Isd и диапазон его отклонений жестко регламентирован в нормативно-технической документации (ГОСТы, ТУ и т.д.). Но к «точному» каналу токовой защиты не предъявляются требования значительного быстродействия, так как с точки зрения формирования оптимальной защитной характеристики системы защиты, это, как было показано выше, нецелесообразно.

Второй канал, который условно можно обозначить «быстрым», прежде всего, должен обеспечивать максимальное быстродействие в самих тяжелых условиях КЗ. Такими тяжелыми условиями является короткое замыкание непосредственно за отводящими зажимами аппарата.

При этом наибольшим значение тока КЗ в фазе будет именно при трехфазном КЗ. Поэтому значение тока при трехфазном КЗ и интеграла его отключения защитой являются теми параметрами, с учетом которых выбираются параметры отдельных элементов цепи (кабелей, шиносборок и др.).

Следует также отметить, что трехфазные КЗ на зажимах аппарата не только создают наиболее тяжелые условия, но и возникают значительно чаще.

При двухфазном КЗ непосредственно за отводящими зажимами аппарата значение тока КЗ будет примерно на 15% меньше, чем при трехфазном, а термическое воздействие на элементы цепи в этом случае будет меньше почти на 30%.

При однофазном КЗ на нулевой провод действующее значение тока будет еще значительно меньше, чем при трехфазном. Это обусловлено тем, что, во-первых, сечение нулевого провода, как правило, примерно в 2-3 раза меньше фазного, а во-вторых, значение сопротивления нулевой последовательности кабельной линии х0 значительно больше величины сопротивления прямой последовательности xпр в (3,5÷4,6) раза. Существуют и другие факторы снижения величины тока однофазного КЗ, поэтому защиту от таких КЗ целесообразно строить на основе контроля тока нулевой последовательности.

Таким образом, основной проблемой реализации быстродействующей токовой защиты является поиск такого способа определения симметричной составляющей тока КЗ цепи, который бы позволял быстро и достаточно точно определять указанную симметричную составляющую, прежде всего при трехфазном КЗ. А это возможно только в том случае, если будет решена задача «отстройки» от такого случайного фактора, как момент времени возникновения тока КЗ, существенно влияющего на характер изменения мгновенных значений тока в фазе, а значит, на точность и скорость измерения действующего значения симметричной составляющей тока.

Указанный момент времени принято выражать значением фазы изменения напряжения источника, соответствующей моменту возникновения КЗ (фазы включения на КЗ - ψ).

В основу изобретения поставлена задача разработки такого способа максимальной токовой защиты электрических цепей, с помощью которого, за счет более всестороннего анализа мгновенных значений тока ij во всех фазах цепи, можно надежно «отстроиться» от влияния случайного фактора - момента возникновения тока возмущения цепи (фазы ψ) и тем самым обеспечить максимальное быстродействие защиты, прежде всего, в наиболее тяжелых режимах работы цепи - при трехфазных КЗ непосредственно за отводящими зажимами аппаратов защиты.

Такая задача решается в способе быстродействующей максимальной токовой защиты электрических цепей по первому варианту, в соответствии с которым осуществляют измерение мгновенных значений тока ij и их аналого-цифровое преобразование, определяют действующее значение симметричной составляющей тока Iф в каждой фазе цепи путем интегрирования мгновенных значений тока ij в течение установленного временного интервала tи через равные промежутки времени Δt, при этом определение действующего значения тока Iф осуществляют непрерывно со сдвигом временного интервала tи на величину очередного отсчета значения тока ij, после чего определенное методом интегрирования значение тока в фазе Iф сравнивают со значением токовой уставки Isd и при условии Iф≥Isd вырабатывают управляющий сигнал на формирование фиксированной выдержки времени tsd,, за счет того, что дополнительно через равные промежутки времени Δt осуществляют измерение приращения тока цепи Δij в течение каждого текущего периода изменения тока как разность мгновенных значений тока в каждой фазе в течение последнего из заданного интервала времени tи периода изменения тока i и аналогичных значений тока в предыдущий период изменения тока - тока предыстории ijp (Δij=i-ijp), определяют сумму квадратов мгновенных значений приращения токов всех трех фаз S(Δi2j) и вычисляют значения симметричной составляющей тока приращения ΔIф по выражению ΔIф=√S(Δi2j)/3{1-2e-t/T·cos(ωt)+e-2t/T}, в котором Т - электромагнитная постоянная времени цепи с током КЗ, полученное значение ΔIф прибавляют к значению тока предыстории Iр, а их сумму Iф=Iр+ΔIф сравнивают с величиной токовой уставки Isd и при условии Iф≥Isd формируют управляющий сигнал на запуск «интегрального» модуля защиты, в котором производят расчет величины интеграла квадрата мгновенных значений приращения тока в каждой фазе Qф=ΣΔi2jΔt, которую сравнивают с заданным значением интегральной уставки Qsd и в момент времени tq, соответствующий равенству их значений - Qф=Qsd, вырабатывают сигнал на отключение аппарата защиты.

Именно за счет того, что дополнительно через равные промежутки времени Δt осуществляют измерение приращения тока цепи Δij в течение каждого текущего периода изменения тока как разность мгновенных значений тока в каждой фазе в течение последнего из заданного интервала времени tи периода изменения тока - i и аналогичных значений тока в предыдущий период изменения тока - тока предыстории

ijp(Δij=i-ijp), определяют сумму квадратов мгновенных значений приращения токов всех трех фаз S(Δi2j) и вычисляют значения симметричной составляющей тока приращения ΔIфс по выражению ΔIф=√S(Δi2j)/3{1-2e-t/T·cos(ωt)+e-2t/T}, в котором Т - электромагнитная постоянная времени цепи с током КЗ, полученное значение ΔIф прибавляют к значению тока предыстории Iр, а их сумму Iф=Iр+ΔIф сравнивают с величиной токовой уставки Isd и при условии Iф≥Isd формируют управляющий сигнал на запуск «интегрального» модуля защиты, в котором производят расчет величины интеграла квадрата мгновенных значений приращения тока в каждой фазе Qф=ΣΔi2jΔt, которую сравнивают с заданным значением интегральной уставки Qsd и в момент времени tq, соответствующий равенству их значений - Qф=Qsd, вырабатывают сигнал на отключение аппарата защиты, надежно обеспечивается «отстройка» от влияния случайного фактора - момента возникновения тока возмущения цепи и тем самым достигается максимальное быстродействие «быстрого» канала защиты в наиболее тяжелых режимах работы цепи, прежде всего, при трехфазных КЗ непосредственно за отводящими зажимами аппаратов защиты.

Отметим, что для «точного» канала токовой защиты сохраняются характерные для наиболее близкого аналога как достаточная точность его срабатывания при токах КЗ, близких к Isd, так и «отстройка» от кратковременных пиков емкостного тока в одной из фаз.

Действительно, как показал аналитический анализ, для быстрой «отстройки» от случайного фактора - фазы ψ при определении симметричной составляющей тока КЗ в переходном режиме может быть использована так называемая «силовая» характеристика электрической цепи. Эта характеристика обозначается как силовая потому, что она характеризует электродинамические силы, которые приходится преодолевать аппарату при включении его на ток КЗ. Указанные силы пропорциональны квадрату мгновенного значения тока i2j, поэтому силовой характеристикой цепи является зависимость во времени суммы квадратов токов для всех фаз цепи S{ij2(t))}.

Важной особенностью силовой характеристики трехфазной цепи S{ij2(t)} является то, что ее характер абсолютно не зависит от фазы включения на ток КЗ (фазы ψ). Так, если зависимости изменения мгновенных значений тока во времени для каждой отдельной фазы существенно зависят от случайного параметра - фазы ψ, то зависимость суммы квадратов мгновенных значений тока всех 3 фаз во времени S{ij2(t)}, как показал анализ, абсолютно не зависит от момента возникновения КЗ.

Если опустить промежуточные выкладки, то окончательное выражение для «силовой» характеристики электрической трехфазной цепи S{ij2(t)} имеет следующий вид.

,

где Т - электромагнитная постоянная времени цепи (Т=arctgφ).

Как следует из выражения (1), несмотря на то, как бы хаотично не изменялись мгновенные значения токов в фазах, в зависимости от момента возникновения КЗ (от фазы ψ), сумма квадратов указанных значений токов в любой момент времени после возникновения КЗ всегда остается неизменной при любом значении ψ. Значение силовой функции определяется только симметричной составляющей тока Iф., а также зависит от электромагнитной постоянной времени цепи Т (или коэффициента мощности цепи cosφ).

Отсюда следует, что если определена сумма квадратов мгновенных значений тока КЗ в фазах, то для цепи с известным значением cosφ можно быстро и точно определить значение симметричной составляющей тока (Iф).

Так как при расчете тока в фазе Iф по формуле (2) определяют средневзвешенное значение тока всех трех фаз, то негативное влияние кратковременных пиков тока в одной из фаз (например, при емкостной нагрузке) при определении тока Iф, также существенно нивелируется.

Таким образом, значения «силовой» характеристики цепи S{ij2(t)} является очень удобным параметром для быстрого анализа величины симметричной составляющей тока возмущения в трехфазной цепи, т.к. этот параметр не зависит от случайного фактора (ψ), мало зависит от кратковременных пиков тока в одной из фаз. А это значит, что используя значение силовой характеристики цепи, всегда возможно, даже в самый начальный момент возникновения КЗ, определить значение симметричной составляющей трехфазного тока КЗ.

Следует отметить, что для реализации максимального быстродействия «быстрого» канала при предлагаемом способе токовой защиты в наиболее тяжелом режиме ее работы (трехфазное КЗ за зажимами аппарата), при расчете электрических цепей, кроме обязательного определения значения тока КЗ в месте установки аппарата защиты, целесообразно определять и значение cosφ цепи, закороченной в месте установки аппарата (предельного тока для защищаемой цепи).

Выражение (1) для S{ij2(t)} получено при условии, что ток КЗ - трехфазный и симметричный. Однако в реальных цепях могут возникать и несимметричные КЗ, поэтому целесообразно рассмотреть, как же несимметрия токов в фазах повлияет на быстродействие защиты.

Предельным случаем несимметрии трехфазной цепи является двухфазное КЗ, поэтому достаточно сравнить работу «быстрого» канала токовой защиты для 3-х и 2-х фазного КЗ.

Как показывает анализ, несмотря на то, что при 2-х фазном КЗ значение симметричной составляющей тока на 15% меньше, чем при 3-х фазном, максимально возможное значение функции S{ij2(t)} для указанных режимов будет одинаковым (Smax2=Smax3). В то же время, в диапазоне времени от момента возникновения КЗ до момента достижения функцией S{ij2(t)} своего максимального значения Smax - времени tmax, значение функции S{ij2(t)} для 2-х фазного КЗ оказывается несколько меньше. В связи с этим при 2-х фазных КЗ и не симметричных 3-х фазных КЗ момент определения «быстрым» каналом аварийной ситуации (когда рассчитанный по зависимости S{ij2(t)} ток Iф станет равным Isd) будет происходить с некоторым запаздыванием. Однако такое запаздывание при достаточно больших токах КЗ (в сравнении с током уставки Isd) не превышает 1 мс, а во всех остальных случаях это запаздывание не превышает 2-3 мс, что не может существенно сказаться на защитной характеристике, формируемой «интегральным» каналом расцепителя аппарата. Действительно, во-первых, следует учесть, что такая незначительная задержка срабатывания защиты происходит при меньшем значении полного, с учетом апериодической составляющей, тока цепи (при максимальном значении апериодической составляющей и полного тока 2-х фазного КЗ указанной задержки срабатывания нет). Во-вторых, следует также учитывать, что характерное время срабатывания интегрального канала при 2-х фазных КЗ, когда токи в фазах на 15% меньше предельно возможного значения, составляет 25 мс и более, погрешность в измерении интеграла тока отключения получается не более 10%.

При необходимости, даже эта небольшая погрешность расчета интеграла может быть устранена, если в алгоритм работы «интегрального» канала токовой защиты заложить учет предыдущих значений интегралов. Имеется в виду, что отсчет величины интеграла тока возмущения необходимо будет производить не с момента фиксации равенства тока цепи Iф величине токовой уставки Isd, а с момента возникновения тока возмущения. В этом случае небольшое снижение быстродействия токового канала при двухфазном КЗ никак не скажется на конечном результате работы токовой защиты - быстродействии срабатывания «интегрального» канала. Это значит, что в этом случае время срабатывания «интегрального» канала и всей системы «интегральной» селективной защиты при 2-х и 3-х фазном КЗ будет одинаковым.

Что касается определенного снижения чувствительности «быстрого» канала при двухфазном КЗ, то эта проблема решается автоматически и параллельно с решением вопроса гармонизации работы «точного» и «быстрого» каналов. Под указанной гармонизацией понимается такой алгоритм совместной работы каналов, при котором при небольших токах КЗ (близких к уставке Isd) защитную характеристику токовой защиты формирует «точный» канал токовой защиты, обеспечивая высокую точность, а при больших токах КЗ защитную характеристику защиты формирует «быстрый» канал, обеспечивая при этом максимальное быстродействие защиты.

Для обеспечения такой гармонизации работы каналов «быстрый» канал не должен работать в определенном диапазоне небольших значений токов КЗ.

В зависимости от конкретных условий и требований к «интегральной» селективной работе выключателей разных ступеней защиты, гармонизация работы каналов осуществляется по-разному.

Если нет дополнительных требований, то защитная «интегральная» времятоковая характеристика, формируемая «быстрым» каналом в зоне токов КЗ, не должна, как уже указывалось ранее, проходить ниже аналогичной зависимости для зоны перегрузок. В этом случае значение интегральной уставки Qsd в зоне токов КЗ выбирают из условия: к×Qo≤Qsd≥QL, где Qo - интеграл отключения нижестоящего аппарата с учетом коэффициента запаса к, a QL - интеграл отключения зоны перегрузки.

Для этого случая гармонизация каналов обеспечивается автоматически. Действительно, в этом случае защитная времятоковая интегральная характеристика «быстрого» канала защиты пересекает аналогичную время токовую характеристику точного канала (tsd=const) при токах свыше 1,4 Isd. Этим и обеспечивается гармонизация работы «точного» канала с «быстрым» и исключаются случаи не срабатывания «быстрого» канала в зоне его работы при двухфазных или несимметричных КЗ.

Если существуют дополнительные требования к быстродействию селективной защиты, то для реализации таких требований условия выбора «интегральных» уставок могут быть другими. В качестве таких дополнительных требований могут быть следующие.

1. Во-первых, это требование обеспечения более эффективной времятоковой интегральной характеристики вышестоящего аппарата. Учитывая, что, интегральная уставка вышестоящего аппарата находится в прямой зависимости от интеграла отключения тока КЗ нижестоящего выключателя, времятоковая характеристика последнего должна быть как можно ниже (с меньшими временами), причем даже ниже аналогичной его характеристики зоны перегрузки.

2. Во-вторых, это требование обеспечения более эффективной работы данного аппарата в режиме резервирования, а именно, в случае отказа нижестоящего аппарата. Ведь чем быстрее срабатывает вышестоящий выключатель при отказе нижестоящего, тем меньше будут термические нагрузки от протекания тока КЗ или воздействия дуги в режиме резервирования. Именно этот режим резервирования чаще всего и является критическим для пожаробезопасности электроустановок.

В рассмотренных случаях времятоковая характеристика защиты в зоне токов КЗ может быть ниже соответствующей времятоковой характеристики зоны перегрузки. Это является избыточным для защиты отводящих кабелей данного аппарата от протекающего тока КЗ, но может существенно снизить термические нагрузки на кабели, защищаемые вышестоящими аппаратами в штатном режиме, и термические нагрузки на кабели, защищаемые нижестоящими аппаратами в режиме их резервирования. Вполне очевидно, что выбор того или иного алгоритма работы «точного» и «быстрого» каналов токовой защиты зависит от конкретных условий работы аппарата защиты в разветвленной электрической сети.

Для случая выбора интегральной уставки в зоне токов КЗ меньшей, чем аналогичная уставка в зоне перегрузки - к·Qo≤Qsd≤Qпер, для обеспечения гармонизации «точного» и «быстрого» каналов токовой защиты необходимо дополнительное условие. Это условие гармонизации формулируется как ограничение срабатывания «быстрого» канала при токах КЗ, меньших (1,2÷1,6)Isd. Кроме этого, для повышения быстродействия защиты в зоне токов КЗ, равных (1,2÷1,6)Isd, используется способ, при котором запуск «интегрального» модуля производят не только «быстрым», но и «точным» каналом. Это целесообразно в том случае, если фиксированная выдержка времени на отключение tsd больше 0,1 с, что характерно для аппаратов, расположенных на верхних ступенях защиты (ближе к источнику тока).

Из вышеизложенного следует, что в любом случае для обеспечения гармонизации «точного» и «быстрого» каналов чувствительность «быстрого» канала к небольшим значениям токам КЗ может и должна быть ограничена.

Разделение всей области времятоковой защитной характеристики на зоны ее формирования «точным» и «быстрым» каналами объективно отражает особенности изменения, в зависимости от величины тока КЗ, времени срабатывания «точного» канала и времени срабатывания всей токовой защиты. Достаточно очевидно, что с увеличением тока КЗ время срабатывания «точного» канала токовой защиты будет уменьшаться, при этом указанное снижение находится в прямой зависимости от величины тока цепи. В то же время, для формирования «интегральной» защитной характеристики время срабатывания токовой защиты должно снижаться (с увеличением тока) пропорционально квадрату величины тока цепи. Именно поэтому при больших токах КЗ (когда быстродействие защиты должно быть максимальным) быстродействия «точного» канала недостаточно для формирования оптимальной защитной характеристики. При небольших же токах КЗ быстродействия «точного» канала вполне достаточно для обеспечения требуемой защитной «интегральной» характеристики.

Таким образом, использование двух токовых каналов, в которых используется разные способы определения симметричной составляющей тока КЗ и соответственно отвечающих разным требованиям по точности и быстродействию, позволяет реализовать основные задачи быстродействующей токовой защиты. А именно, обеспечить максимальное быстродействие токовой защиты в наиболее тяжелом режиме - при предельных для данной цепи токах КЗ и обеспечить необходимую точность срабатывания токовой защиты в зоне регламентируемого клиентского параметра - тока уставки максимальной токовой защиты - Isd. При этом «быстрый» канал запускает «интегральный» модуль защиты, а «точный» канал запускает модуль формирования фиксированной задержки срабатывания.

Кроме того, для повышения быстродействия защиты при небольших токах КЗ дополнительно может быть применен способ защиты, при котором «точный» канал запускает как модуль фиксированной задержки срабатывания, так и «интегральный» модуль защиты.

Способ определения действующего значения симметричной составляющей тока КЗ из выражения для силовой функции цепи (2) позволяет практически мгновенно зафиксировать возникновение аварийной ситуации и быстро выработать соответствующий управляющий сигнал. Однако выражение (2) достаточно сложно и требует дополнительного ресурса микропроцессора для проведения вычислительных операций.

В то же время имеется возможность, при незначительном снижении быстродействия «быстрого» канала, существенно упростить расчет симметричной составляющей тока КЗ на основании значения силовой характеристики цепи.

Из анализа зависимости S{ij2(t)} следует (причем как для 3-х фазной, так и и 2-х фазной короткозамкнутых цепей), что в момент времени tmax, когда значения силовых функций S{ij2(t)} достигают своего максимального значения Smax, выражение для определения значения Iф может быть существенно упрощено. Обусловлено это тем, что как показывает аналитический анализ, в момент времени tmax выражение в фигурной скобке уравнения (2) становится равным квадрату величины коэффициента ударности цепи:

,

где Ку=Iу/Iм (Iу - ударный ток цепи, Iм - амплитудное значение симметричной составляющей тока).

В этом случае выражение для расчета тока Iф получается очень простым и имеет вид:

Зависимости коэффициента ударности от величины cosφ приводятся в целом ряде технических и нормативных источников, из которых, например, следует, что для cosφ=0,3 коэффициент ударности Ку равен 1,4, поэтому выражение для Iф в данном случае будет иметь очень простой вид:

При t=tmax значения силовой функции для 3-х фазного и двухфазного КЗ, как указывалось выше, оказываются одинаковыми (при фазе ψ, соответствующей возникновению ударного тока в 2-х фазной цепи). Поэтому при разумном компромиссе - увеличении времени анализа «быстрым» каналом токовой защиты аварийной ситуации с 1,5-3 мс до 5-9 мс можно не только существенно упростить выражение для расчета тока Iф, но и обеспечить одинаковое быстродействие «точного» канала токовой защиты для случаев 3-х и 2-х фазных КЗ.

С учетом рассмотренной выше особенности определения действующего значения симметричной составляющей тока Iф на основании величины максимального значения силовой функции Smax можно упростить алгоритм расчета величины симметричной составляющей тока Iф, а значит и снизить необходимый ресурс микропроцессора, с помощью которого реализуют способ токовой защиты, а также снизить его стоимость.

Согласно второму втором варианту способа быстродействующей максимальной токовой защиты электрических цепей, в соответствии с которым осуществляют измерение мгновенных значений тока ij и их аналого-цифровое преобразование, определяют действующее значение симметричной составляющей тока Iф в каждой фазе цепи путем интегрирования мгновенных значений тока ij в течение установленного временного интервала tи через равные промежутки времени Δt, при этом определение действующего значения тока Iф осуществляют непрерывно со сдвигом временного интервала tи на величину очередного отсчета значения тока ij, после чего определенное методом интегрирования значение тока в фазе Iф сравнивают со значением токовой уставки Isd и при условии Iф≥Isd вырабатывают управляющий сигнал на формирование фиксированной выдержки времени tsd, дополнительно через равные промежутки времени Δt осуществляют измерение приращения тока цепи Δij в течение каждого текущего периода изменения тока как разность мгновенных значений тока в каждой фазе в течение последнего из заданного интервала времени tи периода изменения тока i и аналогичных значений тока в предыдущий период изменения тока - тока предыстории ijp(Δij=i-ijp), определяют сумму квадратов мгновенных значений приращения токов всех трех фаз S(Δi2j) и вычисляют значение симметричной составляющей тока приращения ΔIф по выражению ΔIф=√Smax(Δi2j})/3Ку, где Ку - коэффициент ударности тока цепи, который определяется значением cosφ цепи, полученное значение ΔIф прибавляют к значению тока предыстории Iр, а их сумму Iф=Iр+ΔIф сравнивают с величиной токовой уставки Isd и при условии Iф≥Isd формируют управляющий сигнал на запуск «интегрального» модуля защиты, в котором производят расчет величины интеграла квадрата мгновенных значений приращения тока в каждой фазе Qф=ΣΔi2jΔt, которое сравнивают с заданным значением интегральной уставки Qsd и в момент времени tq, соответствующий равенству их значений - Qф=Qsd, вырабатывают сигнал на отключение аппарата защиты.

Именно за счет того, что дополнительно через равные промежутки времени Δt осуществляют измерение приращения тока цепи Δij в течение каждого текущего периода изменения тока как разность мгновенных значений тока в каждой фазе в течение последнего из заданного интервала времени tи периода изменения тока i и аналогичных значений тока в предыдущий период изменения тока-тока предыстории ijp(Δij=i-ijp), определяют сумму квадратов мгновенных значений приращения токов всех трех фаз S(Δi2j) и вычисляют значение симметричной составляющей тока приращения ΔIф по выражению ΔIф=√Smax(Δi2j})/3Ку, где Ку - коэффициент ударности тока цепи, который определяется значением cosφ цепи, полученное значение ΔIф прибавляют к значению тока предыстории Iр, а их сумму Iф=Iр+ΔIф сравнивают с величиной токовой уставки Isd и при условии Iф≥Isd формируют управляющий сигнал на запуск «интегрального» модуля защиты, в котором производят расчет величины интеграла квадрата мгновенных значений приращения тока в каждой фазе Qф=ΣΔi2jΔt, которое сравнивают с заданным значением интегральной уставки Qsd и в момент времени tq, соответствующий равенству их значений - Qф=Qsd, вырабатывают сигнал на отключение аппарата защиты и решается задача «отстройки» от влияния случайного фактора - момента возникновения тока возмущения цепи и тем самым достигается быстродействие защиты в наиболее тяжелых режимах работы цепи, прежде всего, при трехфазных КЗ непосредственно за отводящими зажимами аппаратов защиты. Кроме того, за счет упрощения расчета величины симметричной составляющей тока с помощью коэффициента ударности Ку снижается необходимый ресурс микропроцессора, с помощью которого реализуется предлагаемый способ токовой защиты, а также снижается стоимость микропроцессора.

Таким образом, благодаря тому, что в предлагаемом способе токовой защиты для вычисления симметричной составляющей тока КЗ цепи используют не мгновенные значения тока каждой фазы в отдельности, как в ближайшем аналоге, а сумму квадратов указанных мгновенных значений тока всех фаз (мгновенные значения силовой характеристики цепи), обеспечивается максимальное быстродействие вычислений симметричной составляющей тока и, как следствие, обеспечивается существенно большее быстродействие предлагаемого способа токовой защиты. А использование для вычислений симметричной составляющей тока максимального значения силовой функции цепи, которое возникает в первый полупериод возникновения аварийного тока, позволяет существенно упростить указанные вычисления тока, а значит снизить требуемый ресурс микропроцессора, с помощью которого производят вычисления и, как следствие, снизить затраты на реализацию предлагаемого способа токовой защиты.