Многоканальная передача и прием с блочным кодированием в системе связи

Иллюстрации

Показать все

Изобретение относится к системам связи для многоканальной передачи и приема с блочным кодированием. Технический результат - увеличение пропускной способности. Для этого в одном объекте вторичный вещательный канал передается одновременно с частью информации, кодированной из первичного вещательного канала. В другом объекте мобильная станция переориентирует свою приемную схему на прием одной или более частей вторичного вещательного канала после того, как принята достаточная часть первичного вещательного канала без установленной ошибки. В другом объекте вторичные вещательные каналы, связанные с множеством первичных вещательных каналов, мультиплексируются в единственный вторичный канал. 19 н. и 21 з.п. ф-лы, 7 ил.

Реферат

Область техники, к которой относится устройство

Настоящее изобретение относится в общем к системам связи и более конкретно к новым и улучшенным способу и устройству для многоканальной передачи и приема с блочным кодированием в системе связи.

Уровень техники

Беспроводные системы связи широко используются для обеспечения различных типов передачи, как, например, голоса и данных. Эти системы могут быть основаны на множественном доступе с кодовым разделением (МДКР) (CDMA), множественном доступе с временным разделением (МДВР) (TDMA) или некоторых других методах модуляции. Система МДКР обеспечивает некоторые преимущества над другими типами систем, включая увеличение пропускной способности системы.

Система МДКР может быть предназначена для поддержки одного или более стандартов МДКР, таких как (1) «TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System» (стандарт IS-95), (2) стандарт, предложенный консорциумом, названным «Проект сотрудничества третьего поколения» («3rd Generation Partnership Project» (3GPP)) и внедренный в набор документов, включая Документ Nos. 3G TS 25.211, 3G TS 25.212, 3G TS 25.213 и 3G TS 25.214 (Ш-МДКР стандарт), (3) стандарт, предложенный консорциумом, названным «Проект 2 сотрудничества третьего поколения» («3rd Generation Partnership Project 2» (3GPP2)) и внедренный в набор документов, включая «C.S0002-A Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems» и «C.S0024 cdma2000 High Rate Packet Data Air Interface Specification» (стандарт cdma2000), и (4) некоторые другие стандарты. Системы не-МДКР включают в себя AMPS и GSM системы.

Обычные беспроводные системы обеспечивают передачу от точки к точке, такую как голосовые вызовы и информационные вызовы между одной или более базовыми станциями и мобильной станцией. Иногда желательны передачи от точки к множеству точек, такие как вещание информации, передаваемой к одной или более абонентским мобильным станциям. Вещательные услуги могут включать в себя новости, спорт, обновления данных погоды, различные аудио и/или видео презентации, различные формы текста, данных и тому подобное.

Вещательный информационный сигнал является намеренно не адаптированным для отдельных соединений мобильных станций, но адаптированным для передачи к различным мобильным станциям в зоне охвата сотой. Таким образом, методы для оптимизации линий от точки к точке, такие как управление мощностью, не так эффективны при идентичном применении к вещательному сигналу. Качество сигнала, принятого различными географическими местоположениями в зоне охвата сотой, будет различным. Методы блочного кодирования могут быть использованы для обеспечения минимального качества услуги для всех областей, обслуживаемых сотой.

Вследствие различных условий сигналов при прохождении через соту возможно предложить дополнительное содержание для мобильных станций, которые находятся в относительно лучшей зоне приема. Дополнительным содержанием может быть дополнительный текст или данные для прохождения совместно с базовым информационным сигналом, внедренным в вещательный сигнал. Альтернативно, дополнительная информация может быть обеспечена для улучшения качества, например, видео- или аудиовещания. Этот дополнительный или вторичный информационный поток может быть предложен на одном или более отдельных, параллельных, мультиплексных вещательных каналах с кодовым разделением, которые имеют такую же продолжительность, что и основной вещательный канал, который поддерживает мобильные станции во всей зоне соты. Однако можно получить дополнительную сложность, увеличение цены, увеличенное потребление энергии и/или уменьшенный срок службы элемента питания, если используется схема параллельного приема в мобильных станциях для получения преимущества вторичного сигнала.

Кроме того, если предлагается множество вещательных потоков для подписки в соте, то желателен эффективный формат для передачи множества вещательных потоков. Следовательно, в технике имеется необходимость во множестве каналов передачи и приема с блочным кодированием в системе связи.

Раскрытие изобретения

Описанные здесь варианты осуществления относятся к необходимости в передаче и приеме множества каналов с блочным кодированием в системе связи. В одном объекте вторичный вещательный канал передается одновременно с информацией четности, закодированной из первичного вещательного канала. В другом объекте мобильная станция переориентирует ее приемную схему для приема одной или более частей вторичного вещательного канала после приема достаточной части первичного вещательного канала без установленной ошибки. В другом объекте вторичные вещательные каналы, связанные с множеством первичных вещательных каналов, мультиплексируются в единственный вторичный канал. Представлены также различные другие объекты. Эти объекты имеют преимущества в минимизации ресурсов мобильной станции, требуемых для приема множества вещательных каналов, а также уменьшения сложности и канальных ресурсов, требуемых для передачи множества вещательных каналов.

Изобретение обеспечивает способы и элементы системы, которые осуществляют различные объекты, варианты осуществления и признаки изобретения, как подробно описано далее.

Краткое описание чертежей

Признаки, сущность и преимущества настоящего изобретения станут очевидными из подробного описания, изложенного ниже, взятого в связи с чертежами, на которых одинаковые ссылочные позиции обозначают соответственно повсюду, и где:

Фиг.1 является блок-схемой системы беспроводной связи, способной поддерживать несколько пользователей;

Фиг.2 изображает варианты осуществления соответственно базовой станции и мобильной станции, оборудованных для многоканальной передачи и приема;

Фиг.3 изображает примерный формат первичного и вторичного вещательных каналов;

Фиг.4 является блок-схемой алгоритма варианта осуществления способа передачи первичного и вторичного вещательных каналов;

Фиг.5 является блок-схемой алгоритма варианта осуществления способа приема первичного и вторичного вещательных каналов;

Фиг.6 изображает примерный формат множества вещательных каналов, включающих в себя первичный вещательный канал для каждого вещательного канала и вторичный канал с временным мультиплексированием, содержащий вторичные вещательные каналы для каждого вещательного канала; и

Фиг.7 является блок-схемой алгоритма варианта осуществления способа передачи множества вещательных каналов, включающих первичный и вторичный вещательные каналы.

Осуществление изобретения

Фиг.1 является блок-схемой системы беспроводной связи 100, которая может быть предназначена для поддержки одного или более стандартов и/или проектов МДКР (например, стандарт Ш-МДКР, стандарт IS-95, стандарт cdma2000, спецификацию HDR). В альтернативном варианте осуществления система 100 может также использовать любой беспроводной стандарт или проект, отличный от систем МДКР, такой как система GSM.

Для простоты показанная система 100 включает в себя три базовые станции 104 в связи с двумя мобильными станциями 106. Базовая станция и ее зона охвата часто обобщенно называется «сотой». В системах IS-95 сота может включать в себя один или более секторов. В спецификации Ш-МДКР (W-CDMA) каждый сектор базовой станции и зона сектора охвата называется сотой. Используемый здесь термин базовая станция может быть равноценно использован с термином точка доступа или узел В. Термин мобильная станция может быть равноценно использован с терминами пользовательское оборудование (ПО) (UE), абонентский блок, абонентская станция, терминал доступа, удаленный терминал или другие соответствующие термины, известные из уровня техники. Термин мобильная станция охватывает фиксированные беспроводные приложения.

В зависимости от воплощенной системы МДКР каждая мобильная станция 106 может связываться с одной (или возможно более) базовой станцией 104 по прямому каналу в любой заданный момент и может связываться с одной или более базовыми станциями по обратному каналу, в зависимости от того, поддерживает или нет мобильная станция технологию «мягкой передачи». Прямой канал (т.е. нисходящий канал) относится к передаче с базовой станции в мобильную станцию, а обратный канал (восходящий канал) относится к передаче с мобильной станции в базовую станцию.

Для ясности примеры, используемые при описании этого изобретения, могут допускать, что базовые станции являются инициатором сигналов, а мобильные станции являются приемниками, и обслуживают эти сигналы, т.е. сигналы в прямом канале. Специалист в данной области техники понимает, что мобильные станции, так же как и базовые станции, могут быть оборудованы для передачи данных, как описано здесь, и объекты настоящего изобретения также применяются в этих ситуациях. Слово «примерный» используется здесь для обозначения «служащий в качестве примера, отдельного случая или иллюстрации». Любые варианты осуществления, описанные здесь в качестве «примерных», не обязательно подлежат толкованию в качестве предпочтений или преимуществ над другими вариантами осуществления.

Во время обычного голосового вызова МДКР или сеанса передачи данных одна или более базовых станций 104 связываются с мобильной станцией 106, другими словами, соединение от точки к точке. Качество канала связи между мобильной и базовой станциями может различаться во времени и зависеть от таких факторов, как расстояние между ними, препятствия, которые блокируют или отражают передаваемые сигналы, и количество пользователей, чьи сигналы создают помехи. Изменения в канале связи могут быть скомпенсированы с помощью управления мощностью для увеличения или уменьшения мощности передачи с мобильной станции, с базовой станции или с обеих станций. Управление мощностью используется для поддержки заданной частоты кадровых ошибок или другого качественного показателя, определяемого для обеспечения допустимого уровня голосового качества, или пропускной способности данных и задержки при минимизации мощности передачи. Так, мобильная станция, которая находится близко к базовой станции, например, может использовать значительно меньше доступной мощности передачи базовой станции, чем мобильная станция, которая находится дальше. Подобно этому мобильная станция, которая испытывает сильное замирание, требует больше мощности передачи от базовой станции, чем мобильная станция, имеющая средние требование. Поскольку мощность для данного передатчика обычно ограничена, пропускная способность системы, в общем, оптимизируется посредством обеспечения величины мощности для каждой мобильной станции, требуемой для поддержания желаемой пропускной способности/задержки данных или голосового качества или обеспечения сэкономленной мощности для других мобильных станций, поддерживаемых этой же базовой станцией. По обратному каналу передача наименьшей величины мощности мобильной станцией с использованием управления мощностью уменьшает помеху, испытываемую приемниками базовых станций, назначенных для других мобильных станций, или другие многоканальные составляющие от этих мобильных станций. Другим преимуществом управления мощностью обратного канала является то, что пониженная мощность РЧ (RF) передачи также расширяет время разговора/активности для данной зарядки аккумулятора мобильной станции. Методы управления мощностью хорошо известны из уровня техники и могут эффективно использоваться для регулирования качества связи для соединений от точки к точке.

В противоположность этому вещательная передача разрешает связь между одной или более базовыми станциями и группой мобильных станций или связи от точки к множеству точек. Вещательная передача может быть использована для передачи содержания, такого как данные, текст, новости, фильмы, спортивные события и тому подобное, из одной или более обслуживающих базовых станций на одну или более абонентские станции. Все мобильные станции, использующие конкретный вещательный канал, могут контролировать и декодировать единственный сигнал прямого канала, содержащего вещательную информацию. Однако различные абонентские станции могут быть распределены по зоне охвата сот, таким образом, испытывая различные и иногда некоррелированные уровни помех в любом заданном времени. Как таковая, мгновенная мощность, требуемая для передачи содержимого на одну абонентскую станцию, может быть намного больше, чем та мощность, которая требуется для передачи ко всем абонентским станциям, обслуживаемым базовой станцией, в один момент, и это же верно для другой абонентской станции в следующий момент. Одним решением является передача вещательного канала при минимальном уровне мощности, требуемом мобильной станцией с самым слабым приемом в данный момент. Однако необходимая мощность для абонентской станции с самым наихудшим мгновенным приемом обычно является постоянно высокой во времени и уменьшает преимущества управления мощностью. В то же самое время не уменьшаются сложность и цена пропускной способности, связанной с обратной связью от мобильных станций к базовым станциям. Недостатком этого подхода является то, что излишняя мощность, требуемая для достижения слабой мобильной станции, может вызывать чрезмерную помеху, тем самым уменьшая пропускную способность обслуживания других каналов в системе, таких как голосовые вызовы от точки к точке и вызовы передачи данных от точки к точке, а также других вещательных каналов.

Альтернативным решением является использование внешнего блочного кода по вещательному каналу для обеспечения избыточности. Пример таких систем описан в находящейся на рассмотрении заявке на патент США № 09/933.912, названной «Способ и система для использования внешнего декодера в системе связи вещательных услуг», поданной 20 августа 2001, права на которые принадлежат обладателю прав настоящего изобретения. В этом примере внешний код используется для восстановления стертой информации посредством внутреннего кода, процесс иногда называется как декодирование со стиранием. Другие примеры внешнего блочного кодирования включают в себя код четности с низкой плотностью (КЧНП) (LDPC) и другие коды, подходящие для декодирования со стиранием. Вещательная информация сегментируется в блоки, и каждый блок кодируется. В примерном варианте осуществления блоки состоят из нескольких кадров вещательной информации, называемых систематическими кадрами, и нескольких кадров избыточной информации, создаваемой процессом кодирования, называемых кадрами четности. Систематическая информация и информация четности может перемежаться любым возможным способом. В других вариантах осуществления информационные биты после внешнего кодирования могут быть переданы в кадрах, содержащих систематические биты, и биты четности, если не применяются указатели систематических кадров и кадров четности. Для ясности обсуждения здесь описывается примерный вариант осуществления с систематическими кадрами, передаваемыми первый раз вслед за передачей кадров четности.

Если мобильная станция получает все систематические кадры без ошибки или принимает достаточно систематических кадров или кадров четности, тогда некоторые или все кадры четности могут быть проигнорированы. Альтернативно, если мобильная станция корректно принимает достаточно внешне кодированных битов, остальные биты в блоке могут быть проигнорированы. Это может быть в случае для конкретной мобильной станции, которая имеет определенную линию связи, например мобильная станция находится близко к обслуживающей базовой станции. В примерном варианте осуществления для любого систематического кадра, принятого с ошибкой, корректно принятый кадр четности может быть заменен и использован в блочном кодировании для воспроизведения переданной вещательной информации без ошибки. Таким образом, с используемой схемой кодирования, в которой блок из n кадров, включающий в себя k систематических кадров и n-k кадров четности, вплоть до n-k кадров каждого типа могут быть получены с ошибкой без какой-либо потери итоговых данных. Поэтому, если желателен определенный уровень качества вещательной связи для всех абонентских станций в соте, система может быть спроектирована для того, чтобы самая слабая мобильная станция правильно в целом принимала минимальное число кадров. В этом случае все мобильные станции, использующие вещательный канал в зоне охвата соты, будут способны декодировать и восстановить переданную вещательную информацию. Каждая мобильная станция может остановить прием кадров, когда определено, что принято корректно k кадров (или систематических, или четности).

Из уровня техники известны различные механизмы определения того, правильно ли принят кадр. В примерном варианте осуществления каждый кадр также кодируется циклическим избыточным контрольным (ЦИК) (CRC) кодом, который может также использоваться для определения, принята ли ошибка в кадре. Отметим, что ЦИК эффективен не на 100%, так что изредка возможно, что кадр, содержащий ошибку, будет установлен, как принятый корректно. В этом случае одна или более ошибок, принятых в кадре, могут вводить одну или более ошибок в принятом итоговом потоке вещательной информации. Если ошибочный кадр используется в блочном декодировании для восстановления стертых систематических кадров, могут быть введены дополнительные ошибки. Могут использоваться различные методы для уменьшения этих эффектов. Использование дополнительных кадров для декодирования является одним из методов, который описан в находящейся на рассмотрении заявке на патент США № 10/010.199 (в дальнейшем «заявка 199»), названной «Корректирующий декодер стирания и единственной ошибки для линейных блочных кодов», поданной 4 декабря 2001, и права на которую принадлежат обладателю прав настоящего изобретения. Кадры, которые установлены, как содержащие ошибку, из-за использования ЦИК, например, называются стертыми и не используются в получении декодированных результатов. Кадр, который установлен как правильный, хотя содержащий одну или более ошибок, называется ошибочным кадром. Описанный метод позволяет k систематических кадров, подлежащих восстановлению с помощью k+1 нестертых кадров, даже когда один из кадров является ошибочным кадром. Различные другие методы восстановления переданной вещательной информации могут быть использованы в объеме настоящего изобретения. В этих случаях каждая абонентская мобильная станция может остановить прием кадров из блока, если принято минимальное количество кадров и установлено как правильные. В этом примере мобильная станция может остановить прием блока, если принято k+1 стертых кадров.

Отметим, что вещательный сигнал может передаваться через более чем одну базовую станцию в системе. Мобильная станция может быть спроектирована для разрешения приема вещательного сигнала с более чем одной базовой станции и объединения результатов. Сигналы с каждой базовой станции не требуется иметь однородными, т.е. передаваемыми с минимальным временем разделения по одному и тому же каналу с помощью такого же кода расширения и так далее. Однако в этом случае конструкция мобильной станции может быть упрощена. Например, в системе МДКР мобильная станция может объединять вещательный сигнал от двух или более базовых станций с помощью стандарта RAKE приемника в аналоговом виде для мягкой передачи [перевода], методы для которого хорошо известны из уровня техники. Когда мобильные станции могут получать вещательный канал по технологии мягкой передачи [перевода], может быть тот эффект, что мобильные станции на краю зоны охвата одной соты не являются больше слабыми мобильными станциями, поскольку они могут объединять энергию из других соседних сот. Это может позволить еще снизить мощность передачи вещательного канала, или снизить величину избыточности в блочном коде, или комбинацию обоих. Специалист в этой области техники без труда применит эти методы с принципами, раскрытыми здесь, в объеме настоящего изобретения.

Отметим далее, что хотя для ясности этого описания использовалась система МДКР в качестве примера системы, блочное кодирование для вещательных сигналов может быть применено для любого типа систем и может быть использовано в объеме настоящего изобретения.

Фиг.2 является блок-схемой варианта осуществления базовой станции 104, связывающейся с вариантом осуществления мобильной станции 106, оборудованных для передачи и приема блочных кодированных данных соответственно. Базовая станция 104 и мобильная станция 106 могут быть использованы с различными объектами настоящего изобретения, описанными здесь. В базовой станции 104 имеется источник 212 данных, подающий данные (например, в кадрах конкретной длины) во внешний кодер 220, который включает в себя блочный кодер 222 и кодер 224 ЦИК. В этом варианте осуществления источник 212 данных подает вещательную информацию, предназначенную для передачи к одной или более абонентским мобильным станциям 106. Блочный кодер 222 принимает данные от источника 212 данных и создает блок данных, содержащий систематические кадры и кадры четности. В этом варианте осуществления k кадров данных от источника 212 данных кодируются с помощью (n, k) блочного кода, что дает в итоге k систематических кадров и n-k кадров четности. Блочный кодер 222 может реализовывать любой линейный блочный код, такой как код Рида-Соломона (который обычно используется для передачи данных), код Хэмминга, БЧХ (BCH) (Боуза-Чоудхури-Хоквингема) или некоторый другой код. Изобретенные методы блочного кодирования и декодирования, описанные здесь, могут быть использованы для любого линейного блочного кода и могут быть преимущественно использованы для систематических блочных кодов. Кадры доставляются в кодер 224 ЦИК.

Для каждых n кадров кодер ЦИК генерирует набор битов ЦИК на основе битов данных в кадре и присоединяет биты ЦИК к концу кадра. Биты ЦИК, включенные в каждый кадр, используются для обнаружения ошибки для кадра в мобильной станции, как описано выше.

В примерном варианте осуществления блочно кодированные данные с внешнего кодера 220 доставляются во внутренний кодер 230. Внутренний кодер 230 может быть использован для обеспечения дополнительной способности коррекции ошибки, как описано ниже. Однако специалист в данной области техники понимает, что изобретенные методы, описанные здесь, могут быть использованы со схемой кодирования с помощью любого типа внутреннего кодирования или вообще без внутреннего кодирования. Внутренний кодер 230 является, таким образом, необязательным и представлен пунктирным блоком. В дополнение к этому данные, подаваемые во внешний кодер 220, могут представлять данные, которые ранее закодированы любой одной или более схемой кодирования (т.е. взамен «сырых» данных или информационных битов). Отметим, что в некоторых вариантах осуществления внутренний кодер 230 может уже включать в себя кодер ЦИК. Кодер ЦИК, включенный во внутренний кодер 230 или куда-нибудь еще в базовой станции 104, для этого объекта может совместно использоваться для использования с внешним кодером 220, т.е. кодером 224 ЦИК.

Внутренний кодер 230 включает в себя перемежитель 232 и сверточный кодер 234. Сверточный кодер 234 кодирует кадры от внешнего кодера 220 в соответствии с конкретным сверточным кодом. Перемежитель 232 перемешивает (переупорядочивает) кодированные биты. Перемежение обеспечивает временное разнесение и распределение ошибок, которые могут случаться в пакете сигналов. Перемежение и сверточное кодирование являются методами, хорошо известными из уровня техники.

Данные с внутреннего кодера 230 затем подаются на модулятор/передатчик 240, который модулирует (например, охватывает и расширяет) данные для обеспечения модулированных данных и дополнительных обработок (например, преобразует в один или более аналоговых сигналов, фильтрует, усиливает, преобразует с повышением частоты и т.д.) модулированных данных для обеспечения модулированных сигналов, подходящих для передачи через канал связи (например, беспроводной). Примерным вариантом осуществления является система беспроводной связи, в которой модулированный сигнал является вещательным сигналом, который передается через антенну 242 к одной или более мобильным станциям 106, которые используют вещательную информацию, содержащуюся в сигнале. В этом варианте осуществления использованы методы МДКР, хотя принципы настоящего изобретения применяются к любому типу формата модуляции.

Внешний кодер 220 показан соединенным с процессором 290. Процессор 290 может быть микропроцессором общего назначения, цифровым процессором сигналов (ЦПС) (DSP) или специализированным процессором. Процессор 290 может осуществлять некоторые или все функции внешнего кодера 220, внутреннего кодера 230, модулятора/передатчика 240, а также другую обработку, требуемую базовой станцией. Процессор 290 может быть соединен со специализированным аппаратным обеспечением для помощи в этих заданиях (подробно не показано). В дополнение различные прикладные программы данных и прикладные программы голоса могут выполняться на дополнительном процессоре в базовой станции 104 (не показан) или могут выполняться в самом процессоре 290. Процессор 290 соединяется с памятью 292, которая может быть использована для хранения данных, а также команд для осуществления различных процедур и способов, описанных здесь. Специалист в данной области техники понимает, что память 292 может состоять из одной или более компонентов памяти различных типов, которые могут быть внедрены целиком или частично в процессор 290.

Для ясности на фиг.2 единственная мобильная станция 106 изображена принимающей модулированные сигналы с базовой станции 104, хотя множество мобильных станций могут получать вещательный сигнал. Передаваемый модулированный сигнал принимается мобильной станцией через антенну 252 и подается в приемник/демодулятор 254. Приемник/демодулятор 254 обрабатывает (например, фильтрует, усиливает и преобразует с понижением частоты) принятый сигнал и оцифровывает обработанный сигнал для обеспечения отсчетов данных. Приемник/демодулятор 254 может дополнительно демодулировать отсчеты данных для обеспечения демодулированных данных. Примерный метод демодулирования включает в себя использование приемника RAKE, вскрытие, сжатие, комбинирование и тому подобное. Методы демодуляции хорошо известны из уровня техники. Примерный вариант осуществления демодулирует сигналы, форматированные с помощью метода модуляции МДКР, хотя любой тип модуляции и демодуляции может быть использован в объеме настоящего изобретения.

В этом варианте осуществления демодулированные данные подаются внутреннему декодеру 260, который включает в себя декодер 262 и деперемежитель 264. Декодер 262 может осуществлять декодирование Витерби, турбодекодирование или любой другой желаемый метод декодирования. Декодер 262 декодирует в ответ на тип кодирования, используемый в сверточном кодере 234. Деперемежитель 264 переупорядочивает принятые биты комплементарным способом к перемежению, осуществленному перемежителем 232. Деперемеженные данные декодируются в декодере 262 и затем подаются во внешний декодер 270. Как и с внутренним кодером 230, описанном выше, внутренний декодер 230 может использовать любой тип схемы декодирования или не использовать вовсе. Здесь внутренний декодер является необязательным, как показано пунктирной линией.

Внешний кодер 270 включает в себя устройство 272 проверки ЦИК и блочный декодер 274. Устройство 272 проверки ЦИК проверяет каждый принятый кадр и снабжает указанием, правильно ли был принят кадр или с ошибкой (т.е. стерт). Отметим, что в некоторых вариантах осуществления внутренний декодер 260 может уже включать в себя устройство проверки ЦИК. Кодер ЦИК, включенный во внутренний кодер 260 или куда-нибудь еще в мобильной станции 106, для этого объекта может быть совместно использован для использования с внешним декодером 270, т.е. устройством 272 проверки ЦИК. Проверенные ЦИК кадры подаются в блок 274 декодирования, который осуществляет блочное декодирование по кадрам. Как описано выше, если k систематических кадров принято правильно, блочное декодирование не обязательно и вещательная информация может быть восстановлена из k систематических кадров. Альтернативно, блочное декодирование с исправлением стирания и единственной ошибки или только стирания может быть осуществлено, как описано в упомянутой выше «заявке 199». Восстановленная вещательная информация доставляется к приемнику 276 данных, который может быть любым из множества устройств или прикладных программ, известных из уровня техники.

Внешний декодер 270 показан соединенным с процессором 280. Процессор 280 может быть микропроцессором общего назначения, цифровым процессором сигналов (ЦПС) (DSP) или специализированным процессором. Процессор 280 может осуществлять некоторые или все функции внешнего декодера 270, внутреннего декодера 260, приемника/демодулятора 254, а также любой другой обработки, требуемой мобильной станцией. Процессор 280 может быть соединен со специализированным устройством для помощи в этих заданиях (подробно не показано). В дополнение к этому различные прикладные программы данных или голоса могут выполняться на дополнительном процессоре в мобильной станции 106 (не показано) или могут выполняться в самом процессоре 280. Процессор 280 соединяется с памятью 282, которая может быть использована для хранения данных, а также команд для осуществления различных процедур и способов, описанных здесь. Специалист в данной области техники понимает, что память 282 может состоять из одного или более компонентов памяти различных типов, которые могут быть внедрены целиком и частично в процессор 280.

В системе, описанной выше в отношении фиг.1 и 2, вещательный канал может быть блочно кодированным для обеспечения адекватного приема вещательной информации для всех абонентских мобильных станций в соте. Как описано, мобильные станции во внешних радиусах действия охвата могут требовать все кодированные кадры, систематические и четности, для достижения желаемого уровня осуществления связи. Однако, как отмечено, мобильные станции, принимающие сильный сигнал, такие как те, что ближе к базовой станции, могут извлекать вещательную информацию с помощью меньшего числа, чем все доступные кадры. Когда мобильная станция правильно принимает достаточное количество кадров в блоке, ее приемные ресурсы больше не требуют принимать вещательный сигнал и могут быть переориентированы на прием дополнительных данных. Может быть желательно обеспечить увеличенные вещательные данные для мобильных станций, которые расположены как таковые.

Например, видео- или аудиовещательный поток может быть разделен на два или более сигналов, где первый сигнал содержит достаточно данных для создания видео- или аудиопотока базового качественного уровня, а дополнительные сигналы могут нести данные для повышения качества аудио или видео. Здесь первый сигнал будет называться первичным вещательным каналом, а второй сигнал будет называться вторичным вещательным каналом. Для ясности будет описана вещательная информация, разделенная на два потока, хотя специалист в данной области техники понимает, что более чем два вещательных канала могут быть созданы в объеме настоящего изобретения. Два или более вещательных каналов могут содержать данные любого типа, такие как сопровождающие текст или экстраданные. Аудио- и видеопотоки, только что описанные, являются только примерами. Таким образом, различное качество услуг может быть обеспечено для различных зон в соте.

Фиг.3 изображает примерный формат передачи для первичного и вторичного вещательных каналов. Относительная синхронизация двух вещательных каналов, как показано, позволяет принимать оба канала мобильной станцией без необходимости в избыточности приемного аппаратного обеспечения. В этом примере используется (16,11) блочный код, хотя принципы, описанные здесь, применимы к блочным кодам любой длины, т.е. любой (n,k) код. Вторичный вещательный канал передается в течение последних четырех кадров блока, совпадающих с передаваемыми четырьмя кадрами четности. Это согласуется с вариантом осуществления системы, в котором k+1 кадров являются минимальным числом кадров для осуществления коррекции стирания и единственной ошибки в принимающей мобильной станции. Альтернативный вариант осуществления, в котором осуществляется коррекция ошибки только стирания, позволяет передавать дополнительный кадр по вторичному вещательному каналу, перед четырьмя показанными.

В примере на фиг.3 приемная мобильная станция может завершать прием первичного вещательного канала, когда k+1 кадров установлены как правильно принятые, в соответствии с ЦИК. Мобильная станция может затем переориентировать свои принимающие компоненты на прием кадров вторичного вещательного канала. Мобильная станция, требующая все n кадров блока для приема k+1 нестертых, не будет способна получить вторую вещательную информацию в течение этого блока (т.е. мобильные станции в зоне сети отвечают только минимальному критерию качества услуги). Мобильные станции, испытывающие лучшее качество приема, могут быть способны принимать один или более кадров вторичного вещательного канала в зависимости от того, сколько первичных вещательных кадров принято до того, как встречено минимальное число нестертых, в этом примере k+1 (т.е. мобильные станции в области соты, где мощность вещательного сигнала «очень хорошая», иначе - поданная мощность больше чем мощность, требуемая для правильной демодуляции вещательных данных).

Первичный 310 и вторичный 320 вещательные каналы одновременно передаются для, по меньшей мере, части периода блока. Как упомянуто выше, этот метод может быть применен для любого типа системы. В этом варианте осуществления используется система мультиплексирования с кодовым разделением (МКР) (CDM). Первичный вещательный канал передается с помощью первого кода канализации (такого как Уолш канальный код) при найденном уровне мощности для обеспечения адекватного охвата по всей соте. Вторичный вещательный канал передается с помощью вторичного кода канализации, и уровень мощности может быть установлен при уровне мощности для охвата только части соты, если это желательно. Таким образом, мобильная станция может в зависимости от ее положения в соте принимать первичный и вторичный каналы с единственной структурой приема, поскольку вторичный вещательный канал будет приниматься только, если первичный вещательный канал не долго требует контроля. Это может привести к менее сложной, а потому более эффективной по цене и мощности конструкции мобильной станции (в противоположность конструкции, требующей параллельного декодирования двух каналов).

Дополнительной выгодой, когда используется система с МКР, является то, что код канализации для вторичного вещательного канала требует только распределения по части периода. Это позволяет повторно использовать коды канализации, что может быть выгодно в ситуациях, когда ограничивающим фактором является кодовое пространство, а не доступная передаваемая мощность. (Альтернатива, когда множество вторичных вещательных каналов, соответствующих множеству первичных вещательных каналов, мультиплексируются в единственный вторичный канал с помощью единственного кода канализации, описывается ниже в отношении фиг.6).

В примере фиг.3 абонентские мобильные станции могут быть способны принять первичный вещательный канал, а также от нуля до четырех кадров вторичных данных, в зависимости от их положения в соте. Только самые лучшие по расположению соты будут способны принимать все четыре кадра вторичных данных. Следующие наилучшие будут способны принимать три последних. Следующие наилучшие будут способны принимать два последних. Последняя область, где вторичные данные могут быть получены, будет обеспечивать прием только последнего вторичного кадра. Как таковые, вторичные данные могут получить приоритет, так что вторичные данные с самым наивысшим приоритетом располагаются в последнем кадре, где максимальное число мобильных станций будет способно принимать их. Каждый кадр, пришедший раньше, может иметь прогрессивно более низкие приоритетны