Способ производства горячеоцинкованного проката повышенной прочности

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Техническим результатом изобретения является повышение прочностных характеристик стали при сохранении штампуемости, а также получение стали требуемого класса прочности. Технический результат достигается тем, что осуществляют выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, при этом выплавляют сталь, содержащую, мас.%: 0,025-0,10 углерода, 0,41-0,70 марганца, 0,04-0,12 фосфора, 0,01-0,08 алюминия, не более 0,009 азота, железо и неизбежные примеси - остальное, температуру горячей прокатки поддерживают в диапазоне 840-905°С, температуру смотки - 560-690°С, рекристаллизационный отжиг ведут при 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%. Содержание углерода, фосфора и температура отжига связаны с требуемым классом прочности зависимостями: [С]=(0,0005·Кпр-0,065)±0,02; [Р]=(0,0005·Кпр-0,05)±0,02; Tотж≥(900-0,5-Кпр), где: [С] - содержание углерода в стали, мас.%, [Р] - содержание фосфора в стали, мас.%, Tотж - температура рекристаллизационного отжига, °С, Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести; 0,0005; 0,065; 0,05 - эмпирические коэффициенты, %; 900; 0,5 - эмпирические коэффициенты, °С. 3 з.п. ф-лы; 6 табл.

Реферат

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката повышенной прочности из низколегированной стали с фосфором, предназначенного для изготовления деталей автомобиля методом штамповки.

Одним из определяющих качеств автолиста является его способность к вытяжке при штамповке деталей автомобиля. Холоднокатаные полосы с повышенной прочностью и высокой способностью к вытяжке в зависимости от класса прочности должны соответствовать определенному комплексу механических свойств, например, согласно требованию европейского стандарта EN 10292-04 (таблица 1):

Таблица 1
Класс прочности (Кпр)* Марка Предел текучестиσ0,2 (Rel), Н/мм2 Временное сопротивление σв (Rm), Н/мм2 Относительное удлинение δ80, %, не менее
220 HX220PD 220-280 340-400 32
260 HX260PD 260-320 380-440 28
300 HX300PD 300-360 400-480 26
Примечание: *Класс прочности заложен в наименование марки по EN 10292-04. Числовое значение соответствует минимальному пределу текучести.

Известен способ производства стали, содержащей не более 0,007% углерода и 0,006% азота, включающий нагрев слябов при температурах 1000-1160°С, горячую прокатку в полосы с температурой конца прокатки 620-720°С, смотку в рулоны при температурах 600-680°С, холодную прокатку с обжатиями не менее 70%, отжиг при температурах 650-900°С и дрессировку. Выдержку при отжиге холоднокатаной стали проводят в течение 5-18 минут при температурах 750-900°С в проходных печах, а выдержку в течение 11-34 часов при температурах 650-750°С в колпаковых печах [Патент РФ №2258749, МПК С21D 8/04, С21D 9/48, 20.08.2005 г.].

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств проката классов прочности от 220 до 300.

Известен способ производства горячеоцинкованного металла высших категорий вытяжки, включающий горячую прокатку с температурой смотки 500±30°С, холодную прокатку с суммарным обжатием не более 70%, отжиг в колпаковой печи в защитной атмосфере с одноступенчатым нагревом при температуре 680-710°С и термическую обработку металла в линии агрегата непрерывного горячего цинкования при температурах 490-510°С со скоростью нагрева 10,8-11,4°С/с на первой стадии, при температурах 520-560°С со скоростью нагрева 0,4-0,8°С/с на второй стадии и выдержкой при этих температурах 85 с, охлаждение, перестаривание и нанесение тончайшего цинкового покрытия [Патент РФ №2128719, МПК С21D 9/48, С21D 8/04, С23С 2/40, 10.04.1999 г.].

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств классов прочности от 220 до 300.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей компоненты в следующем соотношении, масс.%:

Углерод 0,002-0,008
Кремний 0,005-0,025
Марганец 0,050-0,20
Фосфор 0,005-0,025
Сера 0,003-0,012
Алюминий 0,02-0,07
Азот 0,002-0,007
Титан 0,02-0,05
Ниобий 0,001-0,080
Железо и неизбежные примеси Остальное

разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку.

Горячую прокатку заканчивают при температуре, определяемой из соотношения:

Ткп≥7300/(3,0-lg[Nb][C])-253,

где Ткп - температура конца прокатки, °С;

[Nb] и [С] - содержание ниобия и углерода в стали, %;

а рекристаллизационный отжиг осуществляют в проходной печи при температуре, назначаемой в зависимости от содержания ниобия в стали в соответствии с уравнением:

Tотж=(750+1850[Nb]±20,

где Тотж- температура термической обработки, °С,

[Nb] - содержание ниобия в стали, масс.% [Патент РФ №2255989, МПК С21D 8/04, С22С 38/04, 10.07.2005 г.] - прототип.

Недостатки известного способа состоят в том, что он не обеспечивает требуемого уровня механических свойств проката классов прочности от 220 до 300.

Техническим результатом изобретения является повышение прочностных характеристик стали при сохранении штампуемости, а также получение стали требуемого класса прочности.

Технический результат достигается тем, что в способе производства горячеоцинкованного проката повышенной прочности из низколегированной стали для холодной штамповки, включающем выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, согласно изобретению выплавляют сталь, содержащую 0,025-0,10% углерода, 0,41-0,70% марганца, 0,04-0,12% фосфора, 0,01-0,08% алюминия, не более 0,009% азота, железо и неизбежные примеси - остальное, при этом температуру горячей прокатки поддерживают в диапазоне 840-905°С, а температуру смотки - 560-690°С, рекристаллизационный отжиг осуществляют при температуре 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%.

Согласно изобретению содержание углерода, фосфора и температура отжига связаны с требуемым классом прочности зависимостями:

где [С] - содержание углерода в стали, %;

[Р] - содержание фосфора в стали, %;

Тотж - температура рекристаллизационного отжига, °С;

Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;

0,0005; 0,065; 0,05 - эмпирические коэффициенты, %;

900; 0,5 - эмпирические коэффициенты, (С.

Сущность изобретения состоит в следующем. На механические свойства холоднокатаной листовой стали влияют как химический состав стали, так и режимы деформационно-термической обработки.

Углерод - один из упрочняющих элементов. При содержании углерода менее 0,025% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,10% приводит к снижению пластичности стали, что недопустимо.

Марганец обеспечивает получение заданных механических свойств. При содержании марганца менее 0,41% прочность стали ниже допустимой. Увеличение содержания марганца более 0,70% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Упрочнение стали создает фосфор, который повышает твердость феррита и усиливает выделение дисперсных карбидных включений. Одновременно фосфор улучшает пластичность и штампуемость стали. При содержании фосфора менее 0,04% прочность стали ниже допустимой. Увеличение содержания фосфора более 0,12% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,01% снижается пластичность стали, при этом сталь становится склонной к старению. Увеличение содержания алюминия более 0,08% приводит к ухудшению комплекса механических свойств.

Азот упрочняет сталь. При содержании азота более 0,009%, сталь становится склонной к старению.

Горячая прокатка с температурами конца прокатки 840-905°С и смотки 560-690°С обеспечивает формирование оптимальной текстуры металла, которая после холодной прокатки и термообработки по предложенным режимам трансформируется в текстуру с преобладающей кристаллографической ориентировкой <111>, а также микроструктуры с высокой стабильностью и равномерностью. Ниже и выше заявленных температурных пределов технический результат не достигался, а именно сталь приобретала структуру с неблагоприятной для холодной штамповки текстурой и неравномерную микроструктуру ферритной матрицы.

В результате рекристаллизационного отжига при температуре 750-880°С формируется однородная микроструктура с баллом зерна 9-10 и минимальным выделением структурно-свободного цементита. Снижение температуры отжига ниже 750°С в проходных печах приводит к появлению в микроструктуре отдельных прерывистых строчек рекристаллизованных зерен, что ухудшает штампуемость листовой стали. Увеличение температуры отжига выше 880°С не обеспечивает необходимый уровень механических свойств.

Окончательно механические свойства формируются при дрессировке. Дрессировка полос с обжатием 0,8-2,1% обеспечивает оптимальный уровень механических свойств. Обжатие менее 0,8% приводит к появлению площадки текучести на диаграмме растяжения при испытании на разрыв. Дрессировка с обжатием более 2,1% ограничена техническими возможностями дрессировочного стана.

Экспериментально установлено, что для получения требуемого класса прочности содержание углерода и фосфора должно быть регламентировано в соответствии с зависимостями [С]=(0,0005·Кпр-0,065)±0,02,%, и [Р]=(0,0005·Кпр-0,05)±0,02,%, а температура отжига - в соответствии с выражением Тотж≥(900-0,5 Кпр), °С.

Примеры реализации способа

В кислородном конвертере выплавили низколегированные стали, химический состав которых приведен в таблице 2.

Выплавленную сталь разливали на машине непрерывного литья в слябы сечением 250×1280 мм. Слябы нагревали в нагревательной печи с шагающими балками до температуры 1250°С в течение 3,2 часа и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,5-3,5 мм. Температура полос на выходе из последней клети стана регламентирована. Горячекатаные полосы на отводящем рольганге охлаждали водой до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали солянокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане до толщины 1,0-2,0 мм. Холоднокатаные полосы отжигали в проходных печах с нанесением цинкового покрытия. Отожженные полосы дрессировали с заданным обжатием.

В таблице 3 приведены варианты реализации способа производства горячекатаного проката, а также показатели механических свойств.

В таблицах 4-6 указано необходимое содержание углерода, фосфора и температура отжига согласно зависимостям (1)-(3).

Таблица 2Химический состав низколегированных сталей
№ состава Содержание элементов, масс.%
С Mn Р Аl N Fe и неизбежные примеси
1 0,02 0,35 0,015 0,05 0,006 Ост.
2 0,25 0,41 0,040 0,01 0,005 Ост.
3 0,06 0,55 0,068 0,04 0,006 Ост.
4 0,10 0,70 0,120 0,08 0,009 Ост.
5 0,11 0,80 0,125 0,09 0,006 Ост.
6 (прототип) 0,008 0,18 0,018 0,04 0,005 Ост.
Примечание: состав №6 содержит 0,02% титана и 0,08% ниобия
Таблица 3Технологические параметры производства горячеоцинкованного проката повышенной прочности и показатели механических свойств
№ состава Температура конца горячей прокатки Ткп, °С Температура смотки при горячей прокатке Тсм, °С Температура отжига, °С Степень обжатия при дрессировке, % Предел текучести σт, Н/мм2 Предел прочности σв, Н/мм2 Относительное удлинение δ80, %
1 910 680 890 0,7 210 330 37
2 905 690 880 0,8 240 360 33
3 865 640 850 1,5 285 405 30
4 840 560 750 2,1 340 445 28
5 830 520 745 2,1 365 490 22
6(прототип) 880-920 700 750-880 0,8 - - -
Таблица 4Минимальное и максимальное содержание углерода, рассчитанное согласно зависимости [С]=(0,0005·Кпр-0,065)±0,02, %
№ состава Содержание С, масс.% Требуемый класс прочности Кпр Содержание С, масс.% согласно зависимости [С]=(0,0005·Кпр-0,065)±0,02,%
Cmin Cmах
1 0,02 220 0,025 0,065
2 0,25 220 0,025 0,065
3 0,06 260 0,045 0,085
4 0,10 300 0,065 0,105
5 0,11 300 0,065 0,105
6(прототип) 0,008 220 0,025 0,065
Таблица 5Минимальное и максимальное содержание фосфора, рассчитанное согласно зависимости [Р]=(0,0005·Кпр-0,05)±0,02, %
№ состава Содержание Р, масс.% Требуемый класс прочности Кпр Содержание Р, масс.% согласно зависимости [Р]=(0,0005·Кпр-0,05)±0,02, %
Pmin Рmах
1 0,015 220 0,04 0,08
2 0,040 220 0,04 0,08
3 0,068 260 0,06 0,10
4 0,120 300 0,08 0,12
5 0,125 300 0,08 0,12
6 (прототип) 0,018 220 0,04 0,08
Таблица 6Температура рекристаллизационного отжига Тотж, рассчитанная согласно зависимости Тотж.≥(900-0,5•Кпр), °С
№ состава Температура рекристаллизационного отжига, °С Требуемый класс прочностиКпр Температура отжига Тотж согласно зависимости Тотж(900-0, 5·Кпр), °С
не менее
1 890 220 790
2 880 220 790
3 850 260 770
4 750 300 750
5 745 300 750
6 (прототип) 750-880 220 790

Из таблиц 2-6 видно, что в случае реализации предложенного способа (составы №2-4) и выполнении зависимостей (1)-(3) достигаются механические свойства с классами прочности от 220 до 300. При запредельных значениях заявленных параметров (составы №1 и 5) и использовании способа-прототипа классы прочности от 220 до 300 не достигаются: для состава №1 классу прочности 220 не соответствует предел текучести и предел прочности; для состава №5 классу прочности 300 не соответствует предел текучести и относительное удлинение.

Из проката изготавливали штамповкой высоконагруженные детали автомобиля, такие как усилители корпуса и несущие детали рамы автомобиля; замечаний к штамповке у потребителя не было.

1. Способ производства горячеоцинкованного проката повышенной прочности из низколегированной стали для холодной штамповки, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, мас.%:

углерод 0,025-0,10
марганец 0,41-0,70
фосфор 0,04-0,12
алюминий 0,01-0,08
азот не более 0,009
железо и
неизбежные примеси остальное
при этом температуру горячей прокатки поддерживают в диапазоне 840-905°С, а температуру смотки - 560-690°С, рекристаллизационный отжиг осуществляют при температуре 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%.

2. Способ по п.1, отличающийся тем, что содержание углерода в стали связано с требуемым классом прочности зависимостью:[С]=(0,0005·Кпр-0,065)±0,02,где [С] - содержание углерода в стали, мас.%;0,0005 - эмпирический коэффициент, %;Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;0,065 - эмпирический коэффициент, %.

3. Способ по п.1, отличающийся тем, что содержание фосфора в стали связано с требуемым классом прочности зависимостью:[P]=(0,0005·Кпр-0,05)±0,02,где [Р] - содержание фосфора в стали, мас.%;0,0005 - эмпирический коэффициент, %;Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;0,05 - эмпирический коэффициент, %.

4. Способ по п.1, отличающийся тем, что рекристаллизационный отжиг проводят при температуре, определяемой по зависимости:Тотж≥(900-0,5·Кпр),где Тотж - температура рекристаллизационного отжига, °С;900 - эмпирический коэффициент, °С;Kпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;0,5 - эмпирическией коэффициент, °С.