Бесступенчатый электромашинный гибридный вариатор с цифровым управлением

Иллюстрации

Показать все

Изобретение относится к способам регулирования скорости вращения валов исполнительных механизмов. Устройство содержит статор, токопередающее устройство, ротор, контроллер широтно-импульсной модуляции, силовые ключи, синтезатор частоты, опорный генератор, компьютер, шунт, генератор, управляемый напряжением, блоки оптопар с приемником, между которыми установлен диск с прорезями, выполненный с возможностью вращения, датчики оптопар. Технический результат заключается в повышении надежности, увеличении диапазона регулирования передаточного числа бесступенчатой трансмиссии, улучшении управляемости вариатором. 2 з.п. ф-лы, 14 ил.

Реферат

Область применения

Изобретение относится к машиностроению, а более конкретно к способам регулирования скорости вращения валов исполнительных механизмов, и может найти применение, например, в конструкции автомобиля вместо стандартной ступенчатой коробки скоростей.

Уровень техники

Из уровня техники известен вариатор планетарный бесступенчатый (патент РФ №2095665). В конструкции вариатора присутствуют три фрикциона, узла, наиболее подверженных износу. Нет нейтрального положения. Более того, как следует из описания: «При первоначальном запуске теплового двигателя большое центральное колесо 11 с выходным валом 3 затормаживаются тормозом 23», а следовательно, один из фрикционов противодействует значительному крутящему моменту, достаточному для начального движения транспортного средства.

Часть энергии теплового двигателя поглощается генератором. Причем максимальное количество на прямой передаче, то есть тогда, когда после разгона тепловой двигатель должен работать наиболее экономично в продолжительном установившемся режиме. Вариатор имеет пониженное быстродействие. При переходных режимах и изменениях передаточных чисел сказывается инертность элементов конструкции. Это следует из описания: «…И наоборот, при переходе с низкой скорости на более высокую, необходимо ручкой 22 уменьшить сопротивление реостата 17 (R2) и, нажимая на педаль акселератора 21, увеличить обороты двигателя. При этом возможен некоторый "провал" в динамике набора скорости, так как часть увеличивающего вращающего момента двигателя будет затрачиваться на раскручивание ротора-маховика 13».

Кроме того, в описании упоминается, что для переключения вариатора нужно изменять сопротивление регулировочного реостата. А это влечет за собой дополнительные сложности согласования совместной работы педали акселератора и управления реостатом. Также недостатком является то, что реверс осуществляется только на фиксированном передаточном отношении.

Для повышения КПД вариатора предполагается добавить в устройство дополнительную муфту, которая будет работать только на прямой передаче, а следовательно, еще и затруднять работу вариатора на близлежащих к прямой передаче передаточных отношениях за счет постоянного срабатывания муфты. Кроме того, это понижает быстродействие вариатора.

Из уровня техники известен саморегулируемый голономный бесступенчатый вариатор (патент РФ №2044196). Вариатор предназначен для автоматического плавного изменения частоты вращения ведомого вала в зависимости от момента нагрузки на нем при постоянной частоте вращения приводного двигателя, в отличие от заявленного изобретения, где плавно изменяются передаточные числа вариатора при изменениях нагрузки, а также при изменениях частот вращения приводного двигателя и вторичного вала.

Недостатком вариатора является то, что при работе вариатора избыточная мощность поглощается генератором (до 25% мощности), вследствие чего изменяется передаточное отношение. Причем максимальное поглощение происходит на больших передаточных значениях вариатора, то есть при разгоне, когда требуется повышенный крутящий момент.

Также недостатком является то, что в устройстве вариатора присутствуют множество шестерен и электрическая машина. В устройстве по заявленному изобретению присутствует только электрическая машина, что упрощает конструкцию. Также недостатком является то, что разбег передаточных чисел вариатора ограничен размерами корпуса, да и число зубьев на шестернях постоянно. В устройстве по заявленному изобретению в более широких значениях изменяются передаточные числа, поскольку задаются они изменением параметров широтно-импульсной модуляции (ШИМ). От размеров корпуса разбег передаточных чисел не зависит. Также у вариатора (патент 2044196) нет нейтрального положения и реверса. Из уровня техники известен патент РФ №2264307 на ГИБРИДНЫЙ СИЛОВОЙ АГРЕГАТ. В качестве электромагнитной муфты использована машина постоянного тока. Первый недостаток - питание электрической машины осуществляется последовательно через две токопередающие ступени - сначала через токопередающие кольца, а затем через ламели коллектора. А это как минимум в два раза снижает надежность и срок службы всего узла.

В устройстве по заявленному изобретению в качестве электромагнитной муфты использована синхронная электрическая машина. Питание электрической машины осуществляется через токопередающие кольца. Также возможно исполнение вообще без токопередающих колец - самого недолговечного элемента конструкции.

Характеристика машины постоянного тока такова, что при уменьшении напряжения питания уменьшаются и бороты якоря, но увеличивается ток нагрузки. Таким образом, конструкция эффективна лишь при высокой скорости якоря, то есть при работе на высоких передаточных числах вариатора. При низких передаточных числах вариатора якорь практически неподвижен относительно ротора и по цепи протекают высокие токи нагрузки - для машины постоянного тока это режим короткого замыкания. При резкой смене нагрузки также возможны броски тока в силовой цепи машины постоянного тока. В устройстве по заявленному изобретению характеристика синхронной электрической машины совсем иная, скорость вращения ротора зависит от частоты переменного тока, питающего обмотки статора, ток нагрузки зависит лишь от величины передаваемого крутящего момента.

Также недостатком устройства является сложность резкого изменения частоты ШИМ модуляции. При резком возрастании крутящего момента тоже возрастает ток нагрузки. Но для увеличения скорости вращения якоря (по логике вещей) нужно увеличить напряжение питания, а это приведет к броску тока. При неизменном напряжении питания под нагрузкой якорь затормозится, и величина тока возрастет, суммируясь с величиной тока, необходимой для передачи крутящего момента.

Также недостатком устройства является то, что скорость вращения якоря относительно статора зависит от напряжения питания машины постоянного тока. При перепадах нагрузки якорь будет немного тормозиться или разгоняться, при этом передаточное отношение вариатора будет колебаться в пределах значений «так получилось», а скорости вращения двигателя и вторичного вала будут лишь отслеживаться тахометрами. В том случае, когда автоматика начнет вслед за изменениями скорости вращения якоря изменять напряжения, наверняка последуют и броски тока в цепи электрической машины.

В устройстве по заявленному изобретению скорость вращения ротора относительно статора зависит от частоты питания обмоток ротора, а по величине тока нагрузки компьютер лишь отслеживает величину крутящего момента. При незначительных перепадах нагрузки передаточное отношение вариатора остается неизменным, и лишь при значительных изменениях крутящего момента компьютер принимает решение изменять передаточное отношение вариатора. И что еще немаловажно передаточное отношение вариатора можно задавать с очень большой точностью.

Технический результат, достигаемый заявленным изобретением, заключается в повышении надежности, увеличении диапазона регулирования передаточного числа бесступенчатой трансмиссии, получении реверсивной и нейтральной передач, увеличении срока службы, улучшении управляемости вариатором, отсутствии ограничений по росту мощности, простоте устройства, быстродействии.

Краткое описание чертежей

На Фиг.1 показано конструктивное устройство вариатора, где 1 - двигатель внутреннего сгорания; 2 и 3 - элементы токопередающего устройства; 4 - первичный вал вариатора (соединен с валом двигателя); 5 - подшипник (промежуточный между первичным и вторичным валом); 6 - статор, закрепленный на первичном валу (4) и соединенный электрически с токопередающим устройством (3); 7 - ротор, закрепленный на вторичном валу 9, который вращается на подшипнике 8, на раме 11 кроме двигателя закреплен генератор 16; генератор приводится во вращение двигателем через ременную передачу 10, на раме закреплен датчик 13 оптопар; между датчиком и приемником вращается диск с прорезями 12, который измеряет частоту вращения двигателя (т.е. представляет собой тахометр), на раме закреплен датчик 14; между датчиком и приемником вращается диск с прорезями 15, который измеряет частоту вращения вторичного вала (т.е. представляет собой тахометр); 17 - контроллер широтно-импульсной модуляции (ШИМ), осуществляющий управление силовыми ключами 1 кл.-6 кл.; 18 - управляемый делитель частоты (синтезатор частоты), делит частоту 50 МГц, подаваемую опорным генератором 23. Коэффициент деления частоты определяется кодом, подаваемым на делитель частоты 18 с компьютера 19; 20 - включатель, срабатывает при нажатии на педаль тормоза; 21 - включатель, срабатывает при нажатии на педаль газа; 22 - шунт, добавочное сопротивление с которого снимает напряжение для измерения; 24 - генератор, управляемый напряжением, служит для измерения тока нагрузки в цепи вариатора; 25 - рычаг переключения коробки передач.

На Фиг.2 конструктивно и на Фиг.3 схематично показан тахометр, измеряющий частоту вращения двигателя, где 26 - таймер тахометра, измеряющего частоту вращения двигателя; 27 - опорный генератор таймеров тахометров двигателя и вторичного вала.

На Фиг.4 конструктивно и на Фиг.5 схематично показан тахометр, измеряющий частоту вращения вторичного вала, где 28 - таймер тахометра вторичного вала.

На Фиг.6 показана блок-схема измерения скорости вращения двигателя и вторичного вала и изменения передаточного числа вариатора, где 30 - арифметическое устройство, рассчитывает коэффициент деления для управляемого синтезатора частоты.

На Фиг.7 показана блок-схема измерения крутящего момента на вариаторе, где 31 - измеритель крутящего момента на вариаторе; 32 - устройство, сравнивающее заданный крутящий момент с действующим.

На Фиг.8 показана структурная схема компьютера (19) вариатора, где 29 - регистр (ячейка памяти); 33 - логическое устройство, управляет изменениями параметров работы синтезатора частоты; 34 - логический элемент, осуществляет запрет изменения частоты синтезатора; 35 - логический элемент, осуществляет разрешение изменения частоты синтезатора; 36, 37 и 38 - логические элементы, принимающие участие в организации управления вариатором.

На Фиг.9 показано конструктивное устройство бесщеточного вариатора, где 39 - ротор дополнительного генератора; 40 - статор дополнительного генератора; 41 - передатчик, передает данные значения крутящего момента; 42 - приемник, передает данные значения крутящего момента на компьютер; 43 - переключатель, управляет фазами питания дополнительного генератора.

На Фиг.10 показана структурная схема компьютера (19) бесщеточного вариатора.

На Фиг.11 показана установка электродвигателя (синхронной машины) в силовую установку, где 44 - батарея, накопитель электроэнергии; 106 - статор электромотора, закрепленный на раме; 107 - ротор электромотора, закрепленный на первичном валу; 117 - контроллер широтно-импульсной модуляции (ШИМ), осуществляющий управление силовыми ключами 11 кл.-16 кл.; 118 - управляемый делитель частоты (синтезатор частоты), делит частоту 50 МГц, подаваемую опорным генератором 123; 119 - компьютер, определяющий коэффициент деления частоты для делителя частоты 118; 122 - шунт, добавочное сопротивление с которого снимает напряжение для измерения; 124 - генератор, управляемый напряжением, служит для измерения тока нагрузки в цепи электромотора; 143 - переключатель, управляет фазами питания электромотора.

На Фиг.12 показана структурная схема компьютера электродвигателя, где 129 - регистр (ячейка памяти); 130 - арифметическое устройство, рассчитывает коэффициент деления для управляемого синтезатора частоты; 131 - измеритель крутящего момента на электромоторе; 132 - устройство, сравнивающее заданный крутящий момент с действующим; 133 - логическое устройство, управляет изменениями параметров работы синтезатора частоты; 134 - логический элемент, осуществляет запрет изменения частоты синтезатора; 135 - логический элемент, осуществляет разрешение изменения частоты синтезатора; 136, 137 и 138 - логические элементы, принимающие участие в организации управления электромотором.

На Фиг.13 показана упрощенная схема совместной установки вариатора и электродвигателя, где 45 - логическое дифференциальное устройство, организует управление совместной работой двигателя, вариатора и электромотора.

На Фиг.14 упрощенно показано, каким образом дифференциальное устройство взаимодействует с элементами компьютеров, управляющими работой вариатора и электромотора.

Реализация изобретения

Заявленный технический результат достигается за счет того, что вариатор, содержащий первичный вал, соединенный с валом двигателя, который вместе с генератором закреплен на раме, отличается тем, что статор закреплен на первичном валу и соединен электрически с токопередающим устройством, а ротор, закрепленный на вторичном валу, выполнен с возможностью вращения на подшипнике, также вариатор содержит контроллер широтно-импульсной модуляции, функцией которого является управление силовыми ключами, которые, в свою очередь, имеют функцию управления частотой питания обмоток статора таким образом, что могут вносить изменения в скорость взаимного вращения статора и ротора вариатора, также вариатор содержит синтезатор частоты, выполненный с возможностью управления по параметрам крутящего момента на вариаторе, а также по параметрам скоростей вращения первичного и вторичного вала, также вариатор содержит шунт, функцией которого является снятие добавочного сопротивления для измерения напряжения, также содержит генератор, управляемый напряжением, функцией которого является измерение тока нагрузки в цепи вариатора, также вариатор содержит закрепленные на раме блоки оптопар с приемником, между которыми установлен диск с прорезями и выполнен с возможностью вращения, и функцией которых является измерение частот вращения двигателя и вторичного вала.

Вариатор может содержать элементы токопередающего устройства.

Вариатор может также содержать дополнительный генератор, ротор которого закреплен неподвижно на раме и к нему подведено трехфазное питание, статор дополнительного генератора выполнен питающим статор вариатора, также содержит передатчик, функцией которого является передача данных величины крутящего момента, а на раме закреплен приемник, функцией которого является передача данных на вход компьютера, также содержит переключатель, функцией которого является перемена местами двух фаз, питающих дополнительный генератор, и осуществление запрета подачи импульсов на силовые ключи.

Вариатор может быть выполнен без элементов токопередающего устройства.

Для этого вариатор может содержать дополнительный генератор, ротор которого закреплен неподвижно на раме и к нему подведено трехфазное питание, статор дополнительного генератора питает статор вариатора, также содержит передатчик, функцией которого является передача данных величины крутящего момента, а на раме закреплен приемник, функцией которого является передача данных на вход компьютера, также содержит переключатель, управляемый рычагом переключения передач, функцией которого является перемена местами двух фаз, питающих дополнительный генератор, и осуществление запрета подачи импульсов на силовые ключи.

Дополнительно вариатор может содержать датчики, срабатывающие при нажатии на педаль тормоза и газа и рычаг переключения коробки передач.

Вариатор (см. Фиг.1) представляет собой синхронную электрическую машину, статор 6 которой закреплен на валу двигателя 4 и вращается вместе с ним, а ротор 7 соединен с вторичным валом 9.

Рассмотрим на примере: статор вращается со скоростью 2000 об/мин, а на его обмотки подается трехфазный переменный ток такой частоты, чтобы скорость вращающегося магнитного поля составила тоже 2000 об/мин, но в обратном статору направлении. При этом вторичный вал остается неподвижным (это можно определить как «нулевую передачу»).

Увеличим скорость вращения магнитного поля до 2100 об/мин. Вторичный вал, согласно взаимодействию магнитных полей, вращается в обратную сторону со скоростью 100 об/мин (это реверс). Теперь уменьшим скорость вращения магнитного поля до 1900 об/мин. Вал двигателя делает 2000 об/мин, а ротор, увлекаемый статором, делает 100 об/мин. При дальнейшем уменьшении скорости вращения магнитного поля скорость вторичного вала будет увеличиваться. При достижении нулевой скорости вращения магнитного поля на статор вариатора вместо переменного тока подаются импульсы постоянного напряжения, удерживая статор и ротор взаимно неподвижными.

При этом вторичный вал вращается с той же скоростью, что и первичный (это прямая передача).

Далее при включении реверса питания статора (перемена местами двух фаз) вращающееся магнитное поле начинает вращаться в ту же сторону, что и вал двигателя. Скорость вторичного вала определяется сложением скоростей: вращения маховика двигателя и вращения магнитного поля. При этом вторичный вал будет опережать маховик (это повышенная передача: так же, как в механической КПП на 5 передаче). Управляемый делитель частоты 18 может состоять, например, из микросхем К1533ИЕ10. Они имеют входы предварительной записи кода, каждый делит частоту на 16, поэтому 4 последовательно соединенных счетчика делят частоту на 65536. Частота опорного генератора 50 МГц, поделенная на 65536 она составит 763 Гц.

При частоте модуляции 2 кГц, подаваемой на вход контроллера 17 ШИМ-модуляции, частота вращения синхронной машины составит 60 об/мин.

При частоте вращения двигателя 2000 об/мин частота модуляции «нулевой передачи» составит 66,666 кГц, при этом частота вращения вариатора составит 2000 об/мин. Для этого на делитель частоты в начале каждого цикла счета записывается код: 65536-750. Счетчик отсчитывает 750 импульсов опорного генератора 50 МГц, и на выходе делителя частоты 18 получаем частоту 66,666 кГц.

На первой передаче передаточное отношение вариатора составляет 1:4, то есть при вращении двигателя 2000 об/мин вторичный вал вращается с частотой 500 об/мин. Для этого частота вращения ротора относительно статора составит 1500 об/мин, частота модуляции на входе ШИМ-контроллера - 17-50 кГц, а записываемый на вход делителя частоты 18 код будет равен 65536-1000.

При изменении передаточного отношения от «нулевой передачи» до первой передачи (1:4) код, записываемый на входе делителя частоты, изменяется от значения 65536-750 до значения 65536-1000.

То есть между «нулевой передачей» и первой передачей (1:4) компьютер может варьировать 250 фиксированных передач.

На диске (12, см. Фиг.2; вид со стороны оси вращения) имеется 120 прорезей, и при вращении двигателя импульсы от датчика оптопары (13, см. Фиг.2) поступают на компьютер (19, Фиг.1). Таким образом работает тахометр двигателя. Через вх.1 импульсы поступают на таймер (26, Фиг.3), при этом таймер включается в режим счета, а при следующем импульсе заканчивает счет.

Во время счета таймер считает импульсы, поступающие с генератора (27, Фиг.3).

Полученная величина «А» подается на выход таймера, и она обратно пропорциональна частоте вращения двигателя. Например, при частоте вращения 2000 об/мин двигатель делает 1 оборот за 30 мс, интервал между импульсами на вх.1 таймера 26 составит 250 мкс, за это время таймер отсчитает 750 импульсов генератора 27 (частотой 3 МГц). Цифровая величина «А» будет равна 750.

Тахометр, измеряющий частоту вращения вторичного вала состоит из закрепленного на раме датчика 14 (оптопар), где между датчиком и приемником вращается диск с прорезями 15. На диске (15, см. Фиг.4; вид со стороны оси вращения) имеется 120 прорезей, и при вращении вторичного вала импульсы от датчика оптопары (14, Фиг.4) поступают на компьютер (19, Фиг.1). Через вх.2 импульсы поступают на таймер (28, Фиг.5), при этом таймер включается в режим счета, а при следующем импульсе заканчивает счет.

Во время счета таймер считает импульсы, поступающие с генератора (27, Фиг.5).

Полученная величина «В» подается на выход таймера, и она обратно пропорциональна частоте вращения вторичного вала.

Например, при частоте вращения 200 об/мин вторичный вал делает 1 оборот за 300 мс, интервал между импульсами на вх.2 таймера 28 составит 2500 мкс, за это время таймер отсчитает 7500 импульсов генератора 27 (частотой 3 МГц). Цифровая величина «В» будет равна 7500.

Датчик 14 (Фиг.4) имеет 2 оптопары, установленные примерно через 0,5 градуса окружности. При вращении вторичного вала один из датчиков оптопары подает импульс на таймер, он же и заканчивает счет. По импульсу на второй оптопаре определяется направление вращения вторичного вала, и выдает данные с выхода «+» или «-» на «указатели направления вращения» (вх.2, Фиг.5). При смене направления вращения оптопары 14 меняются ролями.

Предел счета таймера - 2,5 млн импульсов. При частоте вращения вторичного вала менее 0,6 об/мин таймер переполняется и подает сигнал на выход «переполнение таймера» 28 (Фиг.5). Этот же сигнал - «переполнение таймера» - выдается на выходе таймера 28 и в самом начале работы, сразу после подачи электропитания.

При частоте вращения менее 0,6 об/мин можно считать, что вторичный вал неподвижен, а вариатор (при заданных технических характеристиках) обеспечивает максимальное передаточное отношение 1500-1600.

Измерение скорости вращения двигателя и вторичного вала и изменение передаточного числа вариатора осуществляется следующим образом.

Управляемый делитель частоты 18 записывает код, подающийся на его вход для определения частоты, требуемой для ШИМ-модуляции вариатора.

Для этого величина «А» с выхода таймера 26 и величина «В» с выхода таймера 28 подаются на арифметическое устройство (30, Фиг.6). В первую очередь важно синхронизировать скорость ротора относительно статора в вариаторе. Рассмотрим вариант, когда вторичный вал еще неподвижен.

Таймер 28 (Фиг.6) выдает сигнал «переполнение таймера» на вход арифметического устройства (30, Фиг.6), определяющий порядок расчета кода, подаваемого на делитель частоты 18.

В этом случае (когда С=А) величина «С» определяет частоту, подаваемую на вход контроллера ШИМ-модуляции 17 (Фиг.1).

Например, при частоте вращения 2000 об/мин, двигатель делает 1 оборот за 30 мс, интервал между импульсами на вх.1 таймера 26 составит 250 мкс, за это время таймер отсчитает 750 импульсов генератора 27 (частотой 3 МГц). Цифровая величина «А» будет равна 750.

Код на входе делителя частоты 18 будет равен 65536-750, частота на входе контроллера ШИМ-модуляции 17 составит 66,666 кГц, ротор вращается со скоростью 2000 об/мин, вторичный вал остается неподвижным - это и есть ранее упомянутая «нулевая передача». Теперь, если на вход «убывание/приращение кода» подать значение «-1», код на входе делителя частоты 18 будет равен 65536-750-1. Частота на входе контроллера ШИМ-модуляции 17 составит 66,578 кГц, соответственно скорость вращения ротора относительно статора - 1997,3 об/мин, скорость вращения вторичного вала составит 2,66 об/мин, а передаточное отношение вариатора будет равно 751.

Далее через 1000 импульсов (через 15 миллисекунд) с выхода делителя 18 код изменяется до величины 65536-750-2. Частота на входе контроллера ШИМ-модуляции 17 составит 66,489 кГц, скорость вращения ротора - 1994,7 об/мин, скорость вращения вторичного вала 5,32 об/мин, передаточное отношение вариатора будет равно 376. Далее при изменении кода каждые 1000 импульсов с выхода делителя 18 примерно через 5 секунд значение кода достигнет значения 65536-1000, а передаточное значение вариатора 1:4 (что соответствует первой передаче в обычной кпп). При изменении кода переключения вариатора происходят небольшими рывками, но при изменении длительности импульса на 0,02 мкс (частота опорного генератора делителя 18-50 МГц) это будет незаметно, а взаимодействие магнитных полей статора и ротора обеспечит мягкость передачи крутящего момента так, как если бы в устройстве были пружины.

Следующий этап - процесс синхронизации.

Способ изменения передаточных чисел вариатора, описанный ранее, действителен лишь в момент начала движения и при очень малой частоте вращения вторичного вала.

В процессе движения арифметическое устройство 30 синхронизирует статор и ротор вариатора, сравнивая данные, поступающие от таймеров 26 и 28. Величины А и В подаются на вход устройства 30, а тахометр 14 определяет данными на выходе «указатели направления вращения» порядок расчета кода для делителя частоты 18. Например, вторичный вал вращается в прямом направлении: выход «+» таймера 14 определяет порядок расчета кода устройству 30: С=А:(1-А/В) (Фиг.6). Код, равный величине 65536-С, обеспечивает синхронизацию статора и ротора вариатора. Далее на вход «убывание/приращение кода» устройства 30 подается значение убывания кода, тем самым изменяя передаточное отношение вариатора. Убывание кода происходит через определенное количество импульсов с выхода делителя 18 - количество импульсов может изменяться в зависимости от величины крутящего момента, заданных регулировок и т.д., изменяя тем самым передаточное число вариатора.

Убывание кода может накапливаться до того момента, когда с тахометров 13 и 14 отсчитываются и перезаписываются на выходы таймеров 26 и 28 новые значения величин А и В. По новым значениям А и В арифметическое устройство 30 определяет величину С, тем самым синхронизируя ротор и статор вариатора, а затем опять начинает убавлять код. При движении на задней передаче с выхода «-» таймера 14 определяется порядок расчета величины С=А:(1+А/В) для синхронизации ротора и статора, а изменение передаточного отношения вариатора производится приращением кода.

Далее производится измерение крутящего момента на вариаторе.

Скорость вращения ротора относительно статора в вариаторе зависит от частоты синхронизации, но не зависит от нагрузки на вторичном валу. При изменении нагрузки на вторичном валу (например, при движении в подъем после ровного участка дороги) увеличивается ток нагрузки в обмотках статора вариатора и, следовательно, в цепи шунта 22 (Фиг.1; Фиг.7). На шунте 22 возникает напряжение, пропорциональное току нагрузки. К шунту 22 подключен генератор, управляемый напряжением 24 (Фиг.1; Фиг.7), который в зависимости от напряжения (тока нагрузки) на шунте изменяет частоту на выходе. Частота ГУН 24 подается через вх.5 (Фиг.1) на таймер 31 (Фиг.7). С выхода управляемого делителя частоты 18 (Фиг.1) через вх.3 (Фиг.1) частота модуляции подается на таймер 31. Два из выходов ШИМ-контроллера 17 через вх.4 (Фиг.1) подключены к таймеру 31. С началом ШИМ-импульса на вх.4 таймеру 31 подается разрешение считать импульсы, поступающие с ГУН 24, но не сразу, а после нескольких (например, 3-4) импульсов со вх.3. Таймер считает импульсы генератора 24 в строго заданном интервале, например 5 мкс. Полученная цифровая величина на выходе таймера 31 отображает величину крутящего момента на вариаторе.

Сравнения крутящего момента.

Каждому значению оборотов двигателя соответствует оптимальный крутящий момент на валу. При повышении крутящего момента следует переключаться на пониженную передачу, а при уменьшении крутящего момента следует, наоборот, переключаться на повышенную передачу (уменьшать передаточное отношение вариатора) с тем, чтобы двигатель не расходовал мощность впустую.

Величину крутящего момента можно разделить на четыре интервала (по возрастанию):

A) Заниженный - когда двигатель работает без нагрузки;

Б) Оптимальный - когда двигатель работает в наиболее экономичном режиме;

B) Номинальный - когда двигатель работает при повышенном крутящем моменте, например при разгоне;

Г) Завышенный - когда двигатель работает при непозволительной нагрузке.

Номинальный момент может изменяться в широких пределах - от оптимального до завышенного, в зависимости от нагрузки и режима работы.

Устройство сравнения 32 (Фиг.7) получает величину «А» (обороты двигателя) от таймера 26 и по записанной во внутренней памяти таблице определяет оптимальный крутящий момент, сравнивая его с величиной действующего крутящего момента на вариаторе. Величина действующего крутящего момента подается на устройство сравнения с таймера 31 (Фиг.7).

Задача сравнивающего устройства - привести величину действующего крутящего момента в соответствие с оптимальной (наиболее экономичной, взятой из таблицы). Это достигается изменением передаточного отношения вариатора, а именно убыванием или приращением кода, которое передается с выхода устройства сравнения 32 (Фиг.7) на арифметическое устройство 30 (Фиг.6).

Если действующий крутящий момент на вариаторе немного возрос (например, при движении в подъем после ровного участка дороги), устройство сравнения начинает прибавлять код, увеличивая передаточное отношение вариатора. И наоборот, если действующий крутящий момент уменьшается, следует уменьшить передаточное отношение вариатора путем убывания кода.

Убывание (приращение) кода производится через определенное количество импульсов с выхода делителя 18, подаваемых на вх.3 и далее на таймер 31 и устройство сравнения 32 (Фиг.7). Чем выше величина действующего крутящего момента, тем реже (через большее количество импульсов с выхода делителя 18) устройство сравнения 32 производит убывание кода. Следовательно, при большей нагрузке на вторичном валу вариатор будет изменять передаточное отношение более медленно, обеспечивая достаточный для разгона крутящий момент двигателя.

Кроме того, к устройству сравнения 32 (Фиг.7) от арифметического устройства 30 (Фиг.6) подключена обратная связь. Эта величина равна «В» деленное на «А» и обозначает передаточное отношение вариатора. Это может быть также и просто величина «В», обозначающая частоту вращения вторичного вала.

По этим величинам устройство сравнения 32 определяет, в каких пределах может изменяться величина действующего крутящего момента на вариаторе. В начале разгона крутящий момент может достигать самых высоких значений, близких к завышенному. Это определяется устройством 32 по передаточному отношению вариатора.

Далее (с уменьшением передаточного отношения) крутящий момент принимает номинальное значение, плавно уменьшаясь до значения оптимального - по мере уменьшения передаточного отношения и разгона.

При этом если величина крутящего момента остается очень высокой и убывание кода производится через очень большое количество импульсов с выхода делителя 18, устройство сравнения 32 перестает отдавать команды на убывание кода.

Таким образом, при повышенной нагрузке передаточное отношение может остановиться на определенном значении, обеспечивая тем самым достаточный крутящий момент двигателя, например, при движении в подъем.

Компьютер 19 вариатора может быть реализован следующим образом.

На чертеже 8 изображена структурная схема этого компьютера. В регистр 29 (Фиг.8) периодически перезаписывается код, подаваемый на вход управляемого делителя 18. Таймер 26 измеряет частоту вращения двигателя, а таймер 28 измеряет частоту вращения вторичного вала и сигнализирует «остановку вторичного вала».

По данным таймеров 26 и 28 арифметическое устройство 30 синхронизирует двигатель и вторичный вал.

Поступающая с ГУН (24, Фиг.7) величина определяется таймером 31 как величина крутящего момента на вариаторе. Величина крутящего момента подается с таймера 31 на устройство сравнения 32 (Фиг.7), которое определяет убывание или приращение кода, изменяя тем самым передаточное отношение вариатора.

Регистр 29 служит для записи и хранения кода, код перезаписывается по команде устройства сравнения 32 (Фиг.8). При малых значениях передаточного отношения вариатора изменение кода на единицу крайне мало отражается на работе вариатора, поэтому на выходе арифметического устройства 30 (Фиг.8) код может изменяться в некотором интервале времени, а затем по команде устройства 32 перезаписывается в регистр 29. Частота перезаписи определяется по передаточному отношению вариатора (по величинам А и В). Для этого служит обратная связь между устройствами 30 и 32 (на Фиг.8 показана стрелкой).

При больших передаточных отношениях вариатора данные на регистре 29 перезаписываются при каждом изменении кода на выходе арифметического устройства 30.

Логическое устройство 33 (Фиг.8) определяет, когда следует подавать разрешение или запрет на приращение (или убывание) кода, определяющего коэффициент деления частоты. При переключении рычага 25 (Фиг.1 и 8) в положение «R» или «D» логический элемент «или» 38 (Фиг.8) подает разрешение на логический элемент «и» 35 (Фиг.8). После нажатия педали «газ» (21, Фиг.1 и 8) на выходе логического элемента 35 появляется сигнал, разрешающий логическому устройству 33 приращение (или убавление) кода. При нажатии на педаль «тормоз» (20, Фиг.1 и 8) подается сигнал на логический элемент 34 «или».

И при уменьшении частоты вращения вторичного вала ниже 0,6 об/мин таймер 28 (Фиг.8) подает сигнал «переполнение таймера» на логический элемент 34, по команде которого логическое устройство 33 переходит в устойчивое состояние запрета приращения (или убывания) кода.

Кроме того, включатель 20 подключен и напрямую к устройству 33: каждый раз при нажатии на педаль «тормоз» логическому устройству 33 подается временный запрет на приращение (убывание) кода. Это нужно для того, чтобы при кратковременном торможении двигатель отключался от нагрузки. В это время арифметическое устройство 30 только синхронизирует первичный и вторичный вал по их скоростям вращения. Крутящий момент на вариаторе (скорее всего) будет разным при одной и той же частоте вращения, в зависимости от того, в каком направлении вращается вторичный вал - прямом или обратном. Поэтому устройство сравнения 32 (Фиг.7 и 8) имеет две таблицы для определения оптимального крутящего момента, записанных во внутренней памяти - для прямой и задней передач.

При включении рычага коробки передач 25 в положение «R» подается разрешение на логический элемент «и» 36 (Фиг.8), и приращение кода подается от устройства сравнения из той таблицы, которая соответствует задней передаче. При переключении рычага 25 в положение «D» подается разрешение на логический элемент «и» 37 (Фиг.8), убывание кода подается на логическое устройство 33 из той таблицы, которая соответствует прямой передаче.

Режимов движения может быть несколько.

Резкий старт.

Рычаг 25 находится в положении «нейтраль». Педаль газа нажата, и двигатель вращается с частотой 2000-5000 об/мин. Вторичный вал неподвижен, арифметическое устройство 30 синхронизирует его по величине С=А.

После включения рычага 23 в положение «D» подается разрешение на убывание кода, вариатор начинает уменьшать передаточное отношение, определяя частоту изменения кода по величине крутящего момента (показания ГУН 24, Фиг.8). Большим оборотам двигателя соответствует и больший крутящий момент на вариаторе. Также высоким передаточным числам вариатора соответствует и повышенный крутящий момент на валу двигателя.

В дальнейшем синхронизация устройством 30 производится по формуле С=А:(1-А/В) - по мере того, как вторичный вал набирает обороты. Крутящий момент на вариаторе остается достаточно высоким (поскольку и обороты двигателя достаточно велики), что позволяет гораздо быстрее уменьшать значение кода, а следовательно, уменьшать передаточное значение вариатора.

Плавный разгон.

Двигатель вращается на холостых оборотах, вторичный вал неподвижен.

После включения рычага 25 в положение «D» нажимаем педаль газа (21). В момент начала движения устройство 30 осуществляет синхронизацию только по оборотам двигателя (по формуле С=А).

Постепенно двигатель набирает обороты, и через каждые 1/120 оборота таймер 26 перезаписывает данные тахометра 13, по которым осуществляется синхронизация. При этом устройство 30 будет увеличивать значение кода соответственно синхронной частоте. Убывание кода для переключения передач будет незначительным - между перезаписями данных на таймере 26 будут интервалы, во время которых двигатель набирает обороты, а потому крутящий момент будет достаточно высоким.

Если педаль газа будет нажата с большей скоростью и двигатель быстрее набирает обороты, то величина крутящего момента будет достаточно велика, и устройство сравнения 32 будет подавать устройству 30 команду уже не на убывание, а на увеличение кода, с тем чтобы увеличить передаточное отношение вариатора. То есть при более резком нажатии педали газа разг