Способ и система для лазерного мечения драгоценных камней, таких как алмазы

Иллюстрации

Показать все

Изобретение относится к способу и системе для лазерного мечения драгоценных камней и, в частности, к способу и системе гравирования кодов аутентификации. Техническим результатом является вписывание лазером постоянных точечных меток в объеме драгоценных камней. Система для лазерного мечения знаков в драгоценных камнях, таких как алмазы, причем знаки состоят из нескольких микроскопических точечных меток, рост которых может инициироваться при воздействии на естественно встречающиеся внутренние дефекты или примеси в объеме драгоценного камня жестко сфокусированной последовательностью импульсов лазера. Знаки вписывают лазерными импульсами, несущими значительно меньшую энергию, чем пороговая энергия, требуемая для вписывания в объеме идеального материала драгоценного камня. В способе лазерного мечения и кодирования учитывается случайное пространственное распределение дефектов, присутствующих в самородных драгоценных камнях, а также их очень локализированный характер. Данные аутентификации кодируются в драгоценном камне по относительному пространственному расположению точечных меток, которые образуют знак. Точечные метки, выгравированные на глубине ниже поверхности драгоценного камня, можно сделать не обнаруживаемыми невооруженным глазом и с лупой путем ограничения их индивидуального размера несколькими микрометрами. Присутствие знака обнаруживается при использовании специального оптического считывающего устройства. 8 н. и 32 з.п. ф-лы, 11 ил.

Реферат

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится, в общем, к способу и системе для лазерного мечения драгоценных камней и, в частности, к способу и системе гравирования кодов аутентификации, состоящих из нескольких микроскопических точечных меток, создаваемым путем воздействия на локализованные внутренние дефекты в объеме драгоценного камня управляемой последовательностью лазерных импульсов.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Мечение драгоценных камней

Предварительное вписывание однозначно определенной идентифицирующей метки или indicium (знак - лат.) на драгоценном камне, который украден, утерян или смешан в куче, очень помогает идентифицировать его в случае виндикации (истребования в судебном порядке) и последующего возвращения законному владельцу. Поэтому страховые компании настоятельно требуют метить драгоценные камни большой стоимости, поскольку многие из этих изделий страхуются. С другой стороны, вписывание indicium (далее - знак), который просто указывает место добычи или страну происхождения драгоценных камней, таких как алмазы, поможет эффективно предотвратить поступление так называемых «конфликтных алмазов» на предприятия по обработке алмазов, осуществляющие деятельность на законных основаниях.

Мечение изделий разного характера в целях их однозначной идентификации, классификации, отслеживания или легкости виндикации уже хорошо освоено.

Меченые знаки могут принимать вид читаемых человеком кодов, таких как логотипы, художественные изображения, пробы или заводские номера, из последовательности буквенно-цифровых знаков.

Можно вписывать и машинно-считываемые коды, такие как обычные одномерные штриховые коды или двухмерные массивы точечных меток, разработанные в соответствии с различными видами символик. Некоторые отличительные особенности драгоценных камней делают их мечение весьма затруднительным. Например, знаки приходится гравировать на поверхности очень мелких изделий, которые обычно имеют большое число еще меньших граней (фасетов), ориентированных в разных направлениях. Кроме того, если драгоценный камень устанавливается в оправу, для мечения доступна лишь ограниченная часть наружной поверхности камня. Эти трудности усугубляются тем фактом, что драгоценные камни, такие как алмазы, представляют собой материал очень высокой твердости, подверженный раскалыванию при резком механическом напряжении или чрезмерном локальном нагреве. И что более важно, вписывание постоянного знака на ограненном и полированном драгоценном камне никоим образом не должно ухудшать его внешний вид, снижать качество и денежную стоимость.

Лазерное мечение знаков на поверхности драгоценных камней

Среди различных способов, разработанных для постоянного мечения драгоценных камней, в промышленности по обработке драгоценных камней давно известно лазерное мечение. Один из предпочтительных способов лазерного мечения основан на использовании лазерного луча с соответствующими характеристиками, причем луч направляют на часть полированной поверхности драгоценного камня. Некоторые ключевые характеристики луча, такие как средняя мощность или энергия каждого импульса, условия фокусирования, длина волны и продолжительность воздействия лазером, подбирают таким образом, чтобы подвергнуть абляции тонкий слой поверхностного материала. Для лазерного мечения предложены и используются различные виды лазерных систем. Например, в патентах США 5149938, 5410125 и 5573684 (все выданные Уинстону (Winston) и др.), 6187213, выданном Смиту (Smith), 6483073, 6593543, 6747242 и 6788714 (все выданные Бендерли (Benderly)) описывается использование эксимерных лазеров, способных передавать ультрафиолетовое лазерное излучение, т.е. лазерное излучение длиной волны менее примерно 400 нм (нм - нанометр, 1 нм = 10-9 м). Предпочтительными являются лазерные лучи с более короткой длиной волны, поскольку диаметр гравированных участков и ширина гравированных линейных сегментов коррелируют с длиной волны луча. Следует отметить, что большинство самородных алмазов относятся к типу Ia. Их край полосы поглощения ультрафиолетового излучения соответствует длине волны примерно 291 нм, так что они практически прозрачны для длин волн в видимой области спектра - в диапазоне от 400 примерно до 700 нм. Однако в качестве лазерных источников для мечения драгоценных камней оказались привлекательными полупроводниковые лазерные системы, особенно если их первичный выходной луч является удвоенной частоты, чтобы получить окончательную длину волны обычно в диапазоне от 500 до 600 нм в видимой области спектра. Использование лазеров Nd:YAG для гравирования на поверхности драгоценных камней описано в патентах США 4392476 (выданном Грессеру (Gresser) и др.), 4467172 (выданном Эренуальду (Ehrenwald) и др.), 5753887 (выданном Розенвассеру (Rosenwasser) и др.) и 6713715 (выданном Кристенсену (Christensen) и др.), а использование лазеров Nd:YLF раскрыто в патентах США 5932119, 6211484, 6476351 и 6684663 (все выданные Каплан (Kaplan) и др.). Лазерные лучи, имеющие площадь поперечного сечения достаточной величины, при попадании на поверхность изделия могут создавать посредством абляции рисунки сложных форм путем использования маски, в которой механически выполнены вырезы, точно воспроизводящие форму необходимого рисунка. Альтернативно, знаки, имеющие сложные рисунки, можно гравировать лазерным лучом, очень точно сфокусированным на очень маленький участок на поверхности изделия. Для этой цели изделие может устанавливаться оснащенным электроприводом столиком для перемещения в трех направлениях (XYZ) с предварительно запрограммированными перемещениями. Другой подход заключается в использовании устройства управления лучом для сканирования управляемым образом лазерного луча по ограниченной поверхности изделия, которое удерживается неподвижным. Даже при очень точном фокусировании средняя мощность или энергия каждого импульса, подаваемого лазерным источником, может оказаться недостаточной для порога абляции поверхности драгоценных камней, таких как алмаз, которые представляют собой материал очень высокой твердости и обычно прозрачный. В таком случае перед воздействием лазерного луча на поверхность изделия можно нанести светопоглощающий материал, такой как краска или паста для мечения. Альтернативой использованию светопоглощающих покрытий служит использование импульсного лазера, который может излучать лазерные импульсы продолжительностью менее примерно 1 нс (нс - наносекунда, 1 нс = 10-9 с) для снижения пороговой энергии для испарения большинства материалов, как описано в патенте США 6713715 (выданном Кристенсену и др.).

Знаки, выгравированные с использованием обычного способа, описанного в указанных выше противопоставленных патентах, не ухудшают внешний вид и сортировку драгоценных камней, поскольку эти метки обычно гравируются на части поверхности рундиста (называемого также пояском) драгоценных камней. В частности, эти метки, выгравированные на алмазах, часто создают некоторое потемнение из-за роста поверхностного слоя графита в процессе лазерной абляции. Во многих случаях присутствие графита представляет собой несущественную проблему, и, фактически, оно может помочь обеспечить лучшую видимость знаков, если они предназначены для считывания при помощи лупы малого увеличения. При необходимости в этом слой графита можно удалить поверхностной обработкой. Пример такой обработки приводится в патенте США 4467172 (выданном Эренуальду и др.); она заключается в прикладывании температуры +700°С в сочетании с хлористоводородной (соляной) кислотой. Помимо высококонтрастного внешнего вида знаков, создаваемого присутствием слоя графита на гравированных участках поверхности, любой знак можно сделать более легким для обнаружения и распознания просто путем его увеличения. Преимущество вписывания легковидимых знаков, имеющих достаточно большие размеры, заключается в том, что в некоторых конкретных случаях они могут служить как эффективные средства удерживания от воровства.

К сожалению, видимые знаки, вписанные непосредственно на поверхности драгоценных камней, можно легко подделать путем простой переполировки гравированной части поверхности рундиста или используя другие виды поверхностных обработок. После этой операции, возможно, последует мечение нового, но незаконного знака. Поверхностная обработка с целью убрать знак, выгравированный на поверхности драгоценного камня, будет заключаться, например, в удалении любого следа графита в выгравированном рисунке (при наличии такового) и затем заполнении выгравированных зон определенным видом продукта для заполнения трещин или изломов, хорошо известным в данной области. Даже если мечение на части поверхности пояса не ухудшает внешний вид и сортировку драгоценного камня, знак, вписанный на рундисте, может стать скрытым, если мечение будет перенесено на драгоценный камень перед его установкой в оправу. Многие оправы имеют захваты, которые не дают получить визуальный доступ ко всей поверхности рундиста.

С другой стороны, в некоторых других случаях может потребоваться, чтобы идентификация была как можно менее заметной во избежание неразрешенного обнаружения. Очевидный путь достичь этой цели - вписывать знаки с очень мелкими общими размерами. Как уже отмечалось, размер наименьших деталей, которые можно вписать лазерным лучом, сфокусированным обычной оптикой, по существу ограничивается длиной волны света, достигающей того, что называется пределом дифракции света. К сожалению, мощные, надежные и относительно недорогие лазеры, излучающие на длинах волн короче примерно 190 нм и конструктивно исполненные для промышленного применения, по-прежнему отсутствуют.

Значительное усовершенствование существующих методов лазерного мечения на поверхности драгоценных камней осуществлено путем использования специального метода, известного как ближнеполевая оптика. В патенте США 6624385, патентной заявке США 10/607184 и патентной заявке США 10/607185 (изобретатели Паттон (Patton) и др.) описывается использование ближнеполевой оптики для мечения драгоценных камней самыми различными лазерами, такими как эксимерные лазеры и лазеры Nd:YAG с удвоенной частотой. Этот способ позволяет вписывать «микрознаки», состоящие из элементов, размеры которых намного меньше, чем допускает предел оптической дифракции. Ближнеполевую оптику можно реализовать путем подачи лазерного луча через сужающиеся оптические волокна или, предпочтительнее, путем использования твердой иммерсионной линзы, плоская выходная поверхность которой установлена в тесном контакте с частью поверхности драгоценного камня.

В дополнение к известным недостаткам лазерного мечения на поверхности драгоценных камней мечение микрознаков очень мелких размеров может затруднить их нахождение в течение разумного времени. Обычно должен предоставляться ключ для поиска, или же микрознаки должны вписываться в точных местах относительно некоторых заметных ориентиров на камне, таких как геометрический центр таблички (плоской части короны бриллиантовой огранки). Кроме того, считывание едва различимых микрознаков обычно осуществляется с помощью сложных и дорогих устройств. Наконец, для удаления следов любого незаметного микрознака контрафактор может легко переполировать всю наружную поверхность украденного драгоценного камня.

Лазерное мечение знаков в объеме прозрачных материалов

Независимо от общего размера и сложности знак можно сделать очень трудным, если вообще невозможным, для подделки, если выгравировать его достаточно далеко от поверхности драгоценного камня с оставлением наружной поверхности, не измененной процессом мечения. В этом случае слой материала, находящийся между знаком и наружной поверхностью, служит толстым защитным барьером, так что изменить знак без причинения больших и непоправимых повреждений изделию, меченому таким образом, становится очень трудным. Для мечения изделий свойства, размеры и использования которых радикально отличаются от таковых обычных драгоценных камней, разработаны способы подповерхностного мечения лазерным лучом. Например, в патенте США 5206496, выданном Клементу (Clement) и др., описывается подповерхностное лазерное мечение зон повышенной непрозрачности в теле прозрачных материалов, таких как стекла и пластмассы. Предложен способ мечения тары, которая используется, например, для дорогих парфюмерных изделий, которые продаются в ограниченном количестве в фирменных магазинах. Мечение в объеме материала дает преимущество не только способности выдерживать любую поверхностную обработку (включая переполировку), но очень большой трудности для точного копирования злоумышленниками. Лазерное мечение ниже поверхности алмазов вкратце описано в патенте США 4467172 (выданном Эренуальду и др.), однако в описании изобретения к этому патенту не приводятся сведения о контроле формы, размеров и глубины подповерхностных замкнутых меток.

Вписывание меток (именуемых также «микроструктурами») в объеме различных материалов лазерными лучами - это концепция, являющаяся многообещающей для вписывания двух- и даже трехмерных массивов плотно упакованных точечных меток для постоянного хранения оптических данных. Эта концепция привлекательна и для построения оптических волноводов, служащих для проведения света в объем оптических материалов, таких как кварцевое стекло. Для обоих видов применений, упомянутых выше, требуется использование записывающего лазерного луча с жестко контролируемыми временными и пространственными характеристиками, чтобы вписать микроструктуры точных размеров и форм в объеме прозрачного материала без причинения какого-либо нежелательного повреждения середине материала или его наружной поверхности. В патенте США 5671111, выданном Глезеру, хотя и относящемуся, главным образом, к хранению оптической информации, описывается использование ультракоротких лазерных импульсов для получения не имеющих трещин микроструктур правильной формы с высококонтрастным показателем преломления в различных прозрачных материалах. К этим материалам относятся кварцевое стекло, пластмассы, полупроводники, сапфир и даже мелкие кристаллы и ювелирные изделия. В вышеуказанном патенте рассмотрены три разных режима мечения, первый из которых обеспечивает лучший контроль формы и размеров вписанных микроструктур. Этот режим основан на использовании жестко сфокусированного импульсного лазерного луча с крайне короткой длительностью импульса, т.е. в пределах от нескольких фс (фс - фемтосекунда, 1 фс = 10-15 с) примерно до 200 пс (пс - пикосекунда, 1 пс = 10-12 с). Другое требование этого конкретного режима мечения относится к энергии, переносимой каждым лазерным импульсом, которая должна быть сравнимой (или в несколько раз выше ее) с пороговой энергией, требуемой, чтобы вызвать постоянные структурные изменения (повреждения) во вмещающем прозрачном материале при выбранных длине волны лазера и характеристик фокусирования.

Результаты успешной демонстрации этого способа подповерхностного мечения приведены в вышеупомянутом патенте и статьях в журналах, таких как Е. N. Glezer et al. (Глезер и др.), "Three-dimensional optical storage inside transparent materials" («Хранение трехмерной оптической информации внутри прозрачных материалов»), Optics Letters, Vol.21, p.2023-2025 (1996), и Е. N. Glezer et al., "Ultrafast-laser driven micro-explosions in transparent materials" («Вызываемые сверхбыстрым лазером микровзрывы в прозрачных материалах»), Applied Physics Letters, Vol.71, p.882-884 (1997). Например, авторам удалось вписать двухмерный массив микроструктур с низкоконтрастным показателем преломления, отстоящих друг от друга примерно на 2 мкм (мкм - микрометр, 1 мкм = 10-6 м) и имеющих диаметр в пределах 200-250 нм, если смотреть с поверхности, на которую падал лазерный луч. Микроструктуры были вписаны на глубине 100 мкм от поверхности записывающей среды, изготовленной из кварцевого стекла. Следует, однако, отметить, что в указанных патенте и связанных с ним журнальных статьях не сообщается о какой-либо успешной попытке мечения в объеме алмазного материала. Фактически, в этих противопоставленных материалах лишь упоминается о том, что порог энергии для вызывания структурных изменений в объеме алмазов выше, чем пороги энергии большинства других прозрачных материалов, не менее чем в 100 раз.

Лазерное мечение в объеме алмазов

Заинтригованный не доведенной до своего логического завершения ситуацией, только что описанной выше, и, видимо, не зная о патенте США 4467172 (выданном Эренуальду и др.), Дж.Б.Эшком (J.В.Ashcom) провел более систематизированные экспериментальные исследования, направленные на мечение в теле образов самородных монокристаллических алмазов типа Ia и IIa лазерными импульсами длительностью несколько фемтосекунд. О своих основных результатах он сообщил в главе 4 своей докторской (доктор философии) диссертации, озаглавленной "The Role of Focusing in the Interaction of Femtosecond Laser Pulses with Transparent Materials" («Роль фокусирования во взаимодействии фемтосекундных лазерных импульсов с прозрачными материалами») (Гарвардский университет, г.Кембридж, шт.Массачусетс, январь 2003 г.). Эшком отметил, что направление последовательности фемтосекундных лазерных импульсов на один и тот же участок в образце алмаза может вызвать оптические повреждения (микроструктуры) в объеме образца, но только при фокусировании лазерных импульсов объективом микроскопа, имеющим числовую апертуру в пределах примерно 0,25-0,45. Эшком, несомненно, преуспел в мечении микроструктур на глубине примерно 40 мкм ниже поверхности образца алмаза, используя лазерные импульсы, переносившие энергию, которая менялась в пределах примерно от 20 до 90 нДж (наноджоулей). Одним из важных моментов его экспериментальных исследований является то, что даже при самом высоком уровне энергии и самом большом числе импульсов, которое он использовал, были случаи, когда в образцах самородного алмаза не было внутренних повреждений. Кроме того, присутствовала статистически значимая составляющая для начала вызванного лазером повреждения от участка к участку одного и того же образца алмаза, а также от образца к образцу. Высказанными как возможная причина этого стохастического поведения были пространственные изменения концентрации примесей, присутствовавших в образцах самородного алмаза. В диссертации другого участника той же группы (Дж.К.Хванг (J.С.Hwang), Гарвардский университет, г.Кембридж, шт.Массачусетс, январь 2003 г.) сообщается также о том, что созданные микроструктуры имели темный и непрозрачный вид, что гипотетически было объяснено присутствием графита и, более вероятно, образованием аморфного углерода внутри каждой микроструктуры. Зная об этих результатах, Эшком пришел к выводу, что успешное мечение в объеме алмазов маловероятно.

О решающей роли, которую играют примеси и дефекты при создании меток в объеме материала драгоценного камня, более наглядно свидетельствует микрофотоснимок, показанный на фиг.1А. Пять лазерных импульсов длительностью примерно 150 фс были сфокусированы все в одном и том же объеме внутри образца самородного алмаза. Вместо одной метки, отцентрированной на пике профиля интенсивности сфокусированного луча, на фиг.1А показано, что были созданы по меньшей мере три отличных метки, каждая из которых находилась вне объема, в котором записывающий лазерный луч достиг своего самого узкого поперечного размера пятна. Локальный оптический флюенс (интегральная плотность оптического потока) в месте каждого темного пятна, видного на этой фигуре, был затем значительно ниже, чем максимальный флюенс записывающего лазерного луча, но, тем не менее, он был достаточным для инициирования структурных изменений в местах, где в материале присутствовали хорошо локализированные дефекты и примеси. На фиг.1В представлено еще одно свидетельство локализированного характера и случайного распределения естественно существующих дефектов и примесей. На этой фигуре показан микрофотоснимок, сделанный на площади поверхности образца самородного алмаза, по которой жестко сфокусированный фемтосекундный лазерный луч переносился по линейной траектории с постоянной скоростью 1 мм/с. Лазерные импульсы с энергией 50 мкДж подавались с частотой 1 кГц, и след, показанный на этой фигуре, проходит на расстоянии примерно 2 мм. Как видно на этом микрофотоснимке, след, вписанный в объеме этого конкретного образца самородного алмаза, далек от непрерывного, поскольку состоит из мелких темных пятен со случайным распределением вдоль траектории. Поразительной особенностью этого микрофотоснимка является присутствие длинного сегмента следа, находящегося в центральной зоне фигуры, где нет каких-либо темных пятен. С другой стороны, в некоторых местах левой части следа видны плотно упакованные темные пятна. Кроме того, многие из этих пятен находятся либо выше, либо ниже оси траектории, а это означает, что они были образованы в местах, где локальный оптический флюенс луча не был на своем максимальном пиковом уровне.

Исходя из результатов, представленных на фиг.1А и 1В, можно заключить, что для успешного мечения микроструктур в образцах самородного алмаза важен соответствующий выбор энергии импульса. Например, при избыточной энергии импульса, как это было в случае, показанном на фиг.1А, рядом (и чуть выше) с объемом-мишенью в материале могут образовываться несколько смещенных от центра меток. С другой стороны, обстреливание лазерными импульсами, имеющими недостаточную энергию, может привести к неудаче мечения в объемах, где дефекты предположительно отсутствуют. Исходя из вышеизложенного, можно ожидать, что подходящие пределы энергии импульса могут меняться от участка к участку в одном и том же образце самородного алмаза, чтобы избежать локализированного характера и случайного распределения дефектов, с которых начинается образование микроструктур. Кроме того, энергия импульса оказывает большое влияние на последующий рост вписанных меток. Например, на фиг.1C показан микрофотоснимок, сделанный на площади поверхности образца самородного алмаза, в котором последовательностью пяти лазерных импульсов вписан набор меток. Энергия каждого импульса была в диаметре нескольких мкДж и менялась от участка к участку. Метки, видимые на фиг.1C как черные зоны с контурами неправильной формы, были вписаны в образце самородного алмаза, который был предварительно огранен для придания ему формы куба. Кубическая форма позволяет визуально наблюдать метки с любой плоской боковой стенки образца, тем самым давая точную информацию о распространении микроструктур в направлении, параллельном оси распространения записывающего лазерного луча. На фиг.1C записывающий лазерный луч падал на поверхность образца, находящуюся вверху фигуры, и распространялся параллельно направлению вниз на этой фигуре. В этом конкретном примере протяженность микроструктур в вертикальном направлении при самом высоком уровне энергии, использованном в этих испытаниях, достигает более чем 100 мкм, как показано для обеих меток, находящихся с правой крайней части фигуры. Как результат, обе метки видны как темные пятна диаметром примерно 30 мкм, если смотреть с поверхности падения луча образца.

Было установлено, что после инициирования структурного изменения с дефекта или примеси в материале алмаза последующим ростом метки можно управлять путем правильного выбора ключевых параметров процесса мечения, таких как энергия импульса, число лазерных импульсов, направленных на каждый участок внутри образца, и характеристики записывающего лазерного луча. Однако сочетание параметров лазера, установленное как подходящее для конкретного участка в материале драгоценного камня, не обязательно является таковым для любого иного участка в том же драгоценном камне, что не позволяет разработать универсальный протокол лазерного мечения. Фактически, любой рабочий протокол лазерного мечения должен включать контроль в реальном масштабе времени роста каждой отдельной метки с тем, чтобы остановить лазерное мечение, как только метка будет иметь необходимые общие размеры. Этот аспект важен для вписывания меток, которые не ухудшают внешний вид и сортировку качества меченых драгоценных камней.

Принимая во внимание известный уровень техники, отмеченный выше, и различные проблемы и трудности, с которыми сталкиваются при реализации родственных способов лазерного вписывания знаков на поверхности или ниже поверхности драгоценных камней, существует необходимость в способе и системе, которые обеспечили бы надежное, безопасное и управляемое мечение знаков в объеме драгоценных камней, таких как алмазы. Кроме того, существует необходимость в системе, которая учитывает стохастический характер и изменения в процессах мечения, разработанных до настоящего времени, вместе с особыми физическими свойствами самородных алмазов при образовании в них вызываемых лазером микроструктур.

ЦЕЛИ ИЗОБРЕТЕНИЯ

Следовательно, первой целью настоящего изобретения является создание способа и устройства для вписывания лазером постоянных точечных меток в объеме драгоценных камней, таких как алмазы, на некоторой заданной глубине ниже поверхности таблички и без причинения какого-либо вызванного лазером оптического повреждения на поверхности указанной таблички так, чтобы вписанные метки было невозможно стереть, используя любой вид поверхностной обработки, и одновременно были очень трудными для подделывания злоумышленниками.

Еще одной целью настоящего изобретения является создание способа лазерного мечения в объеме алмазов, воспользовавшись преимуществом присутствия дефектов и примесей, случайно распределенных в кристаллической решетке самородных алмазов, для того чтобы инициировать управляемый рост точечных меток путем воздействия на алмазы лазерными импульсами длительностью в фентосекундном диапазоне, несущими энергию намного ниже порога энергии для мечения в объеме в остальных отношениях идеального материала алмаза. Еще одной целью настоящего изобретения является создание способа безопасного мечения в объеме алмазных драгоценных камней наивысшей чистоты, используя лазерную систему, которая подает лазерные импульсы с энергией, достаточно высокой, чтобы вызвать структурные изменения в объеме идеальной кристаллической решетки алмаза.

Еще одной целью настоящего изобретения является создание способа и устройства для лазерного мечения в объеме драгоценных камней, таких как алмазы, которые бы обладали достаточной универсальностью, чтобы позволить маркировать драгоценные камни с самой разной прозрачностью и качеством, имеющие различные огранки и общие размеры, и которые в момент, когда они метятся, могут быть либо отдельными, либо вставленными в разные виды оправ.

Еще одной целью настоящего изобретения является создание способа для вписывания лазером точечных меток в объеме драгоценных камней, причем каждый знак должен быть достаточно мелким, чтобы оставаться не обнаруживаемым при рассматривании с помощью приборов, которыми обычно пользуются сортировщики алмазов, так, чтобы не ухудшить внешний вид, не снизить сортировку и денежную стоимость драгоценного камня, маркированного предлагаемым способом. С другой стороны, еще одной целью настоящего изобретения является разработка размеров и формы меток, чтобы сделать их машинно-считываемыми специальной системой оптического считывания.

Еще одной целью настоящего изобретения является создание способа мечения знаков полностью безопасным образом в объеме драгоценных камней, таких как алмазы, причем этот способ должен обеспечивать должный учет стохастического характера образования вызванных лазером меток в объеме самородных алмазов, имеющих концентрации дефектов и примесей, очень сильно меняющиеся от участка к участку в их объеме.

Еще одной целью настоящего изобретения является создание простой, недорогой и легкой в пользовании системы оптического считывания, основанной на конструкции обычного оптического микроскопа и способной обеспечивать изображения точечных меток, вписанных в объеме драгоценного камня, причем эти изображения должны обладать достаточной контрастностью, чтобы обеспечить надежное и автоматическое обнаружение всего знака средством обработки изображений.

Еще одной целью настоящего изобретения является создание способа кодирования данных аутентификации в объеме драгоценных камней, таких как алмазы, путем вписывания лазером однозначно определенного знака, состоящего из очень небольшого числа точечных меток, причем эти метки должны достаточно отстоять друг от друга, чтобы внешний вид, сортировка качества и денежная стоимость драгоценных камней при мечении оставались неизменными.

Еще одной целью настоящего изобретения является создание драгоценных камней, таких как алмазы, имеющих персонализированный, самосвидетельствующий знак, вписанный в их объеме и сохраняющий их первоначальное качество и денежную стоимость.

Эти и другие цели изобретения станут полнее понятными из приведенных ниже краткого описания изобретения и описания предпочтительного варианта осуществления.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предлагаются способ и устройство для мечения знаков, состоящих из небольшого числа непрозрачных, точечных меток в объеме драгоценных камней, причем этими драгоценными камнями предпочтительно являются алмазы. Составляющие метки знака гравированы предпочтительно на одной глубине ниже поверхности крупной ограненной и полированной грани (фасета) бриллианта, причем этой гранью предпочтительно является табличка бриллианта (называемая также площадкой). Как результат, можно метить драгоценные камни, вставленные в любой вид оправы. Вписывание каждой отдельной метки осуществляется с использованием протокола, конкретно направленного на образование метки необходимого размера путем воздействия на поверхность драгоценного камня наименьшего числа фемтосекундных лазерных импульсов, причем каждый импульс несет энергию, которая обычно намного ниже порога энергии для вызывания постоянных структурных изменений в идеальной кристаллической решетке алмаза. Глубина, на которой вписываются метки, управляется путем фокусирования фемтосекундного лазерного луча. Кроме того, точная фокусировка выбирается для мечения в объеме изделия из драгоценного камня вместе с поддерживанием интегральной плотности оптического потока (флюенса) (энергия на единицу площади) на поверхности изделия намного ниже порога повреждения поверхности материала.

При этом мечение в объеме возможно без причинения какого-либо непоправимого оптического повреждения наружной поверхности драгоценного камня. Результаты предыдущих экспериментальных исследований, которые сообщили некоторые группы, относительно структурных изменений в объеме алмаза при воздействии последовательности фемтосекундных лазерных импульсов показали, что эти метки обычно состоят из весьма отличной элементарной формы углерода. При этом микроструктуры, созданные в нем, практически непрозрачны для света в видимой области спектра. Поразительно, эти непрозрачные точечные метки можно сделать не обнаруживаемыми невооруженным глазом или при использовании оптического прибора, имеющего 10-кратное увеличение, даже если они вписаны на глубинах лишь несколько микронов ниже поверхности таблички. Достаточно обеспечить жесткое управление вместе с разумным выбором некоторых ключевых параметров процесса мечения, таких как энергия импульса, эффективная числовая апертура фокусирующего объектива, длительность лазерных импульсов и пространственное качество лазерного луча, что добиться точечных меток диаметром, не превышающим нескольких микронов, предпочтительно, менее 5 мкм.

Основным аспектом изобретения является то, что непрозрачные точечные метки можно вписывать в объеме бриллианта с использованием фемтосекундных лазерных импульсов, имеющих энергию, намного ниже пороговой энергии, необходимой для вписывания в кристаллической решетке алмаза высочайшего качества, т.е. в кристалле, практически не имеющем дефектов или примесей. При вписывании постоянных меток в объеме бриллианта необходима определенная осторожность, поскольку требуемые интегральные плотности оптического потока могут вызвать повреждения на поверхности изделия до того, как будут вписаны метки в объеме. Воздействия на драгоценный камень высокой ценности лазерными импульсами, имеющими потенциально «опасные» уровни энергии, часто можно избежать, воспользовавшись преимуществом присутствия примесей и дефектов со случайным распределением в объеме самородных алмазов, включая алмазы высочайшего качества. Эти примеси и дефекты различного характера способствуют созданию темных и непрозрачных зон при воздействии на них фемтосекундных лазерных импульсов с энергией, существенно ниже пороговой энергии в остальных отношениях идеального материала. Случайное пространственное распределение этих дефектов и примесей в обычных самородных алмазах обуславливает стохастический характер, наблюдавшийся при предыдущих попытках мечения постоянным и воспроизводимым образом в объеме этих камней. Другим важным аспектом настоящего изобретения является учет пространственно меняющейся концентрации дефектов и примесей в самородных алмазах путем разработки схемы кодирования, в которой идентификационные данные кодируются в относительных положениях небольшого числа меток, которые образуют знак.

Несмотря на типичный диаметр точечных меток, который должен быть порядка нескольких микрон, непрозрачность этих меток, когда они образованы в алмазе, позволяет отображать их с подходящей контрастностью с помощью недорогого устройства оптического считывания. Устройство считывания по существу содержит обычный объектив микроскопа с низкой числовой апертурой, который передает увеличенные изображения всего выгравированного знака на плоскость датчика на приборе с зарядовой связью (ПЗС) для съемки изображений. После этого изображения обрабатываются средством обработки для обнаружения нескольких меток, которые образуют знаки, с последующей расшифровкой идентификационных данных, закодированных в знаках. Система подсветки устройства оптического считывания повышает контрастность изображений выгравированных меток, воспользовавшись преимуществом нижних граней (фасет) драгоценного камня, которые действуют, как эффективные отражатели света. Результатом всех вышеупомянутых аспектов, относящихся к устройству оптического считывания, является простота конструкции устройства, легкость его эксплуатации пользователем, который не является ни геммологом, ни микроскопистом, и его низкая себестоимость изготовления, что делает его приемлемым по цене для каждого ювелирного магазина.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение станет понятнее из приведенного подробного описания предпочтительного варианта изобретения и его чертежей. На этих чертежах:

фиг.1А, 1В и 1C представляют собой микрофотоснимки, на которых показаны метки, выгравированные в объеме разных образцов алмаза;

на фиг.2 представлена упрощенная блок-схема полной системы мечения и аутентификации драгоценных камней;

на фиг.3 представлена блок-схема, на которой показаны основные блоки и узлы системы лазерного мечения в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

на фиг.4 представлен схематический вид различных оптических компонентов и комплектующих блоков системы лазерного мечения в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

фиг.5 представляет собой вид сбоку оптического считывающего устройства, которое предоставляет изображения знака, выгравированного в объеме драгоценного камня, в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

фиг.6 представляет собой вид сбоку алмазного бриллианта, у которого ниже поверхности таблички вписаны две отличные метки;

фиг.7 представляет собой вид сверху алмазного бриллианта, имеющего круглую бриллиантовую огранку и у которого ниже поверхности таблички и вблизи центра таблички вписаны три отличные метки;

на фиг.8 представлена схема, на которой показано фокусиро