Способ перехода между катализаторами на основе системы циглера-натта и на основе хрома
Иллюстрации
Показать всеНастоящее изобретение относится к способам перехода между системами катализаторов полимеризации олефинов. Описан способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору (варианты), включающий добавление в упомянутый реактор дезактиватора (DA); добавление в упомянутый реактор адсорбента сокатализатора (САА), включающего неорганический оксид, представляющий собой оксид алюминия или смесь его с диоксидом кремния; где неорганический оксид подвергают дегидратации при температуре, равной, по меньшей мере, 200°С; и где упомянутый САА по существу не содержит переходных металлов. Также описан способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий введение добавки, способствующей переходу (ТАА), где упомянутую ТАА выбирают из одного представителя из группы, состоящей из алкоксилированных аминов, алкоксилированных амидов, олеиновой кислоты или их комбинаций, где упомянутый первый катализатор включает, по меньшей мере, один катализатор Циглера-Натта, включающий упомянутый катализатор, сокатализатор и, необязательно, носитель, а упомянутый второй катализатор включает, по меньшей мере, один катализатор на основе хрома. Описан способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий сначала добавление металлорганического соединения, описывающегося одной из формул: BR3 или
AlR(3-a)Xa, где R представляет собой водород, разветвленный или неразветвленный алкильный, циклоалкильный, гетероциклоалкильный, арильный радикал, содержащий от 1 до 30 атомов углерода, X представляет собой галоген, и а равен 0, 1 или 2, к адсорбенту сокатализатора (САА); после этого добавление упомянутого САА вместе с упомянутым металлорганическим соединением в упомянутый реактор; где упомянутый САА включает неорганический оксид, дегидратированный при температуре, равной, по меньшей мере, 200°С, по существу не содержащий переходных металлов. Технический результат - осуществление способа перехода между несовместимыми катализаторами без необходимости остановки реакции полимеризации, опорожнения реактора, а после этого повторного запуска реактора с использованием другой системы катализатора, обеспечение уменьшения количества некондиционного материала, получаемого во время перехода, уменьшение времени проведения операции. 4 н. и 26 з.п.ф-лы, 14 ил., 1 табл.
Реферат
Варианты реализации изобретения относятся к способам перехода между системами катализаторов полимеризации, включающим способы перехода между реакциями полимеризации олефинов с участием систем катализаторов Циглера-Натта и систем катализаторов на основе хрома.
Уровень техники
Во время получения олефиновых полимеров в коммерческом реакторе зачастую необходимо произвести переход от одного типа системы катализатора получения полимеров, демонстрирующих определенные характеристики и свойства, к другой системе катализатора, способной обеспечить получение полимера, обладающего другими химическими и/или физическими признаками. Переходы между подобными системами катализаторов Циглера-Натта или другими совместимыми системами относительно просты. Однако тогда, когда системы катализаторов являются несовместимыми, процесс перехода обычно бывает усложнен. Например, при переходе между традиционными системами катализаторов Циглера-Натта и системами на основе хрома будут образовываться агломераты высокомолекулярной смолы. Данная агломерация может приводить к образованию геля в пленках, изготовленных из получающейся в результате смолы, что делает конечный продукт неприемлемым. Следовательно, при использовании катализаторов на основе хрома желательно избежать присутствия активных систем катализаторов Циглера-Натта. Такие системы катализаторов Циглера-Натта могут содержать соединение переходного металла и сокатализатор, которым зачастую является соединение триалкилалюминия.
В прошлом эффективный переход между системами катализаторов Циглера-Натта, которые содержат сокатализаторы, такие как соединения триалкилалюминия, и системами катализаторов на основе хрома осуществляли в результате сначала остановки первого процесса катализируемой полимеризации при использовании различных методик, известных на современном уровне техники. После этого реактор опорожняли, загружали повторно и в реактор вводили вторую систему катализатора. Однако такие переходы между катализаторами требуют много времени и больших затрат вследствие необходимости остановки реактора в течение продолжительного периода времени.
Поэтому было бы очень выгодно воспользоваться способом перехода между несовместимыми катализаторами без необходимости прибегать к остановке реакции полимеризации, опорожнению реактора, а после этого повторному запуску реактора с использованием другой системы катализатора. Также было бы желательно воспользоваться способом перехода, который обеспечивал бы уменьшение количества некондиционного материала, получаемого во время перехода, уменьшение времени проведения операции, увеличение надежности и стабильности способа перехода и устранение необходимости вскрытия реактора для загрузки слоя затравки.
Краткое изложение
Одним из вариантов заявленного изобретения является способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий добавление в реактор дезактиватора (DA), выбираемого из одного представителя из группы, состоящей из монооксида углерода, диоксида углерода или их комбинаций; добавление в реактор адсорбента сокатализатора (САА), включающего неорганический оксид, выбираемый из одного представителя из группы, состоящей из диоксида кремния, оксида алюминия или их комбинаций; где первый катализатор включает, по меньшей мере, один обычно используемый катализатор Циглера-Натта, и сокатализатор, где второй катализатор включает, по меньшей мере, один катализатор на основе хрома, где реактор представляет собой газофазный реактор с псевдоожиженным слоем, и где САА по существу не содержит переходных металлов.
Еще одним вариантом изобретения является способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий добавление в реактор дезактиватора (DA); добавление в реактор адсорбента сокатализатора (CAA), включающего неорганический оксид, выбираемый из одного представителя из группы, состоящей из диоксида кремния, оксида алюминия или их комбинаций; и где САА по существу не содержит переходных металлов.
В еще одном варианте реализации изобретения предусматривается способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий добавление добавки, способствующей переходу (ТАА), где ТАА выбирают из одного представителя из группы, состоящей из алкоксилированных аминов, алкоксилированных амидов или их комбинаций, где первый катализатор включает, по меньшей мере, один катализатор Циглера-Натта, включающий катализатор, сокатализатор и, необязательно, носитель, а второй катализатор включает, по меньшей мере, один катализатор на основе хрома.
В еще одном другом варианте реализации изобретения предусматривается способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий добавление адсорбента сокатализатора (САА); добавление дезактиватора (DA); где САА включает неорганический оксид, по существу не содержащий переходных металлов.
В еще одном другом варианте реализации изобретения предусматривается способ перехода в реакторе полимеризации олефина от первого катализатора ко второму катализатору, включающий, во-первых, добавление металлорганического соединения, описывающегося одной из формул: BR3 или AlR(3-a)Xa, где R представляет собой водород, разветвленный или неразветвленный алкильный, циклоалкильный, гетероциклоалкильный, арильный радикал, содержащий от 1 до 30 атомов углерода, Х представляет собой галоген, и а равен 0, 1 или 2, к адсорбенту сокатализатора (САА); после этого добавление САА вместе с упомянутым металлорганическим соединением в упомянутый реактор; где САА включает неорганический оксид, по существу не содержащий переходных металлов.
Описание чертежей
Для более полного понимания настоящего изобретения далее ссылка делается на последующее описание, взятое совместно с прилагаемыми чертежами. Примером системы катализатора Циглера-Натта могут являться система магний/титанового катализатора, описанная в документах US 4302565 и US 4460755, и методика предварительной активации при использовании смеси металлорганических соединений, описанная в документе US 6187666. Таким образом, полученные катализаторы обычно представляют собой сухие легкосыпучие порошки. Еще одна система катализатора Циглера-Натта представляет собой систему, в которой предшественника получают в результате проведения распылительной сушки и используют в форме суспензии. Такой катализатор, например, содержит титан, магний и донор электронов и, необязательно, галогенид алюминия. После этого катализатор вводят в углеводородную среду, такую как минеральное масло, и получают форму суспензии. Такой подвергнутый распылительной сушке суспензионный катализатор описывается в документах US 4293673 и US 5290745.
Фиг.1 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подвергнутого распылительной сушке суспензионного катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между сокатализатором триэтилалюминием (TEAL) и титаном 40:1. Эталонный случай соответствует 30 минутам полимеризации. Во втором случае по истечении 18 минут для прекращения полимеризации подачу этилена прерывали, а этилен из реакционной емкости удаляли в результате продувки и по истечении четырех минут подачу и концентрацию этилена восстанавливали снова. После того как подачу этилена восстанавливали, полимеризация продолжалась приблизительно при той же самой скорости, что и до продувки емкости.
Фиг.2 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подвергнутого распылительной сушке суспензионного катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между сокатализатором триэтилалюминием (TEAL) и титаном 40:1 для трех случаев, которые демонстрируют влияние добавления диоксида кремния Grace Davison 955, дегидратированного либо при 200°С, либо при 600°С. Диоксид кремния, дегидратированный при 200°С, добавляли в избытке, превышающем то, что требуется по стехиометрии для проведения реакции со всем количеством TEAL, а диоксид кремния, дегидратированный при 600°С, добавляли к TEAL в стехиометрическом количестве при соотношении 0,6 ммоль TEAL/г диоксида кремния. В первом случае добавление в полимеризационный реактор диоксида кремния 955 (дегидратированного при 200°С) после ввода катализатора и сокатализатора TEAL, но до ввода этилена к полимеризации в результате не приводило. Во втором и третьем случаях непрерывную реакцию полимеризации прерывали по истечении 14 минут благодаря прекращению подачи этилена и удалению этилена в результате продувки полимеризационной емкости. Вводили либо диоксид кремния, дегидратированный при 200°С, либо диоксид кремния, дегидратированный при 600°С. После этого по истечении пяти минут следовал повторный ввод этилена. В обоих последних случаях реакция полимеризации восстанавливалась до своего первоначального уровня, демонстрируя то, что подвергнутый распылительной сушке суспензионный катализатор Циглера-Натта после полной активации не утрачивает производительности при удалении свободного сокатализатора в результате прохождения реакции с диоксидом кремния, дегидратированным при 200°С или 600°С. Далее в настоящем документе диоксид кремния, дегидратированный при 200°С или 600°С, обозначают как 200°С-диоксид кремния и 600°С-диоксид кремния, соответственно, указывая на температуры их дегидратации.
Фиг.3 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подаваемых сухими частиц катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между сокатализатором TEAL и титаном 40:1 для первого эталонного случая в виде 30 минут полимеризации и второго эталонного случая, в котором по истечении 16 минут для прекращения полимеризации подачу этилена прерывали, а этилен из реакционной емкости удаляли в результате продувки, и в котором по истечении еще пяти минут подачу и концентрацию этилена восстанавливали снова. После того как подачу этилена восстанавливали, полимеризация продолжалась приблизительно при той же самой скорости, что и до продувки емкости.
Фиг.4 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подаваемых сухими частиц катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между TEAL и титаном 40:1 для двух случаев, которые демонстрируют влияние добавления диоксида кремния Grace Davison 955, дегидратированного либо при 200°С, либо при 600°С. 200°С-диоксид кремния добавляли в избытке, превышающем то, что требуется по стехиометрии для проведения реакции со всем количеством TEAL, а 600°С-диоксид кремния добавляли к TEAL в стехиометрическом количестве при соотношении 0,6 ммоль TEAL/г диоксида кремния. В обоих случаях непрерывную реакцию полимеризации прерывали благодаря прекращению подачи этилена и удалению этилена из полимеризационной емкости в результате продувки по истечении от 14 до 15 минут. В одном случае вводили диоксид кремния, дегидратированный при 200°С, а в другом случае вводили диоксид кремния, дегидратированный при 600°С. В обоих случаях после этого по истечении пяти минут следовал повторный ввод этилена. В обоих случаях реакция полимеризации восстанавливалась до своего первоначального уровня, демонстрируя то, что подаваемые сухими частицы катализатора Циглера-Натта после полной активации не утрачивают производительности при удалении свободного сокатализатора в результате прохождения реакции с диоксидом кремния, дегидратированным при 200°С или 600°С.
Фиг.5 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подаваемых сухими частиц катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между сокатализатором TEAL и титаном 40:1 для четырех случаев, которые демонстрируют влияние добавления различных концентраций Atmer™ AS-990, стеарилэтоксилированного аминного соединения, доступного от компании Ciba Specialty Chemicals. Включается эталонный случай, не использующий AS-990. Во всех случаях непрерывную реакцию полимеризации прерывали, прекращая подачу этилена и удаляя этилен из полимеризационной емкости в результате продувки перед повторным вводом этилена по истечении пяти минут. Полимеризация полностью восстанавливалась в эталонном случае без добавления AS-990, а также в случае, в котором AS-990 вводили при концентрации, соответствующей молярному соотношению AS-990/TEAL 0,12. Использование AS-990 при концентрациях, соответствующих молярным соотношениям AS-990/TEAL 0,5 и 1,0, предотвращало продолжение полимеризации при вводе этилена. AS-990 может дезактивировать систему катализатора Циглера-Натта при уровнях, соответствующих молярному соотношению AS-990/TEAL 0,5 и более, в результате вступления в реакцию с сокатализатором, а после этого также и с самим катализатором, вызывая необратимую дезактивацию системы.
Фиг.6 демонстрирует адсорбцию триэтилалюминия, который существует в виде димера в беспримесном виде или в алифатическом растворе, на дегидратированном диоксиде кремния, где после прохождения реакции с силанольными группами на поверхности диоксида кремния димер, как представляется, разрушается и существует в виде мономерных частиц. Тетрагидрофуран (ТГФ) представляет собой циклический простой эфир, который является компонентом систем сухих и подвергнутых распылительной сушке суспензионных катализаторов Циглера-Натта, описанных в документах US 4460755, US 5290745 и US 4293673. ТГФ ингибирует полимеризацию с участием катализатора на основе хрома вслед за переходом от катализатора Циглера-Натта к катализатору на основе хрома. Фиг.6 демонстрирует то, что ТГФ образует комплексы с димером TEAL, разрушая его, и то, что после этого комплекс может адсорбироваться на диоксиде кремния. Таблица, включенная на фиг.6, демонстрирует то, что на диоксиде кремния, дегидратированном при 600°С, может быть адсорбировано вплоть до 15-16% (мас.) TEAL, а на диоксиде кремния, дегидратированном при 200°С, может быть адсорбировано 17% (мас.) (вне зависимости от того, будут ли TEAL добавлять с большим или с малым расходом). Это было удивительно при учете значительного различия в уровне содержания силанолов в зависимости от температуры дегидратации диоксида кремния, известного на современном уровне техники. Предположительно можно принять, что определенное количество TEAL, адсорбированного на 600°С-диоксиде кремния, не связывалось с силанолом, а вместо этого присоединялось в виде вторичного или третичного слоя к химически зафиксированному TEAL, возможно опять принимая форму димера. Рассматриваемый случай представлял собой Davison 955-600°C TEAL на диоксиде кремния (TOS), который представлял собой диоксид кремния 955, дегидратированный при 600°С и подвергнутый предварительной реакции с TEAL при номинальной степени ввода 5,8% (мас.). Это приблизительно составляло количество TEAL, необходимое для стехиометрического связывания с концентрацией силанолов у диоксида кремния, дегидратированного при 600°С. Тем не менее, 5,8% (мас.)-TOS адсорбировал дополнительные 0,81 ммоль TEAL на один грамм диоксида кремния при нахождении в суспензии в гексане. В случае замены гексана на ТГФ при получении суспензии количество алюминия, адсорбированного на 600°С-диоксиде кремния, уменьшалось от диапазона 1,30-1,39 ммоль Al/г до величины 0,75 ммоль Al/г, что соответствует степени ввода 8,6% (мас.) TEAL на диоксид кремния, демонстрируя то, что на 5,8% (мас.)-TOS в присутствии избытка ТГФ может быть адсорбировано дополнительное количество TEAL.
Фиг.7 демонстрирует эффективность Atmer™-163 - С13-С15 этоксилированного амина, доступного от компании Ciba Specialty Chemical, при обрыве цепи непрерывной лабораторной реакции суспензионной полимеризации этилена с участием подвергнутого распылительной сушке суспензионного катализатора Циглера-Натта, где полимеризации давали возможность протекать в течение 20 минут и вводили различные количества Atmer-163 при расчете на количество молей в соотношении с количеством TEAL в реакторе. Реакция полимеризации прекращалась при молярном соотношении между Atmer-163 и TEAL 0,5.
Фиг.8 представляет собой график расходования этилена для лабораторной установки периодической полимеризации в суспензии в гексане при использовании подаваемых сухими частиц катализатора Циглера-Натта при температуре реакции 85°С, парциальном давлении этилена 100 фунт/дюйм2 и молярном соотношении между TEAL и титаном 40:1 для четырех случаев. Они демонстрируют эффективность добавления различных концентраций олеиновой кислоты для обрыва цепи прерванной реакции полимеризации. Включается эталонный случай, не использующий олеиновой кислоты. Непрерывную реакцию полимеризации прерывали, прекращая подачу этилена и удаляя этилен из полимеризационной емкости в результате продувки. После этого по истечении 5 минут повторно вводили этилен. Полимеризация полностью восстанавливалась для эталонного случая, в котором не добавляли олеиновую кислоту. Полимеризация по существу восстанавливалась для случая, в котором олеиновую кислоту добавляли при молярном соотношении 0,25:1 по отношению к количеству присутствующего TEAL. Концентрация, соответствующая молярному соотношению между олеиновой кислотой и TEAL 0,5, в результате приводила к 50%-ной потере активности катализатора в полимеризации в первые несколько минут, которая с течением времени уменьшалась дополнительно. Использование молярного соотношения между олеиновой кислотой и TEAL 0,75 в результате приводило к полной потере реакционной способности катализатора в полимеризации.
Фиг.9 демонстрирует то, что обработка диоксида кремния может оказывать воздействие на статическое напряжение в реакторе и на отклик поверхностной термопары для стенки реактора во время перехода от катализатора Циглера-Натта к катализатору на основе хрома в системе реакции газофазной полимеризации в псевдоожиженном слое. Рассматривалось влияние диоксида кремния Davison Grace 955, дегидратированного при 200°С, 600°С и 600°С с обработкой триэтилалюминием при концентрации 5,8% (мас.). Результаты дополнительно обсуждаются в разделе примеров. Триэтиллюминий (TEAL) на 600°С-диоксиде кремния устранял основную часть активности в отношении статического напряжения, измеряемой в слое. Величина отклонений показаний поверхностной термопары от температуры в объеме псевдоожиженного слоя при использовании TEAL на 600°С-диоксиде кремния также уменьшалась. Фиг.9 дополнительно демонстрирует то, что добавление AS-990 может привести к уменьшению результирующей величины статического напряжения в псевдоожиженном слое до нейтрального значения, а также может обеспечить уменьшение величины вариации статического напряжения как положительной, так и отрицательной. AS-990 также приводил к возвращению холодных зон для поверхностных термопар, где данный термин обозначает понижение показания в сопоставлении со средней температурой слоя, к обычным значениям или к значениям, близким к обычным, которые существовали до симулированного перехода и, в частности, к уровням, намного меньшим в сопоставлении с теми, к которым приводит добавление диоксидов кремния.
Фиг.10-13 демонстрируют комментируемые отклики зонда статического напряжения в реакторе и поверхностной термопары для стенки реактора в случае неоптимизированных полупромышленных переходов от катализаторов Циглера-Натта к катализаторам на основе хрома при использовании способов и методик, обсуждающихся кратко здесь и более подробно в разделе примеров. Добавление монооксида углерода к катализатору Циглера-Натта в начале перехода, продемонстрированное на фиг.10, представляло собой в особенности подходящий для использования способ улучшения ситуации с неблагоприятными статикой и откликами поверхностной термопары во время последующего добавления диоксида кремния. Фиг.11 демонстрирует использование AS-990 при устранении статики и холодных зон для поверхностных термопар. Фиг.12 демонстрирует использование TEAL на диоксиде кремния в качестве адсорбента сокатализатора. Фиг.13 демонстрирует переход при использовании в качестве адсорбента сокатализатора AS-990, а не диоксида кремния.
Фиг.А демонстрирует влияние олеиновой кислоты и триэтилалюминия на катализатор на основе сложного эфира хромовой кислоты при переменных уровнях олеиновой кислоты.
Варианты реализации настоящего изобретения относятся к способам перехода между катализаторами и/или системами катализаторов для переключения реактора с получения одного типа продукта на получение другого при минимальном времени простоя, в том числе перехода между катализаторами Циглера-Натта и катализаторами на основе хрома. Катализаторы и системы катализаторов в настоящем документе будут использоваться взаимозаменяющим образом. В общем случае системы катализаторов будут включать сам катализатор, необязательный сокатализатор и/или необязательный носитель.
Способы настоящего изобретения представляют собой один из способов полимеризации в фазах газа, раствора, суспензии или полимеризации в массе, в том числе способ газофазной полимеризации в реакторе с псевдоожиженным слоем.
В обычном способе непрерывной газофазной полимеризации в псевдоожиженном слое, предназначенном для получения полимера из мономеров, газовый поток, содержащий мономер, перепускают через реактор с псевдоожиженным слоем в присутствии катализатора в условиях проведения реакции. Из реактора с псевдоожиженным слоем полимерный продукт отбирают. Кроме того, из реактора отбирают рецикловый газовый поток, для которого организуют непрерывную циркуляцию и обычно охлаждение. Рецикловый газовый поток возвращают в реактор совместно с дополнительным мономером в количестве, достаточном для замещения мономера, израсходованного в способе полимеризации. Для ознакомления с подробным описанием способов газофазной полимеризации в псевдоожиженном слое, см. патенты США №№ 4543399; 4588790; 5028670; 5352769 и 5405922.
Задание катализатора, приводящего к получению заданного продукта, характеризующегося определенными плотностью и индексом расплава, в общем случае зависит от того, насколько хорошо катализатор обеспечивает включение сомономера, в реакторе, где должен присутствовать определенный состав газа.
В общем случае газ содержит, по меньшей мере, один альфа-олефин, содержащий от 2 до 20 атомов углерода или 2-15 атомов углерода, например, этилен, пропилен, бутен-1, пентен-1, 4-метилпентен-1, гексен-1, октен-1, децен-1 и циклические олефины, такие как стирол. Другие мономеры могут включать полярные винильные, диеновые, норборненовые, ацетиленовые и альдегидные мономеры. Другие варианты реализации настоящего изобретения включают состав газа, который содержит этилен и, по меньшей мере, один альфа-олефин, содержащий от 3 до 15 атомов углерода, в том числе бутен-1, гексен-1 или октен-1.
Обычно в состав газа также входит определенное количество водорода, обеспечивающее контроль индекса расплава получаемого полимера. В обычных обстоятельствах газ также содержит определенное количество компонента или компонентов, увеличивающих точку росы (известных под наименованием средства индуцированной конденсации (ICA)), при этом балансовое количество в составе газа составляют неконденсируемые инертные соединения, например, азот.
В зависимости от второго катализатора, вводимого в реактор во время перехода, концентрации в газе для различных компонентов состава газа во время перехода могут быть изменены, например концентрации в газе для сомономера и водорода могут быть увеличены или уменьшены.
Переход между катализаторами в результате может привести к получению определенных количеств некондиционных полимеров. Например, остаточные следы катализаторов Циглера-Натта в системе на основе хрома в результате могут привести к получению высокомолекулярного полимерного геля, который неблагоприятным образом оказывает воздействие на внешний вид пленок, изготовленных из полимера. В дополнение к этому переход в результате также может привести к высоким уровням получения небольших полимерных частиц, меньших 10 микрон, которые называются «мелочью». Мелочь может стать причиной возникновения проблем в отношении использования реактора, приводящих к обрастанию частей полимеризационной установки или возникновению случаев напластования, при которых масса полимера агрегируется, перегревается, плавится и сплавляется вдоль стенки реактора, формируя тело, имеющее относительно плоский внешний вид.
Способы вариантов реализации изобретения в общем случае могут быть использованы для перехода от системы катализатора Циглера-Натта к системе катализатора на основе хрома. В соответствии с такими вариантами реализации в случае непрерывной операции с участием катализатора Циглера-Натта первую реакцию полимеризации останавливают в результате прекращения ввода в реактор катализатора Циглера-Натта, за которым следуют ввод и диспергирование, по меньшей мере, одного адсорбента сокатализатора. Адсорбенты сокатализатора могут включать неорганические оксиды, подобные тем, которые используют в качестве носителей катализаторов, но которые можно отличать от таких присутствующих в реакторах носителей катализаторов за счет того, что переходные металлы, используемые при получении катализатора, в таких адсорбентах сокатализатора будут отсутствовать. Под «по существу отсутствием» заявители понимают величину, меньшую 5%, или меньшую 3%, или меньшую 1%, или меньшую 0,5%, или меньшую 0,01%, или равную нулю, или отсутствие намеренно добавленного количества, при расчете на совокупную массу адсорбента сокатализатора на основе неорганического оксида. Включается дегидратированный диоксид кремния, который можно добавлять в реактор с псевдоожиженным слоем в количестве в диапазоне от 100 до 10000 ч/млн (мас.) при расчете на количество смолы или от 500 до 4000 ч/млн (мас.) при расчете на количество смолы. Другие неограничивающие примеры неорганических оксидов включают оксид алюминия и смешанные соединения оксида алюминия и диоксида кремния.
В одном варианте реализации изобретения реакцию полимеризации проводят в результате по существу непрерывного перепускания газообразных мономеров через зону полимеризации газофазного реактора с псевдоожиженным слоем, который содержит псевдоожиженный слой частиц полимера.
В еще одном варианте реализации изобретения в реактор также вводят добавку, способствующую переходу, для содействия уменьшению или исключению накопления статического электричества, температурных градиентов, флуктуаций высоты слоя и/или других нестабильностей, которые могут встретиться при переходе от одной системы катализатора к другой.
В число добавок, способствующих переходу (ТАА), подходящих для использования в практике вариантов реализации изобретения, входят алкоксилированные амины и алкоксилированные амиды, в число которых попадает этоксилированный стеариламин, коммерчески доступный от компании Ciba Specialty Chemicals под наименованием Atmer® AS-990 либо в беспримесном виде, либо в виде легкосыпучего порошка, содержащего диоксид кремния. В практике вариантов реализации изобретения добавку, способствующую переходу, можно добавлять в реактор либо непосредственно в псевдоожиженный слой, либо в свободное пространство над псевдоожиженным слоем, либо в линию рециркуляции рециклового газа до или после компрессора или холодильника для рециклового газа. Последовательность, в которой добавляют добавку, способствующую переходу, является той, которая будет эффективной для улучшения эксплуатационных характеристик реактора во время и после перехода. В одном варианте реализации изобретения добавку, способствующую переходу, добавляют до прекращения подачи катализатора Циглера-Натта либо до, либо после уменьшения или прекращения подачи сокатализатора. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют после прекращения подачи катализатора и, если подачу сокатализатора еще не прекратили, - до ее прекращения. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют после прекращения подачи катализатора и после прекращения подачи сокатализатора, но перед добавлением адсорбента сокатализатора. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют до или после добавления дезактиватора. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют одновременно с началом или во время добавления адсорбента сокатализатора. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют после добавления адсорбента сокатализатора. В еще одном варианте реализации изобретения добавку, способствующую переходу, добавляют после начала подачи в реактор катализатора на основе хрома. В объем изобретения входит добавление нескольких аликвот добавки, способствующей переходу, в различные моменты времени в последовательности событий перехода, такие как, в порядке иллюстрирования: после добавления дезактиватора, но до добавления адсорбента сокатализатора для первой аликвоты; и затем для второй аликвоты после добавления адсорбента сокатализатора; и даже для третьей аликвоты после третьей аликвоты во время ранней стадии проведения операции с участием катализатора на основе хрома. Такие дополнительные аликвоты можно добавлять либо в рамках предварительно заданного временного графика, либо в ответ на атипичные отклонения для результатов измерений при помощи зонда статического напряжения в реакторе или поверхностных термопар для стенки реактора. Одну или несколько аликвот можно добавлять по существу сразу или добавлять в течение выбранного периода времени при контролируемом расходе при подаче. Добавки, способствующие переходу, можно добавлять в виде твердой фазы, жидкости, раствора или суспензии, таких как, например, в минеральном масле, и они могут включать, а могут и не включать добавку, повышающую сыпучесть диоксида кремния непосредственно после поставки, которая содержится в легкосыпучем Atmer AS-990. В случае варианта реализации, в котором добавкой, способствующей переходу, является этоксилированный стеариламин, типичное количество, добавляемое для способствования переходу, находится в диапазоне от 5 до 2000 ч/млн (мас.) при расчете на количество смолы или от 10 до 500 ч/млн (мас.). В объем вариантов реализации данного изобретения входит и использование смесей добавок, способствующих переходу, неограничивающие примеры которых включают смеси алкоксилированных аминов и алкоксилированных амидов и смеси алкоксилированных аминов, характеризующихся различной длиной жирной кислоты, такие как смесь Atmer AS-990 и Atmer-163, характеризующихся длинами цепей жирных кислот С-18 и С-13/С-15, соответственно. В еще одном другом варианте реализации изобретения некоторое или все количество добавки, способствующей переходу, может быть подвергнуто предварительному адсорбированию, осаждению или импрегнированию на адсорбент сокатализатора до ее добавления в реактор, или ее можно предварительно смешивать с адсорбентом сокатализатора и подавать в реактор совместно с ним. Это упрощает методику перехода в результате уменьшения количества стадий и имеет дополнительное преимущество, заключающееся в значительном уменьшении статической электризации адсорбента катализатора во время проведения перехода и манипуляций, а также в значительном уменьшении статического напряжения при заряжении слоя и величины уменьшения показаний поверхностных термопар для стенки реактора в системе полимеризации во время добавления и циркуляции адсорбента сокатализатора. Количество, например, стеарилэтоксилированного амина, смешанного с адсорбентами сокатализатора или адсорбированного на них, может находиться в диапазоне от 0,05 до 20% (мас.) или от 0,1 до 5% (мас.) при расчете на совокупную массу адсорбента сокатализатора и ТАА. Стеарилэтоксилированный амин AS-990 в системе Циглера-Натта вступает в реакцию с сокатализатором, неограничивающие примеры которого включают триэтилалюминий (TEAL), триметилалюминий (ТМА), диэтилалюминийхлорид (DEAC) и триизобутилалюминий (TiBA). Получающиеся в результате прохождения реакции аддукты могут включать нижеследующее: продукт со стехиометрией 1:1 при потере третичным алюминийалкилом двух алкильных групп и соединении его с каждым из этоксилированных аминов AS-990. В альтернативном варианте в присутствии избытка AS-990 две молекулы AS-990 могут объединяться с каждым алюминийалкилом с возможным достижением стехиометрии 2:1. В присутствии избыточного алюминийалкила реакция может благоприятствовать достижению стехиометрии 1:2 с двумя алюминийалкилами на каждый AS-990. Фактически полученные аддукты могут зависеть от условий перемешивания и локальных градиентов концентраций, но для того, чтобы сделать алюминийалкил не эффективным для продолжения полимеризации, по-видимому, по меньшей мере, требуется, как минимум, молярное соотношение между амином или амидом и алюминийалкилом 1:2.
В одном варианте реализации изобретения, использующем добавку, способствующую переходу, добавка, способствующая переходу, занимает место и исполняет роль адсорбента сокатализатора, демонстрируя способности двойного назначения. В таком случае количество добавки, способствующей переходу, увеличивают до эффективного количества, достаточного для вступления в реакцию с сокатализатором, проводя ее добавление в реактор до концентрации, которая обеспечивает достижение соответствия с молярным соотношением с активным металлом в сокатализаторе в диапазоне от 0,1:1 до 10:1 или с молярным соотношением в диапазоне от 0,5:1 до 3:1. Данный вариант реализации демонстрирует преимущество, заключающееся в предотвращении электризации слоя статическим напряжением и уменьшения показаний поверхностной термопары для стенки реактора, связанных с использованием адсорбента сокатализатора на основе диоксида кремния. Кроме того, количество добавки, способствующей переходу и являющейся адсорбентом сокатализатора в рамках способностей двойного назначения, которая остается после вступления в реакцию с сокатализатором Циглера-Натта, или ее аддукта, являющегося продуктом реакции, соответствует настолько малой концентрации, что оно не препятствует последующему действию катализатора полимеризации на основе хрома, при том условии, что потеря первоначальной реакционной способности катализатора на основе хрома в полимеризации составляет величину, меньшую 90%, или меньшую 50%, или меньшую 20%, или меньшую 10%, или равную нулю.
В еще одном варианте реализации изобретения добавку, способствующую переходу, используют в отсутствие дезактиватора, поскольку она сама по себе, по меньшей мере, отчасти, может дезактивировать катализатор Циглера-Натта. В еще одном варианте реализации изобретения добавку, способствующую переходу, используют в отсутствие дезактиватора и в отсутствие адсорбента сокатализатора.
Еще одной добавкой, способствующей переходу, является олеиновая кислота, также известная под наименованием цис-9-октадеценовая кислота, которую можно использовать для акцептирования и извлечения сокатализатора из полимеризации Циглера-Натта в дополнение к дегидратированному диоксиду кремния или добавкам аминного или амидного типов или саму по себе. В настоящем документе суммарно представлены возможные продукты реакции с алюминийалкилами, и признается, что могут быть получены соединения, такие как нижеследующие, но без ограничения только ими: олеат алюминия, а также диолеат алюминия, что мо