Композиция для производства пористого заполнителя
Изобретение относится к области строительных материалов, в частности к пористым заполнителям для бетонов. Технический результат - повышение прочности при раскалывании пористого заполнителя. Композиция для производства пористого заполнителя содержит, мас.%: жидкое стекло плотностью 1,45-1,53 г/см3 45-65, хлорид натрия 1-5, монтмориллонитовая глина 15-20, солевые отходы от вторичной переработки алюминийсодержащих шлаков и лома с содержанием Nа2СО3 - 19-20% 19-30. 2 табл.
Реферат
Изобретение относится к области строительных материалов, в частности к пористым заполнителям для бетонов.
Известна композиция для производства пористого заполнителя следующего состава, мас.%: товарное жидкое стекло, модифицированное хлоридом натрия - 25, глиноземсодержащий отработанный катализатор, отход нефтехимического производства - 0 75 /Комиссаренко Б.С. Модифицированные жидкостекольные системы как основа для жаростойкого заполнителя/Б.С.Комисаренко, С.А.Мизюряев, С.А.Жигулина.//Строительные материалы. - 2001. - №10. - С 27-28/ [1].
Недостатком указанного состава является относительно низкая прочность (0,95 МПа).
Наиболее близкой к изобретению является композиция для производства пористого заполнителя, включающая следующие компоненты, мас.%: жидкое стекло плотностью 1,45-1,53 г/см3 - 100, хлорид натрия 4,5-50 сверх 100% /Пат. 2211196 Российская федерация, МПК С04В 14/24, 38/00. Композиция для производства пористого заполнителя. / Жигулина А.Ю., Мизюряев С.А.; заявитель и патентообладатель Самар. гос. архитектурно-строит. акад. - №2000127623; заявл. 02.11.2000; опубл. 27.08.03, Бюл. №24. / [2]. Принят за прототип.
Недостатком указанного состава керамической массы является относительно низкая прочность 0,07-0,65 МПа.
Сущность изобретения - повышение качества строительных материалов.
Техническим результатом изобретения является повышение прочности пористого материала.
Указанный технический результат достигается тем, что в известную композицию для производства пористого заполнителя, включающую жидкое стекло плотностью 1,45-1,53 г/см3 и хлорид натрия дополнительно вводят монтмориллонитовую глину и солевые отходы от вторичной переработки алюминийсодержащих шлаков и лома с содержанием Na2CO3 - 19-20% при следующем соотношении компонентов, мас.%:
жидкое стекло плотностью 1,45-1,53 г/см3 | 45-65 |
хлорид натрия | 1-5 |
монтмориллонитовая глина | 15-20 |
солевые отходы от вторичной переработки алюминийсодержащих | |
шлаков и лома с содержанием Na2CO3 - 19-20% | 19-30 |
В качестве основного глинистого сырья для производства пористого заполнителя использовалась глина Смышляевского месторождения Самарской области. Глина Смышляевского месторождения характеризуется как тонкодисперсная, преимущественно с низким содержанием мелких и средних включений, представленных кварцем, железистыми минералами, гипсом и карбонатными включениями, химический состав представлен следующими оксидами, мас.%: SiO2 55-58; Al2O3+TiO2 15-20; CaO 4-6; MgO 2-3; Fe2O3 6-8; R2O 3-4; SO3 0,5-1; п.п.п.7-9.
В качестве наполнителя для производства пористого заполнителя использовались солевые отходы от вторичной переработки алюминийсодержищих шлаков и лома с содержанием Na2CO3 - 19-20%. Химический состав солевых отходов представлен следующими оксидами элементами и солями, маc.%: Al - 3,32; Al2O3 - 7,21; NaCl - 3,51; KСl - 1,57; Na2CO3 - 19,87; K2CO3 - 7,21; (NH4)2CO3 - 12,87; H2O - 0,93; SiO2 - 44,49;
СaСO3 - 2,12; MgCO3 - 0,9.
Известно, что основным условием, обеспечивающим вспучивание композиции при ее нагревании, является совмещение во времени пиропластического состояния композиции с интенсивным газовыделением внутри обжигаемого материала. Пиропластическое состояние композиции обеспечат жидкое стекло и монтмориллонитовая глина, а газовыделение солевыми отходами от вторичной переработки алюминийсодержищих шлаков и лома с содержанием Na2O3 - 19-20%.
Сведения, подтверждающие возможность осуществления изобретения. Композиции (табл.1) для производства пористого заполнителя готовили путем тщательного перемешивания всех компонентов, что приводит к растворению хлористого натрия. Ионы натрия понижают силикатный модуль смеси, а ионы хлора, действуя в качестве сильного окислителя, способствуют коагуляции смеси. Понижение силикатного модуля, приводящее к снижению числа силоксановых связей, существенно облегчает переход ионов щелочного металла в раствор и движение молекул воды в монтмориллонитовую глину, что приводит к коагуляции смеси. Коагуляция смеси приводит к повышению вязкости, что дает возможность формовать гранулы любого размера.
Таблица 1 | |||
Составы композиций для производства пористого заполнителя | |||
Компоненты | Содержание компонентов, мас.% | ||
1 | 2 | 3 | |
жидкое стекло плотностью 1,45-1,53 г/см3 | 65 | 55 | 45 |
хлорид натрия | 1 | 3 | 5 |
монтмориллонитовая глина | 15 | 17 | 20 |
солевые отходы от вторичной переработки алюминийсодержищих шлаков и лома с содержанием Na2CO3 - 19-20% | 19 | 25 | 30 |
Из полученной композиции готовили гранулы на тарельчатом грануляторе. Гранулы подвергались термообработке в интервале температур 400-800°С.
При термообработке гранул в интервале температур 100-400°С выделяется содержащаяся в силикате вода, которая начинает вспучивать коагулированную массу. В интервале температур 400-800°С выгорают органические примеси и дегидратация монтмориллонита, что приводит к вспучиванию. В табл.2 приведены физико-механические показатели пористого заполнителя.
Таблица 2 | ||||
Физико-механические показатели кирпича | ||||
Показатель | Состав | Прототип | ||
1 | 2 | 3 | ||
Прочность при раскалывании | 1,45 | 1,58 | 1,71 | 0,07-0,65 |
Как видно из табл.2, пористые заполнители из предложенных составов имеют более высокую прочность при раскалывании, чем прототип.
Полученное техническое решение при использовании солевых отходов от вторичной переработки алюминийсодержищих шлаков и лома с содержанием Na2CO3 - 19-20% позволяет значительно увеличить прочность при раскалывании пористого заполнителя.
Использование солевых отходов от вторичной переработки алюминийсодержищих шлаков и лома с содержанием Na2CO3 - 19-20% при получении пористого заполнителя способствует утилизации промышленных отходов, охране окружающей среды и расширению сырьевой базы для строительных материалов.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Комиссаренко Б.С. Модифицированные жидкостекольные системы как основа для жаростойкого заполнителя./Б.С.Комисаренко, С.А.Мизюряев, С.А.Жигулина.//Строительные материалы. - 2001. - №10. - С 27-28.
2. Пат. 2211196 РФ, МПК С04В 14/24, 38/00. Композиция для производства пористого заполнителя./Жигулина А.Ю., Мизюряев С.А.; заявитель и патентообладатель Самар. Гос. Архитектурно-строит. Акад. - №2000127623; заявл. 02.11.2000; опубл. 27.08.03, Бюл. №24.
Композиция для производства пористого заполнителя, включающая жидкое стекло плотностью 1,45-1,53 г/см3 и хлорид натрия, отличающаяся тем, что она дополнительно содержит монтмориллонитовую глину и солевые отходы от вторичной переработки алюминийсодержащих шлаков и лома с содержанием Nа2СО3 - 19-20% при следующем соотношении компонентов, мас.%:
жидкое стекло плотностью 1,45-1,53 г/см3 | 45-65 |
хлорид натрия | 1-5 |
монтмориллонитовая глина | 15-20 |
солевые отходы от вторичной переработки | |
алюминийсодержащих шлаков и лома с | |
содержанием Nа2CO3 - 19-20% | 19-30 |