Батарея топливных элементов и подвижное устройство
Иллюстрации
Показать всеИзобретение относится к батарее топливных элементов и подвижному устройству с этой батареей. Техническим результатом изобретения является создание батареи с улучшенными характеристиками. Согласно изобретению батарея топливных элементов включает топливные элементы, систему подачи топлива для подачи топливного газа в топливный элемент, форсунку для регулирования состояния газа выше по потоку в системе подачи топлива и подачи газа ниже по потоку и средство управления для приведения в действие и управление форсункой в течение заданного цикла движения. Средство управления устанавливает режим работы форсунки в зависимости от режима работы топливного элемента. 2 н. и 14 з.п. ф-лы, 5 ил.
Реферат
Предпосылки создания изобретения.
Настоящее изобретение относится к батарее топливных элементов и подвижному устройству.
Из уровня техники известны и в настоящее время находят практическое применение батареи топливных элементов для выработки электроэнергии, имеющие топливный элемент для поступления участвующих в реакции (топливных и окисляющих) газов. Такие батареи топливных элементов имеют подающий топливный канал для топливного газа, поступающего в топливный элемент из источника подачи топлива, такого как бак с водородом.
Кроме того, в подающем топливном канале обычно предусмотрен клапан регулирования давления (регулятор) для снижения давления подачи до постоянного значения, когда давление подачи топливного газа из источника подачи топлива является чрезвычайно высоким. Недавно была предложена методика (см., например, опубликованную патентную заявку Японии 2004-139984) изменения давления подачи топливного газа в зависимости от режима работы системы с помощью механического регулируемого клапана регулирования давления (регулируемого регулятора) для изменения давления подачи топливного газа в подающем топливном канале, например, между двумя уровнями.
Краткое изложение сущности изобретения.
Тем не менее, с помощью механического регулируемого клапана регулирования, такого как описан в упомянутой выше заявке, не только сложно быстро изменять давление подачи топливного газа (иными словами, его чувствительность является низкой), но также невозможно осуществлять высокоточное регулирование, такое как изменение искомого давления на множестве уровней.
Кроме того, обычные механические регулируемые клапаны регулирования давления отличаются относительно сложной конструкцией, из-за чего они имеют большие размеры и вес и являются дорогостоящими в изготовлении. Поскольку обычные механические регулируемые клапаны регулирования давления служат лишь для изменения давления подачи топливного газа, для перекрытия подачи топливного газа дополнительно требуется отдельный отсечный клапан. В результате увеличиваются размеры системы (пространство для оборудования) и затраты на оборудование.
С учетом упомянутых обстоятельств задачей настоящего изобретения является создание батареи топливных элементов с высокой чувствительностью, способной соответствующим образом изменять режим подачи топливного газа (давление подачи и т.п.) в зависимости от режима работы топливного элемента.
Для решения упомянутой задачи в настоящем изобретении предложена батарея топливных элементов, включающая топливный элемент, систему подачи топлива в топливный элемент для подачи топливного газа в топливный элемент, форсунку для регулирования состояния газа выше по потоку в системе подачи топлива и подачи газа ниже по потоку и средство управления для приведения в действие и управления форсункой в течение заданного ездового цикла, при этом средство управления устанавливает режим работы форсунки в зависимости от режима работы топливного элемента.
В такой конструкции режим работы форсунки (степень открытия корпуса клапана форсунки (площадь проходного отверстия для газа), время открытия клапана (время впрыска газа) и т.п.)) может быть установлен в зависимости от режима работы топливного элемента (количества вырабатываемой топливным элементом электроэнергии (мощности, тока и напряжения), температуры топливного элемента, ненормального состояния батареи топливных элементов, ненормального состояния блока питания топливного элемента и т.п.)). Соответственно, в зависимости от режима работы топливного элемента можно соответствующим образом изменять давление подачи топливного газа, что улучшает чувствительность. Термин "состояние газа" означает состояние газа, выраженное в расходе потока, давлении, температуре, молярной концентрации и т.п., и, в частности, включает, по меньшей мере, расход потока газа или давление газа.
Система подачи топлива упомянутой батареи топливных элементов имеет подающий топливный канал для потока топливного газа, подаваемого в топливный элемент из источника подачи топлива, при этом в этом подающем топливном канале может находиться форсунка.
Кроме того, между источником подачи топлива и форсункой упомянутой батареи топливных элементов может находиться регулятор.
В такой конструкции даже при высоком давлении подачи топливного газа из источника подачи топлива давление подачи может быть снижено с помощью регулятора, в результате чего снижается давление выше по потоку форсунки. За счет этого можно устранить затруднение при перемещении корпуса клапана форсунки вследствие увеличения разности давлений выше и ниже по потоку форсунки. В результате можно ограничить снижение чувствительности форсунки.
Система подачи топлива упомянутой батареи топливных элементов может иметь подающий топливный канал для подачи топливного газа, подаваемого в топливный элемент из источника подачи топлива, и канал для циркуляционного потока для возврата отходящего топливного газа, выбрасываемого из топливного элемента, в подающий топливный канал. В этом случае форсунка предпочтительно расположена выше по потоку точки соединения подающего топливного канала и канала для циркуляционного потока.
В такой конструкции может быть ограничено воздействие суммарного давления топливного газа, протекающего через подающий топливный канал, и отходящего топливного газа, протекающего по каналу для циркуляционного потока. Кроме того, даже в случае препятствия потоку газа по каналу для циркуляционного потока из-за замерзания остаточной влаги в канале для циркуляционного потока и т.п. можно регулировать давление подачи топливного газа безотносительно замерзания.
Кроме того, средство управления упомянутой батареи топливных элементов на основании состояния газа выше по потоку форсунки предпочтительно рассчитывает статический расход потока в этом месте и устанавливает режим работы форсунки в зависимости от статического расхода потока.
За счет этого можно ограничивать разброс впрыска из-за изменения состояния газа выше по потоку форсунки при подаче топливного газа.
Кроме того, на основании состояния газа выше по потоку форсунки средство управления упомянутой батареи топливных элементов способно устанавливать время отсутствия впрыска форсунки.
Помимо этого, упомянутая батарея топливных элементов может иметь датчик давления, расположенный в положении регулирования давления, в котором в системе подачи топлива необходимо регулирование давления. Кроме того, средство управления способно осуществлять расчет расхода потока с поправкой на уменьшение перепада давлений с целью уменьшения расхождения между значением искомого давления в положении регулирования давления, установленным на основании режима работы топливного элемента, и измеренным значением давления, определенным датчиком давления, и устанавливать режим работы форсунки на основании упомянутого расхода потока с поправкой на уменьшение перепада давлений. Средство управления также способно осуществлять расчет количества топлива, расходуемого топливным элементом, на основании его режима работы и устанавливать режим работы форсунки на основании уровня расхода топлива и упомянутого расхода потока с поправкой на уменьшение перепада давлений.
За счет этого режим работы форсунки (например, расход впрыскиваемого потока) может быть установлен таким образом, чтобы уменьшить расхождение между значением искомого давления и измеренным значением давления и приблизить измеренное значение давления к значению искомого давления.
Средство управления упомянутой батареи топливных элементов также способно осуществлять расчет расхода потока с поправкой пропорционального типа на уменьшение перепада давлений путем умножения пропорционального усиления на величину расхождения между значением искомого давления и измеренным значением давления. Кроме того, средство управления способно осуществлять расчет расхода потока с поправкой суммарного типа на уменьшение перепада давлений путем умножения суммарного усиления на суммарную величину расхождения между значением искомого давления и измеренным значением давления. В этом случае на основании режима работы топливного элемента средство управления способно изменять по меньшей мере пропорциональное усиление или суммарное усиление (например, уменьшать пропорциональное усиление или суммарное усиление по мере уменьшения количества электроэнергии, вырабатываемой топливным элементом).
Это позволяет усовершенствовать режим расчета расхода потока с поправкой на уменьшение перепада давлений на основании режима работы топливного элемента с целью соответствующего управления форсункой и обеспечения стабильной подачи топливного газа в широком диапазоне режимов работы.
Когда для пропорционального усиления или суммарного усиления, используемого для расчета расхода потока с поправкой пропорционального или суммарного типа на уменьшение перепада давлений, установлено постоянное значение, давление подачи топливного газа из форсунки следует за значением искомого давления с постоянной чувствительностью даже в случае изменения режима работы топливного элемента. Тем не менее, если для режима работы, в котором количество вырабатываемой топливным элементом электроэнергии относительно мало (при низкой нагрузке), используют пропорциональное усиление или суммарное усиление, аналогичное тому, которое используют при высокой нагрузке, топливный элемент не потребляет соответствующим образом топливный газ, поступающий из форсунки, в результате чего в системе подачи топлива может возникать пульсация, и, таким образом, режим подачи топливного газа может стать нестабильным. Ввиду этого, чтобы ограничить возникновение пульсации при низкой нагрузке, выбирают меньшее, чем при высокой нагрузке, например, по меньшей мере пропорциональное усиление или суммарное усиление. Если при высокой нагрузке используют пропорциональное усиление или суммарное усиление, аналогичное тому, которое используют при низкой нагрузке, топливный элемент в большом количестве потребляет топливный газ, поступающий из форсунки, вследствие чего объем подачи топливного газа может не отвечать требованиям, в результате чего снижается чувствительность к значению искомого давления. За счет выбора при высокой нагрузке, например, большего, чем при низкой нагрузке по меньшей мере пропорционального усиления или суммарного усиления можно повысить чувствительность к значению искомого давления. В результате, может быть обеспечена стабильная подача топливного газа в широком диапазоне режимов работы (при низкой нагрузке и высокой нагрузке).
Кроме того, средство управления упомянутой батареи топливных элементов способно на основании режима работы топливного элемента рассчитывать и обновлять значение искомого давления в положении регулирования давления через заданные промежутки времени. Может быть осуществлен расчет расхода потока с поправкой на соответствующую разность давлений, соответствующей расхождению между ранее рассчитанным значением искомого давления и текущим рассчитанным значением искомого давления, а также расход впрыскиваемого потока форсунки путем суммирования этого расхода потока с поправкой на соответствующую разность давлений, упомянутого уровня расхода топлива и упомянутого расхода потока с поправкой на уменьшение перепада давлений.
За счет этого может быть быстро изменен расход впрыскиваемого потока форсунки в соответствии с колебаниями значения искомого давления и дополнительно повышена чувствительность. Если расход потока с поправкой на соответствующую разность давлений не принимается во внимание, все расхождения между значениями искомого давления и измеренными значениями давления вследствие колебаний значения искомого давления должны быть компенсированы за счет расхода потока с поправкой на уменьшение перепада давлений, что может вызвать увеличение значения расхода потока с поправкой на уменьшение перепада давлений и задержку управления форсункой, но, если используют расход потока с поправкой на соответствующую разность давлений, которая соответствует составляющей колебаний значения искомого давления, можно ограничить увеличение значения расхода потока с поправкой на уменьшение перепада давлений и осуществлять быстрое управление форсункой.
Кроме того, средство управления упомянутой батареи топливных элементов способно рассчитывать статический расход потока выше по потоку форсунки на основании состояния газа в этом месте и рассчитывать основное время впрыска форсунки путем умножения ездового цикла на величину, полученную путем деления расхода впрыскиваемого потока форсунки на статический расход потока. Средство управления также способно устанавливать время отсутствия впрыска форсунки на основании состояния газа выше по потоку форсунки и затем рассчитывать общее время впрыска путем суммирования упомянутого основного времени впрыска и упомянутого времени отсутствия впрыска.
Кроме того, в изобретении предложено подвижное устройство, включающее упомянутую батарею топливных элементов.
В такой конструкции используют батарею топливных элементов, способную соответствующим образом соответствующим образом изменять давление подачи топливного газа в зависимости от режима работы топливного элемента, за счет чего обеспечивают высокую чувствительность подвижного устройства.
В настоящем изобретении предложена батарея топливных элементов с высокой чувствительностью, способная соответствующим образом изменять режим подачи топливного газа (давление подачи и т.п.) в зависимости от режима работы топливного элемента.
Описание чертежей.
На фиг.1 показан общий вид батареи топливных элементов согласно одному из вариантов осуществления настоящего изобретения,
на фиг.2 - схема управления, иллюстрирующая режимы управления устройства управления батареей топливных элементов, показанной на фиг.1,
на фиг.3 - отображение взаимосвязи выработки электроэнергии топливным элементом батареи топливных элементов, показанной на фиг.1, и пропорционального усиления, используемого при расчете расхода потока с фактической поправкой,
на фиг.4 - блок-схема, иллюстрирующая работу батареи топливных элементов, показанной на фиг.1,
на фиг.5 - общий вид, иллюстрирующий альтернативный вариант осуществлениям батареи топливных элементов, показанной на фиг.1.
Подробное описание.
Далее со ссылкой на чертежи описана батарея 1 топливных элементов согласно одному из вариантов осуществления настоящего изобретения. В рассматриваемом варианте осуществления описан пример, в котором настоящее изобретение применяется в бортовой системе выработки электроэнергии автомобиля S (подвижного устройства) с приводом от топливных элементов.
Сначала со ссылкой на фиг.1-3 описана конструкция батареи 1 топливных элементов согласно одному из вариантов осуществления настоящего изобретения.
В рассматриваемом варианте осуществления батарея 1 топливных элементов включает топливный элемент 10 для поступления участвующих в реакции (окисляющих и топливных) газов и выработки электроэнергии, который включает систему 2 труб для окисляющего газа, по которой в топливный элемент 10 в качестве окисляющего газа подают воздух, систему 3 труб для водорода, по которой в топливный элемент 10 в качестве топливного газа подают водород, и устройство 4 управления для комплексного управления всей системой, как это показано на фиг.1.
Топливный элемент 10 имеет многослойную структуру для поступления участвующих в реакции газов, которая образована путем расположения слоями необходимого числа отдельных элементов для выработки электроэнергии. Электроэнергия, вырабатываемая топливным элементом 10, поступает в регулятор 11 мощности. Регулятор 11 мощности 11 включает обратный преобразователь, преобразователь постоянного тока в постоянный и т.п., расположенные между топливным элементом 10 и тяговым электродвигателем 12. Кроме того, на топливном элементе 10 установлен датчик 13 тока для определения тока при выработке электроэнергии.
Система 2 труб для окисляющего газа включает канал 21 для подачи воздуха, по которому в топливный элемент 10 подают окисляющий газ (воздух), увлажненный увлажнителем 20, канал 22 для выпуска воздуха, по которому поступает окисляющий отходящий газ, выпускаемый из топливного элемента 10 в увлажнитель 20, и внешний канал 23 для отработавшего воздуха, по которому поступает окисляющий отходящий газ из увлажнителя 20. Канал 21 для подачи воздуха снабжен компрессором 24 для отбора окисляющего газа из атмосферы и его подачи под давлением в увлажнитель 20.
Система 3 труб для водорода включает бак 30 с водородом в качестве источника подачи топлива, в котором хранится газообразный водород под высоким (таким как 70 МПа) давлением, канал 31 для подачи водорода в качестве подающего топливного канала, по которому газообразный водород из бака 30 с водородом поступает в топливный элемент 10, и канал 32 для циркуляционного потока, по которому поступает отходящий газообразный водород, выпускаемый из топливного элемента 10 в канал 31 для подачи водорода. В одном из вариантов осуществления настоящего изобретения система 3 труб для водорода является системой подачи топлива. Вместо бака 30 с водородом в качестве источника подачи топлива может использоваться реформинг-установка для выработки риформинг-газа с высоким содержанием водорода из топлива углеводородной системы и резервуар для газа высокого давления, в который под высоким давлением поступает риформинг-газ, вырабатываемый реформинг-установкой. Кроме того, в качестве источника подачи топлива может использоваться резервуар из непроницаемого для водорода сплава.
Канал 31 для подачи водорода имеет отсечный клапан 33, перекрывающий и разрешающий подачу газообразного водорода из бака 30 с водородом, регулятор 34, регулирующий давление газообразного водорода, и форсунку 35. Кроме того, выше по потоку форсунки 35 находится датчик 41 первичного бокового давления и температурный датчик 42 для определения давления и температуры газообразного водорода внутри канала 31 для подачи водорода. Кроме того, выше по потоку точки соединения канала 31 для подачи водорода и канала 32 для циркуляционного потока и ниже по потоку форсунки 35 расположен датчик 43 вторичного бокового давления для определения давления газообразного водорода внутри канала 31 для подачи водорода.
Регулятор 34 является устройством, устанавливающим давление выше по потоку (первичное давление) на уровне заданного вторичного давления. В рассматриваемом варианте осуществления в качестве регулирующего клапана 34 используют механический разгрузочный клапан для снижения первичного давления. Механический разгрузочный клапан может иметь известную конструкцию с кожухом, включающим камеру обратного давления и камеру регулирования давления, которые разделены мембраной для снижения первичного давления в камере регулирования давления на заданную величину до уровня вторичного давления с помощью обратного давления внутри камеры обратного давления. В рассматриваемом варианте осуществления давление выше по потоку форсунки 35 может быть эффективно снижено путем установки двух регуляторов 34 выше по потоку форсунки 35, как это показано на фиг.1. При проектировании механической конструкции (такой как корпус клапана, кожух, канал и привод) форсунки 35 может применяться меньше ограничений. Кроме того, поскольку давление выше по потоку форсунки 35 может быть снижено, можно облегчить устранить затруднения при перемещении корпуса клапана форсунки 35 вследствие увеличения разности между давлением выше и ниже по потоку форсунки 35. За счет этого можно расширить диапазон регулирования давление ниже по потоку форсунки 35 и ограничить снижение чувствительности форсунки 35.
Форсунка 35 представляет собой двухпозиционный клапан с электромагнитным приводом, способный регулировать расход потока и давление газа путем непосредственного воздействия на корпус клапана электромагнитной движущей силой в течение заданных ездовых циклов и изолировать корпус клапана от гнезда клапана. Форсунка 35 включает гнездо клапана с отверстием для впрыска газообразного водорода и других топливных газов, а также корпус форсунки для направления и подачи газообразного топлива в отверстие для впрыска и корпус клапана, установленный с возможностью перемещения в осевом направлении (направлении потока газа) корпуса форсунки для открытия и закрытия отверстия для впрыска. Корпус клапана форсунки 35 приводится в действие, например, соленоидом и способен устанавливать две или более степеней открытия отверстия для впрыска путем включения и выключения пульсирующего тока возбуждения, подаваемого в соленоид. Путем регулирования времени и момента впрыска газа у форсунки 35 с помощью сигнала управления, поступающего из устройства 4 управления, можно с высокой точностью регулировать расход потока давление газообразного водорода. Форсунка 35 непосредственно приводит в действие клапан (корпус и гнездо клапана), открывая и закрывая его с помощью электромагнитной движущей силы, и обладает высокой чувствительностью, поскольку ее ездовой цикл может регулироваться вплоть до области высокой чувствительности.
В рассматриваемом варианте осуществления форсунка 35 расположена выше по потоку точки А1 соединения канала 31 для подачи водорода и канала 32 для циркуляционного потока, как это показано на фиг.1. Если в качестве источника подачи топлива используют множество баков 30 с водородом, показанных пунктирными линиями на фиг.1, форсунка 35 расположена ниже по потоку точки, в которой поступает газообразный водород, подаваемый из баков 30 с водородом (точки А2 подвода газообразного водорода).
С каналом 32 для циркуляционного потока посредством сепаратора 36 газа и жидкости и клапана 37 выпуска воды/воздуха соединен выпускной 38 канал. Сепаратор 36 газа и жидкости улавливает влагу из отходящего газообразного водорода. Клапан 37 выпуска воды/воздуха срабатывает в ответ на команду устройства 4 управления и выпускает (удаляет) влагу, уловленную сепаратором 36 газа и жидкости, и отходящий газообразный водород, содержащий примеси, в канал 32 для циркуляционного потока. Кроме того, в канале 32 для циркуляционного потока расположен водородный насос 39 для нагнетания газообразного водорода в канал 32 для циркуляционного потока и его подачи в канал 31 для подачи водорода. Отходящий газообразный водород, выпущенный через клапан 37 выпуска воды/воздуха и выпускной 38 канал, разводят в разбавителе 40, после чего соединяют его с отходящим окисляющим газом в канале 23 для отработавшего воздуха.
Устройство 4 управления определяет нагрузку исполнительного органа разгона (акселератора и т.п.), которым снабжен автомобиль S с приводом от топливных элементов, принимает управляющую информацию, такую как требуемая характеристика разгона (количество вырабатываемой электроэнергии, требуемой от нагрузочного устройства, такого как, например, тяговый электродвигатель 12) и управляет работой каждого устройства в системе. Помимо тягового электродвигателя 12 термин нагрузочное устройство в целом относится к потребляющим энергию устройствам, включая вспомогательные устройства, необходимые для работы топливного элемента 10 (такие как, например, компрессор 24, водородный насос 39 и двигатель насоса системы охлаждения), исполнительные механизмы, используемые в устройствах, участвующих в движении автомобиля S с приводом от топливных элементов (такие как передача, устройство управления колесами, рулевой механизм и механизм подвески), установку кондиционирования воздуха в пассажирском салоне, освещение, звуковоспроизводящие устройства и т.п.
Устройство 4 управления состоит из компьютерной системы, которая не проиллюстрирована. Компьютерная система включает ЦП, ПЗУ, ОЗУ, накопитель на жестком диске, интерфейс ввода-вывода и дисплей и способна осуществлять различные операции управления, в которых ЦП считывает и выполняет управляющие программы, записанные в ПЗУ.
Более подробно, устройство 4 управления рассчитывает количество газообразного водорода, потребляемого топливным элементом 10 (далее - "количество потребляемого водорода"), на основании режима работы топливного элемента 10 (текущего значения, определенного датчиком 13 тока, когда топливный элемент 10 вырабатывает электроэнергию), как показано на фиг.2 (функция расчета расхода топлива: В1). В рассматриваемом варианте осуществления для расчета и обновления количества потребляемого водорода в каждом расчетном цикле устройства 4 управления используют конкретную формулу, выражающую зависимость между текущим значением топливного элемента 10 и количеством потребляемого водорода.
Кроме того, устройство 4 управления рассчитывает значение искомого давления газообразного водорода (искомое давление газа подачи в топливный элемент 10) в положении ниже по потоку форсунки 35 на основании режима работы топливного элемента 10 (текущего значение, определенного датчиком 13 тока, когда топливный элемент 10 вырабатывает электроэнергию) (функция расчета значения искомого давления: В2). В рассматриваемом варианте осуществления для расчета и обновления значения искомого давления в положении (положении регулирования давления, в котором требуется регулирование давления), в котором находится датчик 43 вторичного бокового давления, в каждом расчетном цикле устройства 4 управления используют конкретное отображение зависимости между текущим значением и значением искомого давления топливного элемента 10.
Кроме того, устройство 4 управления рассчитывает расход потока с фактической поправкой на основании расхождения между расчетным значением искомого давления и значением давления (измеренным значением давления) в положении ниже по потоку (положении регулирования давления) форсунки 35, определенным датчиком 43 вторичного бокового давления (функция расчета расхода потока с фактической поправкой: В3). Расходом потока с фактической поправкой является расход потока газообразного водорода (расход потока с поправкой на уменьшение перепада давлений), прибавленный к количеству потребляемого водорода с целью уменьшения расхождения между значением искомого давления и измеренным значением давления.
В рассматриваемом варианте осуществления для расчета и обновления расхода потока с фактической поправкой в каждом расчетном цикле устройства 4 управления используют правило управления с обратной связью типа PI. Более подробно, устройство 4 управления рассчитывает расход потока с фактической поправкой пропорционального типа (пропорциональный член Р=Кр×е) путем умножения пропорционального усиления (Кр) на расхождение (е) между значением искомого давления и измеренным значением давления, рассчитывает расход потока с фактической поправкой суммарного типа (суммарный член I=KI×∫(e)dt) путем умножения суммарного усиления (KI) на суммарную величину расхождения во времени (∫(e)dt) и рассчитывает расход потока с фактической поправкой, включая эти прибавленные величины.
Кроме того, в зависимости от режима работы топливного элемента 10 устройство 4 управления изменяет значение пропорционального усиления (Кр), используемое при расчете расхода потока с фактической поправкой пропорционального типа. В рассматриваемом варианте осуществления устройство 4 управления устанавливает пропорциональное усиление на уровне нижнего предельного значения (Kp1), когда текущее значение выработки электроэнергии топливным элементом 10 меньше первого порогового значения (A1), и устанавливает пропорциональное усиление на уровне верхнего предельного значения (Кр2), когда текущее значение выработки электроэнергии топливным элементом 10 превышает второе пороговое значение (А2) (А2>A1), как показано на фиг.3. Устройство 4 управления линейно изменяет пропорциональное усиление от нижнего предельного значения (Kp1) до верхнего предельного значения (Кр2) пропорционально текущему значению выработки электроэнергии таким образом, чтобы оно монотонно возрастало, когда текущее значение выработки электроэнергии топливным элементом 10 находится между первым пороговым значением (A1) и вторым пороговым значением (А2). Иными словами, если текущее значение выработки электроэнергии топливным элементом 10 находится между первым и вторым пороговым значениями, значение пропорционального усиления уменьшается по мере уменьшения текущего значения выработки электроэнергии, а, если текущее значение выработки электроэнергии находится ниже первого порогового значения, пропорциональное усиление устанавливают на уровне фиксированного (нижнего предельного) значения. Если текущее значение выработки электроэнергии топливным элементом 10 находится между первым и вторым пороговыми значениями, значение пропорционального усиления увеличивается по мере увеличения текущего значения выработки электроэнергии, а, если текущее значение выработки электроэнергии превышает второе пороговое значение, пропорциональное усиление устанавливают на уровне фиксированного (верхнего предельного) значения. Первое и второе пороговые значения, а также верхнее и нижнее предельные значения могут быть соответствующим образом установлены в зависимости от технических характеристик и т.п. топливного элемента 10.
Когда пропорциональное усиление (Кр) устанавливают на уровне фиксированного значения, значение давления подачи газообразного водорода из форсунки 35 следует за значением искомого давления с фиксированной чувствительностью даже в случае изменения режима работы топливного элемента 10. Если в режиме работы, в котором количество вырабатываемой топливным элементом электроэнергии 10 относительно мало (при низкой нагрузке), устанавливают пропорциональное усиление (Кр), подобное тому, которое устанавливают при высокой нагрузке, топливный элемент 10 не потребляет соответствующим образом топливный газ, поступающий из форсунки 35, в результате чего в канале 31 для подачи водорода и канале 32 для циркуляционного потока подачи топлива может возникать пульсация, вызывая нестабильность режима подачи газообразного водорода. Возникновение этой пульсации можно ограничить за счет более низкого пропорционального усиления (Kp1) при низкой нагрузке (когда текущее значение меньше первого порогового значения), чем пропорциональное усиление (Кр2) при высокой нагрузке (когда текущее значение превышает второе пороговое значение), как описано в рассматриваемом варианте осуществления. Если при высокой нагрузке устанавливают пропорциональное усиление (Кр), подобное тому, которое устанавливают при низкой нагрузке, топливный элемент 10 в большом количестве потребляет топливный газ, поступающий из форсунки 35, вследствие чего объем подачи газообразного водорода может не отвечать требованиям, в результате чего снижается чувствительность к значению искомого давления. Таким образом, при высокой нагрузке может быть установлено более высокое пропорциональное усиление (Кр2), чем пропорциональное усиление (Kp1) при низкой нагрузке, как в описано рассматриваемом варианте осуществления, за счет чего повышается чувствительность к значению искомого давления. В результате, может быть обеспечена стабильная подача газообразного водорода в широком диапазоне режимов работы (при низкой нагрузке и высокой нагрузке).
Кроме того, устройство 4 управления рассчитывает расход потока с упреждающей поправкой, соответствующей расхождению между ранее рассчитанным значением искомого давления и текущим рассчитанным искомым давлением (функция расчета расхода потока с упреждающей поправкой: В4). Расходом потока с упреждающей поправкой является размер колебаний (расход потока с поправкой на соответствующую разность давлений) расхода потока газообразного водорода вследствие колебаний значения искомого давления. В рассматриваемом варианте осуществления для расчета и обновления расхода потока с упреждающей поправкой в каждом расчетном цикле устройства 4 управления используют конкретную формулу расчета, отображающую зависимость между отклонением значения искомого давления и расходом потока с упреждающей поправкой.
Кроме того, устройство 4 управления рассчитывает статический расход потока выше по потоку форсунки 35 на основании состояния газа (давления газообразного водорода, определенного датчиком 41 первичного бокового давления, и температуры газообразного водорода, определенной температурным датчиком 42) выше по потоку форсунки 35 (функция расчета статического расхода потока: В5). В рассматриваемом варианте осуществления для расчета и обновления статического расхода потока в каждом расчетном цикле устройства 4 управления используют конкретную формулу расчета, отображающую зависимость между давлением и температурой и статическим расходом потока газообразного водорода выше по потоку форсунки 35.
Устройство 4 управления также рассчитывает время отсутствия впрыска форсунки 35 на основании состояния газа (давления и температуры газообразного водорода) и приложенного напряжения выше по потоку форсунки 35 (функция расчета времени отсутствия впрыска: В6). В данном случае время отсутствия впрыска означает необходимое время от момента, когда форсунка 35 принимает управляющий сигнал устройства 4 управления, до того как начнется фактический впрыск. В рассматриваемом варианте осуществления для расчета и обновления времени отсутствия впрыска в каждом расчетном цикле устройства 4 управления используют конкретное отображение зависимости давления и температуры газообразного водорода выше по потоку форсунки 35, а также приложенного напряжения и времени отсутствия впрыска.
Помимо этого, устройство 4 управления рассчитывает расход впрыскиваемого потока форсунки 35 путем суммирования количества потребляемого водорода, расхода потока с фактической поправкой и расхода потока с упреждающей поправкой (функция расчета расхода впрыскиваемого потока: В7). Устройство 4 управления также рассчитывает общее время впрыска форсунки 35 путем деления расхода впрыскиваемого потока форсунки 35 на статический расход потока и умножения на ездовой цикл форсунки 35 для расчета основного времени впрыска форсунки 35 и затем суммирует основное время впрыска со временем отсутствия впрыска (функция расчета общего времени впрыска: В8). В данном случае ездовой цикл означает цикл ступенчатого сигнала (типа включение - выключение), отображающего открытое и закрытое состояния отверстие для впрыска форсунки 35. В рассматриваемом варианте осуществления устройство 4 управления устанавливает фиксированное значение для ездового цикла.
Затем устройство 4 управления выводит управляющий сигнал для применения общего времени впрыска форсунки 35, рассчитанного описанным выше способом, за счет чего регулируют время и момент впрыска газа у форсунки 35 и регулируют расход потока и давление газообразного водорода, подаваемого в топливный элемент 10.
Далее со ссылкой на блок-схему, показанную на фиг.4, описана работа батареи 1 топливных элементов согласно рассматриваемому варианту осуществления.
При нормальном режиме эксплуатации батареи 1 топливных элементов из бака 30 с водородом в топливный электрод топливного элемента 10 по каналу 31 для подачи водорода поступает газообразный водород, а по каналу 21 для подачи воздуха в окислительный электрод топливного элемента 10 поступает воздух с регулируемой влажностью, за счет чего вырабатывается электроэнергия. Устройство 4 управления рассчитывает электроэнергию, передаваемую топливным элементом 10 (потребляемую мощность), и в топливный элемент 10 подают то количество газообразного кислорода и воздуха, которое соответствует такому количеству вырабатываемой электроэнергии. В рассматриваемом варианте осуществления при таком нормальном режиме эксплуатации с высокой точностью регули