Медицинская направляющая проволока, комплект упомянутой медицинской направляющей проволоки и микрокатетера, комплект упомянутой медицинской направляющей проволоки, катетера-баллона и направляющего катетера
Иллюстрации
Показать всеИзобретение относится к медицинской технике, а именно к устройствам для установки катетера, в частности, в кровеносный сосуд, пищеварительный тракт, мочеиспускательный канал и т.п. Медицинская направляющая проволока включает тело витой пружины, часть дальнего конца которой имеет рентгеноконтрастную витую часть и ближний конец которой имеет рентгенопрозрачную витую часть. Элемент удлиненного сердечника помещен в тело витой пружины и имеет часть дальнего конца, утончающуюся по диаметру, и часть ближнего конца, утолщающуюся по диаметру. Дальний конец тела пружины и дальний конец сердечника соединены герметично. Слой синтетической смолы герметично нанесен на наружную поверхность упомянутого тела витой пружины в круговом направлении. Герметичная стенка на ближнем конце рентгеноконтрастной витой части предназначена для герметичного соединения тела пружины и сердечника. Камера плавучести образована в рентгеноконтрастной витой части герметичной стенкой, слоем синтетической смолы и частью крепления, в которой дальний конец тела пружины и дальний конец сердечника герметично соединены. Слой синтетической смолы является смазывающим в увлажненном состоянии больше, чем в сухом состоянии. Слой синтетической смолы образует цилиндрическую пленку на зазоре между соседними витками тела пружины в состоянии, когда наружный диаметр цилиндрической пленки меньше наружного диаметра тела пружины при расширении тела пружины в увлажненном состоянии, так что зазор между витками тела пружины составляет 50-100% от наружного диаметра витков тела пружины. Тело пружины имеет часть центрального диаметра, который является средним между внутренним и наружным диаметрами тела пружины. Цилиндрическая пленка располагается между внутренней поверхностью тела пружины и частью центрального диаметра тела пружины таким образом, что наружная поверхность тела пружины выполнена волнистой, образуя выпукло-вогнутую часть с соседними витками, идущими как выпуклая часть и цилиндрическая пленка, деформированная как вогнутая часть, для того чтобы усилить движущую вперед силу вследствие сопротивления давления, вызываемого потоками крови, ударяющимися о выпуклую часть вместе со спиральными кровотоками, вызванными витой конфигурацией тела витой пружины при вводе тела витой пружины в кровеносный сосуд. Изобретение позволяет специалисту глубоко проникать в кровеносный сосуд благодаря свойству плавучести и сопротивлению повышенному давлению, вызываемому потоками крови. 3 н. и 9 з.п. ф-лы, 32 ил.
Реферат
Настоящее изобретение относится к медицинской направляющей проволоке, которая усовершенствована с целью позволить специалисту глубже вводить инструмент в извилистый кровеносный сосуд, пользуясь, в частности, потоками крови.
При терапевтическом диагностировании человеческих органов, в частности таких, как кровеносный сосуд, пищеварительный тракт, мочеиспускательный канал и т.п., необходимо ввести направляющую проволоку в требуемое место до установки катетера в кровеносный сосуд. Для того чтобы беспрепятственно вводить направляющую проволоку в извилистый кровеносный сосуд (т.е. в труднодостижимые области), до настоящего времени были представлены различные методы.
Для примера, в японской выложенной патентной заявке №2000-135289 раскрыта направляющая проволока, которая состоит из рентгеноконтрастной металлической витой проволоки, прикрепленной к дальней концевой части удлиненного сердечника. Предусмотрена трубка из синтетической смолы, которая окружает наружную поверхность витой проволоки и закрывает наружную поверхность металлической витой проволоки после набухания. Это позволяет специалисту получить хорошее скольжение благодаря гладкости трубки из синтетической смолы, в то же время уменьшая количество тромбов, отлагающихся на трубке из синтетической смолы, благодаря хорошей проходной способности, обеспечиваемой более тонким дальним концом удлиненного сердечника при помещении его в кровеносный сосуд.
В японской выложенной патентной заявке №4-9162 раскрыта направляющая проволока, гибкая на части дальнего конца и жесткая в основной части. Металл с высокой рентгеноконтрастностью (высокочувствительный как контрастная среда для рентгенографии) вводится в часть дальнего конца. Синтетическая смола закрывает направляющую проволоку и обеспечивает скольжение при увлажнении, этим создавая хорошую управляемость для специалиста (проталкивание и вытягивание) из-за хорошего скольжения.
В японской заявке №2588582 на регистрацию полезной модели раскрыта направляющая проволока, где рентгеноконтрастная витая проволока прикреплена к части дальнего конца удлиненного сердечника. На направляющую проволоку нанесены гидрофильный слой и гидрофобный слой покрытия для достижения хорошей маневренности из-за уменьшенного трения на части ближнего конца.
Принимая во внимание вышеуказанные примеры из уровня техники, не существует существенной идеи, которая обеспечивала бы специалисту хорошую управляемость в результате не только использования плавучести в крови или потоках крови, но и использования сопротивление давления и разности в удельном весе между двухслойной структурой в потоках крови.
Поэтому целью настоящего изобретения является преодоление вышеуказанных недостатков и создание медицинской направляющей проволоки, которая способна улучшить управляемость путем образования камеры плавучести внутри части дальнего конца части витой пружины, которая может прогибаться под воздействием силы тяжести.
Еще одной целью настоящего изобретения является создание медицинской направляющей проволоки, которая способна поддерживать герметичность при расширении части витой пружины для увеличения зазора между витками части витой пружины и усиливать движущую вперед силу путем использования сопротивления давления и разницы удельного веса между гидрофобным слоем и гидрофильным слоем в потоках крови.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Согласно настоящему изобретению предлагается медицинская направляющая проволока, у которой предусмотрено тело в форме витой пружины, дальний конец которой имеет рентгеноконтрастную витую часть, изготовленную из рентгеноконтрастного материала, и ближний конец которой имеет рентгенопрозрачную витую часть, изготовленную из рентгенопрозрачного материала. Удлиненный сердечник помещается в тело витой пружины, имея часть дальнего конца, утонченную по диаметру, и часть ближнего конца, утолщенную по диаметру. Дальний конец упомянутого тела витой пружины и дальний конец упомянутого элемента удлиненного сердечника соединены герметично. Слой синтетической смолы герметично нанесен на наружную поверхность тела витой пружины в направлении по окружности. На ближнем конце рентгеноконтрастной витой части предусмотрена герметичная стенка для того, чтобы герметично соединить тело витой пружины и удлиненный сердечник. Камера плавучести создается в рентгеноконтрастной витой части герметичной стенкой, слоем синтетической смолы и частью крепления, в котором дальний конец тела витой пружины и дальний конец удлиненного сердечника герметично соединены. Слой синтетической смолы имеет смазывающее свойство, которое больше в увлажненном состоянии, чем в сухом состоянии, в котором слой синтетической смолы образует цилиндрическую пленку на зазоре между смежными витками тела витой пружины в состоянии, когда наружный диаметр цилиндрической пленки меньше наружного диаметра тела витой пружины при расширении тела витой пружины в увлажненном состоянии, так чтобы зазор между смежными витками тела витой пружины составлял 50-100% от наружного диаметра витков тела витой пружины. Цилиндрическая пленка остается между внутренней поверхностью тела витой пружины и участком центрального диаметра тела витой пружины, так что наружная поверхность упомянутого тела витой пружины выполнена волнистой, образуя выпукло-вогнутую часть с упомянутыми соседними витками, идущими как выпуклая часть, и цилиндрической пленкой, деформированной как вогнутая часть, для усиления движущей вперед силы вследствие сопротивления давления, вызываемого потоками крови, сталкивающимися с выпуклой частью, вместе со спиральными потоками, вызываемыми конфигурацией винтовой намотки части тела витой пружины, при помещении тела витой пружины в кровеносный сосуд.
Когда камера плавучести селективно предусмотрена в части дальнего конца рентгеноконтрастной витой части тела витой пружины, в камере плавучести создается плавучесть вследствие наличия крови или потоков крови, которая не дает части дальнего конца тела витой пружины прогибаться под воздействием силы тяжести.
Это позволяет специалисту сохранять стабильное положение части дальнего конца медицинской направляющей проволоки в кровеносном сосуде, что повышает управляемость медицинской направляющей проволоки.
При наличии цилиндрической пленки, обеспечиваемой расширяющимся слоем синтетической смолы в увлажненном состоянии, можно поддерживать герметичность внутри тела витой пружины, что не дает возможности газообразному компоненту выходить из тела витой пружины, когда рентгеноконтрастная витая часть изгибается при манипуляциях для увеличения зазора между витками этой части витой пружины.
При зазоре между смежными витками тела витой пружины 50-100% от наружного диаметра витков тела витой пружины, можно поддерживать герметичность внутри тела витой пружины для того, чтобы обеспечить упругое усилие восстановления благодаря камере плавучести, когда, например, тело витой пружины переворачивает часть дальнего конца в кровеносном сосуде. Это происходит потому, что цилиндрическая пленка заполняет зазор между смежными витками тела витой пружины.
Во время ввода медицинской направляющей проволоки в кровеносный сосуд тело витой пружины подвергается сопротивлению давления и воздействию спиральных потоков крови (движущая вперед сила) из-за выпукло-вогнутой части, что позволяет специалисту глубже проникать в кровеносный сосуд.
Согласно другому аспекту изобретения используется упругое восстанавливающее усилие, которое развивается пневматическим давлением, повышающимся в камере плавучести при изгибе рентгеноконтрастной витой части в изогнутое положение, и пневматическое давление уменьшается до первоначального уровня в камере плавучести после освобождения рентгеноконтрастной витой части из изогнутого положения.
При наличии камеры плавучести, селективно предусмотренной в рентгеноконтрастной витой части, которая легко подвергается пластичным деформациям, можно значительно уменьшить величину прогиба путем использования упругого усилия восстановления камеры плавучести. Это позволяет специалисту стабильно поддерживать первоначальную хорошую конфигурацию части медицинской направляющей проволоки на дальнем конце.
Согласно еще одному аспекту настоящего изобретения слой синтетической смолы изготовлен из смеси гидрофильного полимера и гидрофобного полимера. Слой синтетической смолы имеет удельный вес, убывающий с внутренней стороны к наружной стороне слоя синтетической смолы, когда он находится в увлажненном состоянии.
Кроме смеси, в которой гидрофильный полимер и гидрофобный полимер просто смешаны, гидрофильный полимер может добавляться в смесь гидрофобного полимера и липкого полимера для образования другой смеси. В другом случае гидрофильный полимер может быть смешан с гидрофобным полимером, к которому добавлен пластификатор, для образования еще одной смеси. Альтернативно, гидрофильный полимер может быть смешан с гидрофобным полимером, к которому добавлена смесь липкого полимера и пластификатора, для образования еще одной смеси.
При массовом отношении гидрофильного полимера, последовательно повышающемся с внутренней стороны к наружной стороне, и при постепенном увеличении объема слоя синтетической смолы часть наружной стороны гидрофильного полимера занимает увеличенную часть слоя синтетической смолы, что дает возможность получить легкую направляющую проволоку с высоким свойством плавучести благодаря тому, что часть наружной стороны гидрофильного полимера имеет меньший удельный вес.
Согласно еще одному аспекту настоящего изобретения слой синтетической смолы имеет первый гидрофобный слой как твердый слой на теле витой пружины и второй гидрофильный слой как текучий слой, размещенный на наружной поверхности первого гидрофобного слоя. Удельный вес второго гидрофильного слоя в увлажненном состоянии меньше удельного веса первого гидрофобного слоя.
Когда второй гидрофильный слой (имеющий меньший удельный вес) занимает увеличенную часть слоя синтетической смолы, можно получить легкую направляющую проволоку с высоким свойством плавучести.
Согласно еще одному аспекту настоящего изобретения тело витой пружины имеет рентгеноконтрастную витую часть, изготовленную из рентгеноконтрастного материала, величина обратного хода которой меньше обратного хода проволоки из нержавеющей стали.
Под воздействием упругого усилия восстановления вышеизложенная конструкция дает возможность уменьшить пластическую деформацию, которой подвергается рентгеноконтрастная витая часть, хотя такая рентгеноконтрастная витая часть изготовлена из материала, податливого к пластической деформации.
Согласно еще одному аспекту настоящего изобретения тело витой пружины имеет рентгеноконтрастную витую часть, изготовленную из рентгеноконтрастного материала, величина обратного хода которой меньше обратного хода проволоки из нержавеющей стали. Рентгенопрозрачная витая часть изготовлена из проволоки из нержавеющей стали, и наружный диаметр рентгеноконтрастной витой части меньше наружного диаметра рентгенопрозрачной витой части.
Как сказано выше, упругое усилие восстановления эффективно уменьшает пластическую деформацию, которой подвергается рентгеноконтрастная витая часть, хотя рентгеноконтрастная витая часть подвержена пластическим деформациям.
Согласно еще одному аспекту настоящего изобретения тело витой пружины образовано путем соединения рентгеноконтрастного материала с рентгенопрозрачным материалом для получения линейного элемента проволоки, который вытягивают по длине для уменьшения толщины по диаметру и обеспечения винтовой намотки, что создает конструкцию винтовой намотки.
Перед винтовой намоткой рентгеноконтрастного материала и рентгенопрозрачного материала рентгеноконтрастный материал и рентгенопрозрачный материал соединяют линейно в одно целое посредством, например, сварки, и вытягивают для уменьшения диаметра.
Это устраняет необходимость пайки мягким или твердым припоем для последовательного соединения двух частей винтовой намотки, указанной в известном уровне техники, и, таким образом, способствует получению легкой направляющей проволоки с высоким свойством плавучести.
Согласно еще одному аспекту настоящего изобретения тело витой пружины имеет некоторое множество линейных проволок, по меньшей мере одна из которых содержит рентгеноконтрастный материал на части дальнего конца тела витой пружины.
По сравнению с конструкцией из одной проволоки, в которой такая одна проволока винтообразно намотана для образования тела в общем витой пружины, тело витой пружины согласно настоящему изобретению дает возможность удерживать цилиндрическую пленку слоя синтетической смолы в зазоре между некоторым множеством линейных проволок без разрыва цилиндрической пленки даже при чрезмерном изгибе при манипуляциях тела витой пружины и вытягивания его в направлении растяжения. Это происходит из-за очень узкого зазора между некоторым множеством линейных проволок.
Согласно еще одному аспекту настоящего изобретения, камера плавучести заключает в себе пенистое тело в форме дискретной пенистой структуры.
Заключенное в камере пенистое тело эффективно препятствует пластической деформации удлиненного сердечника и тела витой пружины, вместе с тем увеличивая упругое усилие восстановления.
Согласно еще одному аспекту настоящего изобретения, камера плавучести заключает в себе сферические частицы пены, удельный вес которых находится в диапазоне от 0,06 до 0,5.
Сферические частицы пены уменьшают поверхность контакта между смежными частицами пены, этим создавая зоны пустот, функционально благоприятные для образования камеры плавучести, чтобы способствовать усилению характеристик плавучести.
Согласно еще одному аспекту настоящего изобретения, предусмотрен комплект микрокатетера и медицинской направляющей проволоки, в котором наружный диаметр медицинской направляющей проволоки составляет приблизительно 0,2032-0,254 мм (0,008-0,010 дюйма) и внутренний диаметр микрокатетера составляет приблизительно 0,280-0,80 мм (0,0110-0,0315 дюйма).
Хотя в упомянутом комплекте медицинская направляющая проволока утончена по диаметру, можно увеличить проходимость медицинской направляющей проволоки с помощью микрокатетера, что позволит специалисту глубже вводить медицинскую направляющую проволоку в кровеносный сосуд. Следовательно, это дает возможность выполнить требование низкой инвазивности и ослабить нагрузку, которой подвергается пациент при терапевтическом воздействии.
Согласно еще одному аспекту настоящего изобретения, предусмотрен комплект из направляющего катетера, катетера-баллона и медицинской направляющей проволоки, в котором медицинская направляющая проволока введена в направляющий катетер, а катетер-баллон направляется направляющим катетером. Наружный диаметр медицинской направляющей проволоки составляет приблизительно 0,2032-0,254 мм (0,008-0,010 дюйма), внутренний диаметр катетера-баллона составляет приблизительно 0,38-0,90 мм (0,015-0,032 дюйма) и внутренний диаметр направляющего катетера составляет приблизительно 1,7-2,0 мм (0,067-0,079 дюйма).
Упомянутый комплект позволяет специалисту вести части дальнего конца по потокам крови с помощью плавучести камеры плавучести и сопротивления давления для того, чтобы глубже ввести медицинскую направляющую проволоку в кровеносный сосуд. Это дает возможность уменьшить диаметр катетера-баллона и направляющего катетера для того, чтобы выполнить требование низкой инвазивности и ослабить нагрузку, которой подвергается пациент при терапевтическом воздействии.
Лучшие варианты осуществления настоящего изобретения иллюстрируются прилагаемыми чертежами, на которых:
Фиг.1 является боковым видом в вертикальном разрезе медицинской направляющей проволоки согласно первому варианту осуществления изобретения;
Фиг.2 является видом в горизонтальном разрезе по линии А-А на Фиг.1;
Фиг.3 является боковым видом в вертикальном разрезе удлиненного сердечника;
Фиг.4 является видом в плане удлиненного сердечника;
Фиг.5 является перспективным видом плоской части с несколькими уступами;
Фиг.6 и Фиг.7 являются видами продольного сечения части дальнего конца медицинской направляющей проволоки;
Фиг.8 является схемой, на которой показана часть дальнего конца медицинской направляющей проволоки, изогнутая при манипуляциях;
Фиг.9 является боковым видом в вертикальном разрезе в случае вытягивания медицинской направляющей проволоки для растяжения;
Фиг.10 и Фиг.11 являются схемами, поясняющими, насколько расширена изогнутая часть при изменении направления части дальнего конца медицинской направляющей проволоки;
Фиг.12-Фиг.15 являются фотографиями, показывающими, как образована цилиндрическая пленка между витками части витой пружины;
Фиг.16 является пояснительным видом, показывающим, как медицинская направляющая проволока вводится в коронарную артерию;
Фиг.17 является пояснительным видом, показывающим, как потоки крови реагируют с выпуклой частью витой пружины;
Фиг.18 является боковым видом в вертикальном разрезе части дальнего конца медицинской направляющей проволоки согласно второму варианту осуществления изобретения;
Фиг.19 является перспективным видом медицинской направляющей проволоки согласно третьему варианту осуществления изобретения;
Фиг.20 является видом в плане, показывающим, как изгибается конструкция намотки из одной проволоки при манипуляциях, в которой одна проволока намотана винтообразно для получения в тела витой пружины;
Фиг.21 является видом в плане, показывающим, как часть витой пружины, выполненная из некоторого множества линейных проволок, изгибается при манипуляциях;
Фиг.22 и Фиг.23 являются видами продольного сечения части дальнего конца медицинской направляющей проволоки согласно четвертому и пятому вариантам осуществления изобретения;
Фиг.24 и Фиг.25 являются схематическими видами, показывающими, как медицинская направляющая проволока вставляется в высоко окклюдированную область с помощью комплекта из медицинской направляющей проволоки и микрокатетера согласно шестому варианту осуществления изобретения;
Фиг.26 является боковым видом в вертикальном разрезе удлиненного сердечника согласно модифицированной форме изобретения;
Фиг.27 является правым видом в вертикальном разрезе удлиненного сердечника согласно модифицированной форме изобретения;
Фиг.28 является перспективным видом многоступенчатой части наконечника согласно модифицированной форме изобретения;
Фиг.29 является боковым видом в вертикальном разрезе медицинской направляющей проволоки согласно еще одной модифицированной форме изобретения;
Фиг.30 является видом сечения по ширине, взятого по линии В-В на Фиг.29:
Фиг.31 является видом сечения по ширине, взятым по линии С-С на Фиг.29;
Фиг.32 является боковым видом в вертикальном разрезе медицинской направляющей проволоки согласно еще одной модифицированной форме изобретения.
Для того чтобы описать варианты осуществления более конкретно, конструкции медицинской направляющей проволоки и тела витой пружины подробно объяснены со ссылками на прилагаемые чертежи.
В нижеследующем описании показанных вариантов изобретения справочные номера используются для указания признаков того же типа.
Со ссылкой на Фиг.1-17, на которых показана конструкция медицинской направляющей проволоки 1 согласно первому варианту осуществления изобретения, медицинская направляющая проволока 1 используется для терапевтического лечения окклюдированной области коронарной артерии.
В данной ситуации правая сторона чертежей означает сторону дальнего конца медицинской направляющей проволоки 1 и левая сторона чертежей означает сторону ближнего конца (сторону заднего конца) медицинской направляющей проволоки 1, если далее не указано иное.
Медицинская направляющая проволока 1 имеет удлиненный сердечник 2 и тело 3 витой пружины, в которое концентрически вставлена часть 21 тела 3 витой пружины, как показано на Фиг.1. На наружную поверхность тела 3 витой пружины нанесен слой 4 синтетической смолы. Камера плавучести 5 расположена на части 12 дальнего конца медицинской направляющей проволоки 1.
Удлиненный сердечник 2 выполнен из проволоки из нержавеющей стали, как показано на Фиг.2-4. Удлиненный сердечник 2 имеет утонченную по диаметру часть 21 дальнего конца и утолщенную по диаметру часть 22 ближнего конца. Длина части 21 дальнего конца составляет приблизительно 300 мм и длина части 22 ближнего конца (т.е. остальной части удлиненного сердечника) составляет приблизительно 1200 мм или 2700 мм.
С ближней стороны до дальней стороны удлиненного сердечника 2 часть 21 дальнего конца последовательно имеет скошенную под острым углом часть 23, скошенную под умеренным углом часть 24, колоннообразную часть 25, немного скошенную часть 26 и многоступенчатую плоскую часть 27, как показано на Фиг.5.
Многоступенчатая плоская часть 27 имеет первый сегмент 27а, второй сегмент 27b и третий сегмент 27с через ступенчатые части 27А, 27В с дальней стороны до ближней стороны. Первый сегмент 27а, который находится в верхней точке удлиненного сердечника 2, имеет толщину меньше толщины любого из сегментов 27b, 27 с. Второй сегмент 27b, который следует за первым сегментом 27а сразу же сзади, имеет толщину немного большую, чем толщина первого сегмента 27а. Третий сегмент 27с, который следует за вторым сегментом 27b непосредственно сзади, имеет толщину немного больше толщины второго сегмента 27b.
Когда многоступенчатая плоская часть 27 изгибается при манипуляциях, сегменты 27а, 27b, 27с имеют радиус кривизны, ступенчато увеличивающийся в этом же порядке.
Многоступенчатая плоская часть 27 дает возможность криволинейно деформировать часть 21 дальнего конца в узких пределах, этим позволяя специалисту уверенно вести часть 21 дальнего конца вдоль изогнутого пути области сосудистой стриктуры после ввода части 21 дальнего конца в кровеносный сосуд.
Для примера, толщина сегментов 27а, 27b, 27с составляет соответственно
0,040 мм, 0,050 мм и 0,063 мм.
В случае, когда каждая область сечения по ширине сегментов 27а, 27b, 27с в сущности единообразна во всем направлении по длине, удлиненный сердечник 2 в сущности совмещен с частью 21 дальнего конца параллельно пресс-форме, используемой для прессования части 21 дальнего конца между верхней и нижней полуформами (не показаны). Это позволяет выполнить сегменты 27а, 27b, 27с, имеющие небольшие размеры, стабильно с повышенной точностью и продлевает срок эксплуатации пресс-формы.
Тело 3 витой пружины образовано путем соединения платиновой проволоки с проволокой из нержавеющей стали так, чтобы получить элемент линейной проволоки, который растягивается по длине для уменьшения диаметра и наматывается винтообразно для того, чтобы иметь форму винтовой намотки. Полная длина тела витой пружины составляет приблизительно 300 мм, размер которой в сущности такой же, как размер части 21 дальнего конца удлиненного сердечника 2.
Передняя сторона тела 3 витой пружины имеет рентгеноконтрастную витую часть 31 (длиной приблизительно 30 мм), изготовленную из платины или подобного материала, и задняя сторона тела 3 витой пружины имеет рентгенопрозрачную витую часть 32 (длиной приблизительно 270 мм), изготовленную из нержавеющей стали или подобного материала.
Вместо платиновой проволоки, применяемой в теле 3 витой пружины в качестве рентгеноконтрастного материала, может использоваться золотая проволока, серебряная проволока или вольфрамовая проволока. В качестве рентгенопрозрачного материала с биологически совместимой точки зрения используется нержавеющая сталь.
Рентгеноконтрастный материал, такой как платиновая проволока, подвержен пластическим деформациям с величиной обратного хода меньше, чем у проволоки из нержавеющей стали.
Путем образования тела 3 витой пружины из линейных проволок (наружным диаметром 0,072 мм), которые наматываются для получения конструкции винтовой намотки (наружным диаметром 0,355 мм), наружный диаметр рентгеноконтрастной витой части 31 становится меньше более чем на 0,02 мм по сравнению с наружным диаметром рентгенопрозрачной витой части 32. Это означает, что диаметр тела 3 витой пружины постепенно уменьшается (идет на конус) с продвижением вперед. Рентгеноконтрастная витая часть 31 имеет зазор С между витками W тела 3 витой пружины. Ширина зазора С составляет приблизительно 10-30% от наружного диаметра витков W для придания рентгеноконтрастной витой части 31 хорошей гибкости.
Дальний конец 33 тела 3 витой пружины и дальний конец удлиненного сердечника 2 герметично соединены в части соединения (часть пайки) 10 без зазора путем использования сферических зерен олова (гранул олова), твердого припоя и т.п. Ближний конец 34 тела 3 витой пружины жестко зафиксирован на части 23, скошенной под острым углом посредством пайки. Слой 4 синтетической смолы проходит от наружной поверхности тела 3 витой пружины до части 22 ближней стороны удлиненного сердечника 2.
Слой 4 синтетической смолы имеет первый гидрофобный слой (твердый слой) 41 и второй гидрофильный слой (вязкий текучий слой) 42, размещенный на первом гидрофобном слое 41 так, как показано в двухслойной структуре на Фиг.6 и 7.
Второй гидрофильный слой 42 проявляет смазывающее свойство при увлажнении. Первый гидрофобный слой 41 образован как гидрофобное покрытие из полиуретана, блоксополимера полиэфир-полиамид, полиэтилена, полиамида, фторсодержащего полимера и т.п. Второй гидрофильный слой 42 образован как гидрофильное покрытие из поливинилпирролидона, сополимера малеинового ангидрида и этилового эфира, полиэтиленоксида и т.п.
При увлажнении удельный вес второго гидрофильного слоя 42 становится меньше удельного веса первого гидрофобного слоя 41.
На первый гидрофобный слой 41, образованный из ПТФЭ (политетрафторэтилена, удельный вес 2,14-2,20), поливинилпирролидона, сополимера малеинового ангидрида и этилового эфира или полиэтиленоксида (удельный вес в сущности близок к удельному весу воды), наносится второй гидрофильный слой 42. Также второй гидрофильный слой 42 может наноситься на первый гидрофобный слой 41, образованный из полиуретана (удельный вес 1,20-1,24) или полиэфира (удельный вес 1,38), поливинилпирролидона (удельный вес в сущности близок к удельному весу воды).
Первый гидрофобный слой 41 и второй гидрофильный слой 42 могут поочередно наноситься на наружную поверхность тела 3 витой пружины, причем первый гидрофобный слой 41 наносится как внутреннее покрытие, как показано на Фиг.6.
Альтернативно, первый гидрофобный слой 41 может быть нанесен на всю поверхность витков W до нанесения второго гидрофильного слоя 42 на первый гидрофобный слой 41, как показано на Фиг.7.
На части соединения между рентгеноконтрастной витой частью 31 и рентгенопрозрачной витой частью 32 предусмотрена герметичная стенка 11, которая устанавливается посредством пайки. Герметичная стенка 11 герметично соединяет ближний конец рентгеноконтрастной витой части 31 с удлиненным сердечником 2 без зазора. Пайка выполняется с использованием сферических зерен олова (гранул олова), твердого припоя и т.п.
Герметичная стенка 11 вместе с частью 10 крепления и слоем 4 синтетической смолы герметично определяет внутреннее пространство в рентгеноконтрастной витой части 31, образуя камеру плавучести 5.
Когда тело 3 витой пружины расширяется, заполняя зазор С при манипуляциях с изгибом медицинской направляющей проволоки 1, изгибная сила растягивает слой 4 синтетической смолы для образования цилиндрической пленки 43 на зазоре С, как показано на Фиг.9. При растянутой пленке 43 ее наружный диаметр становится меньше наружного диаметра тела 3 витой пружины и пленка поддерживает герметичность внутреннего пространства тела 3 витой пружины.
Как показано на Фиг.8, рентгеноконтрастная витая часть 31 предварительно сформирована в одном или более местах в диапазоне приблизительно 2-7 мм от дальнего конца рентгеноконтрастной витой части 31 для того, чтобы позволить специалисту осуществлять селективный ввод напротив разветвленной части кровеносного сосуда. После ввода тела 3 витой пружины в область сосудистой стриктуры сила ввода упруго деформирует тело 3 витой пружины в результате контакта с сосудистой стенкой кровеносного сосуда.
В данной ситуации тело 3 витой пружины растягивается, расширяя зазор С, как показано на Фиг.9. Слой 4 синтетической смолы, однако, поглощает водный компонент (воду) для увлажнения и растягивается для последующего образования цилиндрической пленки 43 вдоль зазора С.
Пленка 43 имеет форму конфигурации спиральной трубки. Пленка 43 имеет вогнутую конфигурацию, наружный диаметр которой меньше наружного диаметра слоя 4 синтетической смолы, нанесенного на наружную поверхность тела 3 витой пружины.
То есть наружная поверхность слоя 4 синтетической смолы изгибается, образуя выпукло-вогнутую часть 6 с выпуклой частью 61 на витках W и вогнутой частью 62 на зазоре С, где цилиндрическая пленка 43 втягивается внутрь.
Обычно коронарная артерия имеет внутренний диаметр около 2-4 мм и становится тоньше по направлению внутрь. При вводе тела 3 витой пружины в коронарную артерию, как показано на Фиг.10 и 11, тело 3 витой пружины перемещает свою часть дальнего конца в область сосудистой стриктуры редко, если и вообще перемещает.
Например, когда наружный диаметр (d) медицинской направляющей проволоки составляет 0,35 мм, как показано на Фиг.10, и внутренний диаметр (D) коронарной артерии составляет 2,0 мм, разница (Δs) между наружной дуговой длиной (L) и внутренней дуговой длиной (m) тела 3 витой пружины определяется в изогнутой части следующим образом:
Δs=L-m=(π×2.0×1/2)-(π×1.3×1/2)≒1,099 мм
Это означает, что внутренняя дуговая длина (m: 2,04 мм) увеличивается
до 3,139 мм, давая отношение удлинения 1,53. Это означает, что тело 3 витой пружины в конечном итоге растягивается приблизительно на 50%.
Если внутренний диаметр (D) коронарной артерии составляет 1,4 мм, как показано на Фиг.11, разница (Δs) определяется в изогнутой части следующим образом:
Δs=L-m=(π×1.4×1/2)-(π×0.7×1/2)≒1,099 мм
Это означает, что внутренняя дуговая длина (m: 1,099 мм) увеличивается
до 2,198 мм, давая отношение удлинения 2,0. Это означает, что тело 3 витой пружины в конечном итоге растягивается приблизительно на 100%. Когда внутренний диаметр (D) коронарной артерии меньше 1,4 мм, вышеуказанное явление не происходит, так как тело 3 витой пружины содержится в коронарной артерии из-за его ограниченной диаметральной ширины.
Цилиндрическая пленка 43 определяется как ненарушенная путем отбора ее материала и количества, даже когда пленка 43 растянута на 50% или 100% в то время, когда тело 3 витой пружины меняет направление в части изгиба в мелком кровеносном сосуде.
В более конкретной манере к гидрофобному полимеру может быть добавлен пластификатор для повышения гибкости первого гидрофобного слоя 41. В качестве пластификатора можно использовать камфору, касторовое масло, диоктилфталат и т.п.
Для формирования слоя 4 синтетической смолы можно использовать метод экструзии, метод погружения или метод покрытия термоусадочной трубки. Может применяться любой метод, если он обеспечивает герметичное уплотнение камеры 5 плавучести.
Для герметичного уплотнения камеры 5 плавучести желательно использовать метод погружения или метод покрытия термоусадочной трубки. Желательный метод образует слой 4 синтетической смолы без пропускания синтетической смолы в камеру плавучести 5, хотя термоусадочная трубка позволяет сжимать камеру плавучести 5, в то же время удерживая газообразный компонент в термоусадочной трубке.
Из вышеуказанных методов метод погружения является наиболее подходящим, так как он помогает избежать необходимости обрезки конца слоя синтетической смолы без сжатия камеры плавучести 5.
Для формирования слоя 4 синтетической смолы тело 3 витой пружины погружается (на этапе погружения) в раствор гидрофобного полимера и после этого высушивается при температуре приблизительно 170°C в течение примерно десяти минут. После нанесения покрытия гидрофобного полимера на тело 3 витой пружины тело 3 витой пружины погружается (финишное погружение) в раствор гидрофильного полимера и после этого высушивается при температуре приблизительно 170° в течение примерно десяти минут.
К раствору гидрофобного полимера могут быть добавлены липкий полимер, пластификатор или оба для образования смеси. После погружения тела 3 витой пружины в раствор смеси и сушки тело 3 витой пружины может быть погружено в раствор гидрофильного полимера или гидрофильный полимер может быть нанесен на гидрофобный полимер тела 3 витой пружины.
В качестве липкого полимера используются полиуретан, полиэфир, полибутадиенстирол, акриловая смола и т.п., исходя из того, что эти полимеры успешно усиливают сцепление слоя 4 синтетической смолы с телом 3 витой пружины.
В качестве пластификатора используются камфора, касторовое масло, диоктилфталат и т.п. по той причине, что эти полимеры повышают гибкость слоя 4 синтетической смолы.
Особенно предпочтительным является добавление пластификатора для обеспечения гибкости с целью недопущения разрыва цилиндрической пленки 43. последовательно сформированной на зазоре С между витками W, когда тело 3 витой пружины изменяет направление, как сказано выше.
На Фиг.12-Фиг.15 показаны фотографии цилиндрической пленки 43 по зазору С между витками W тела 3 витой пружины.
На Фиг.12 и Фиг.13 цилиндрическая пленка 43 расположена в части М центрального диаметра тела 3 витой пружины в растянутом состоянии приблизительно на 50% и 100% соответственно. Часть М центрального диаметра является средним значением внутреннего и наружного диаметров тела 3 витой пружины, что показано для удобства на Фиг.6.
На Фиг.14 и Фиг.15 цилиндрическая пленка 43 расположена на нижней стороне N тела 3 витой пружины в растянутом состоянии приблизительно на 50% и 100% соответственно. Нижняя сторона N означает внутреннюю поверхность тела 3 витой пружины, что показано для удобства на Фиг.6.
В каждом случае цилиндрическая пленка 43 остается на зазоре С между витками W и содержит газообразный компонент внутри тела 3 витой пружины.
То есть даже если медицинская направляющая проволока 1 изгибает рентгеноконтрастную витую часть 31 тела 3 витой пружины для расширения зазора С между витками W, можно удерживать газообразный компонент внутри тела 3 витой пружины, не выпуская его наружу, чтобы поддерживать герметичность в теле 3 витой пружины для поддержания формы камеры плавучести 5. Это происходит благодаря цилиндрической пленке 43, сформированной путем растягивания слоя 4 синтетической смолы в увлажненном состоянии, когда тело 3 витой пружины изгибается при манипуляциях после ввода тела 3 витой пружины в кровеносный сосуд.
Согласно изобретению, путем определения камеры плавучести 5 с помощью цилиндрической пленки 43 достигаются следующие преимущества.
(а) При наличии камеры плавучести 5, образованной в теле 3 витой пружины, можно поддерживать стабильное положение части 12 дальнего конца в потоках крови. Платиновая проволока наносится по меньшей мере на рентгеноконтрастную витую часть 31 в качестве контрастной среды для рентгеноскопии. Удельный вес платиновой проволоки составляет 21,4, приблизительно в 2,7 раза больше, чем у проволоки из нержавеющей стали (удельный вес 7,9).
Удлиненный сердечник 2 утончается по диаметру для выполнения требования поддержания части 12 дальнего конца в гибком состоянии. В данной ситуации медицинская направляющая проволока 1 может значительно провисать на части 12 дальнего конца в неограниченном состоянии, когда удельный вес рентгеноконтрастной витой части 31 увеличивается. Это относится и к вводу части 12 дальнего конца в кровеносный сосуд.
При провисании медицинской направляющей проволоки на части 12 дальнего конца после ввода рентгеноконтрастной витой части 31 в кровеносный сосуд повышается в