Многоканальный окружающий звук от фронтально установленных громкоговорителей

Иллюстрации

Показать все

Изобретение относится к многоканальным системам воспроизведения звука, а именно к применению психоакустических принципов в проектировании акустических систем для воспроизведения ощущения окружающего звука от громкоговорителей, расположенных только впереди слушателя. Система воспроизведения окружающего звука использует ряд фильтров и систему главных и вспомогательных громкоговорителей для создания эффекта фантомных тыльных каналов окружающего звука или фантомного окружающего звука от акустической системы или системы из пары громкоговорителей, расположенных впереди слушателя. Акустическая система включает левый и правый входные сигналы окружающего звука, а также левый и правый фронтальные входные сигналы. Левый и правый вспомогательные громкоговорители, а также левый и правый главные громкоговорители расположены перед положением прослушивания. Расстояние между соответствующими главными и вспомогательными громкоговорителями примерно равно расстоянию между ушами среднего человека. 4 н. и 55 з.п. ф-лы, 24 ил.

Реферат

Область техники

Настоящее изобретение относится в общем к воспроизведению звука в многоканальных системах, известных в общем как системы "окружающего звука" и, конкретнее, к применению психоакустических принципов к проектированию акустической системы для воспроизведения ощущения окружающего звука от громкоговорителей, расположенных только впереди слушателя.

Известный уровень техники

Давно известно, что можно использовать междуушное устранение перекрестных помех (interaural crosstalk cancellation, IACC) и функции моделирования восприятия звука человеком (head related transfer functions, HRTF) для расширения воспринимаемого стереофонического эффекта от двухканальной акустической системы или для создания иллюзии прихождения звука из фантомных местоположений, независимо от фактического местонахождения громкоговорителей. На протяжении 1970-х - 1980-х г. в продажу поступали некоторые компоненты акустических систем, использовавшие IACC для расширения пространственных акустических эффектов. Однако до появления недорогих мощных систем цифровой обработки сигналов (DSP) более точное генерирование фантомных источников звука с точным местонахождением было очень сложным и дорогостоящим вследствие сложности точного синтеза HRTF.

В последнее время доступность DSP и улучшенные алгоритмы фильтрации сделали возможным создание фантомного источника звука в практически любой точке пространства с использованием всего одной пары громкоговорителей, типично, расположенных впереди слушателя. Используя варианты одних и тех же методик, можно создавать несколько фантомных источников звука одновременно от одной пары громкоговорителей, типично, расположенных впереди слушателя. Этот метод находит много практических применений. Например, можно имитировать эффект наличия фронтальных, тыльных и центральных громкоговорителей, как в полной 5.1 акустической системе с окружающим звуком, с использованием одной пары громкоговорителей или наушников.

Эти методы основаны на том, каким образом происходит у людей обработка звуков, воспринятых их ушами, для определения местонахождения источников этих звуков. В общем, мы слышим направления звуков на основании двух первичных механизмов - междуушного времени задержки (Interaural Time Delay, ITD) и междуушных разностей уровней (Interaural Level Difference, ILD). ITD обозначает дополнительное время, необходимое для того, чтобы звук, идущий с одной стороны головы слушателя, достиг уха, находящегося с другой стороны, по сравнению со временем, необходимым для достижения уха, ближнего к источнику звука. Величина ITD звука позволяет слушателю с большой точностью определить латеральное направление звука. ILD обозначает разницу в воспринимаемой интенсивности между двумя ушами слушателя для звука, идущего из определенной точки пространства. Например, звук, источник которого расположен слева от слушателя, будет восприниматься левым ухом как более громкий, чем правым, из-за уменьшения громкости при прохождении звука через голову слушателя. Общая разность интенсивности между ушами улучшает латеральную локализацию звуков с помощью ITD. В дополнение к этому звуки, приходящие с конкретного направления, создают в каждом ухе сложную амплитудно-частотную характеристику, характерную для данного конкретного пространственного направления. Комбинация этих характеристических пространственно-частотных характеристик и ITD, ассоциированных со звуками, приходящими с данного направления, называются функцией моделирования восприятия звука (Head Related Transfer Functions, HRTF). Частотный компонент характеристики HRTF очень сложен и несколько различается для каждого человека. Именно точная структура частотной характеристики HRTF в каждом ухе позволяет слушателю определить угол возвышения источника звука и его фронтальное или тыльное местонахождение. Например, источник звука, расположенный под углом 60 градусов слева и впереди слушателя, имеет такой же ITD (ок. 300 мс), как и источник звука, расположенный под углом 60 градусов слева и позади слушателя. Однако асимметрия наружного уха создает сильно различающиеся HRTF для этих двух местоположений источников звука, тем самым позволяя слушателю определить как латеральное положение, так и разницу между фронтальным и тыльным положением. Аналогичный механизм позволяет слушателю определить примерный угол возвышения источника звука. В общем механизм определения латерального положения источников звука на основе ITD действует в частотном диапазоне примерно от 150 до 1200 Гц. Механизмы локализации звуков на основании частотной характеристики HRTF действует от примерно 500 Гц до выше 12000 Гц.

На основании этих принципов были разработаны разные методы устранения междуушного перекрестного затухания в громкоговорителях, генерирования фантомных источников звука из монауральных сигналов с использованием синтезированных или измеренных HRTF и для использования HRTF при создании фантомных тыльных каналов в акустических системах окружающего звука от одной пары громкоговорителей.

В общем методы, использующие HRTF для создания фантомных источников звука, при имитации акустическая система окружающего звука или в других областях применения, имеют ряд практических ограничений. Точное представление HRTF требует очень большого объема вычислений и поэтому трудно получить достаточную точность, используя практически и экономически эффективные методы DSP. Например, патент США №6173061, который описывает метод генерирования фантомного источника звука с использованием HRTF, признает наличие потребности в более эффективных алгоритмах обработки звука и направлен на решение этой проблемы. Дополнительно конкретные HRTF, используемые в методах известного уровня техники, выбираются на основе предположений, учитывающих характеристики используемых громкоговорителей, конкретное относительное взаимное положение громкоговорителей и слушателя и изменения фактической HRTF для разных слушателей. Учитывая очень специфическую и структурно сложную природу HRTF, специалисты в данной области поймут, что изменения характеристик громкоговорителя или местонахождения в сочетании с передвижением слушателя в сторону от предполагаемого местонахождения при прослушивании может легко разрушить иллюзию фантомного источника звука. Кроме того, фактические HRTF некоторых слушателей могут слишком сильно отличаться от используемой в устройстве HRTF, в результате чего иллюзия не будет возникать. Например, патент США №4893342 и родственные с ним патенты описывают методы увеличения пространственной гибкости основанного на HRTF метода путем ограничения частотного диапазона восприятия HRTF интервалом от примерно 600 до 10 кГц и методы определения HRTF, слабо зависящих от особенностей слушателя.

Некоторые известные методы создания фантомных местонахождений и источников звука основаны на использовании бинаурально записанных сигналов или других специально записанных сигналов в качестве входных сигналов. Эти методы могут подпадать под описанные выше ограничения и также будут функционировать надлежащим образом только при использовании входных сигналов, полученных с использованием точно пределенной схемы записи. Например, патент США №4199658 описывает такой метод, основанный на использовании бинаурально записанных сигналов в качестве входных сигналов.

Наконец, большинство известных методов создания фантомных тыльных каналов источника звука стараются создать иллюзию того, что в действительности громкоговорители расположены в определенных точках пространства позади слушателя. Такие методы раскрыты, например, в патенте США №6052470 и родственных с ним патентах, которые описывают разные методы использования HRTF для создания иллюзии пары громкоговорителей, расположенных позади слушателя. Однако специалисты в данной области в общем согласны с тем, что при воспроизведении звука тыльного канала для акустических систем окружающего звука, рассеянная локализация является предпочтительной по отношению к типу точной локализации, создаваемой реальными громкоговорителями прямого излучения с тыльным расположением. Кроме того, как понятно специалистам в данной области, акустические системы окружающего звука, состоящие из фронтальных и тыльных пар громкоговорителей, не позволяют эффективно локализовать звуки в областях, расположенных непоредственно слева и справа от слушателя, находящегося по центру между двумя парами громкоговорителей.

Таким образом, существует потребность в методах создания фантомных тыльных каналов окружающего звука, требующих менее сложной обработки сигнала, предъявляющих меньшие требования к характеристикам громкоговорителя, месту установки громкоговорителя, местонахождению слушателя и различиям HRTF для разных слушателей, эффективно работающих при использовании обычно доступных записей и способных создавать рассеянную локализацию звуков тыльного канала в акустических системах окружающего звука в пространственной области вокруг слушателя.

Краткое описание изобретения

Таким образом, предметом настоящего изобретения является создание устройства и способа создания фантомных тыльных каналов окружающего звука или фантомного эффекта окружающего звука от акустической системы или системы пары громкоговорителей, расположенных впереди слушателя. Дополнительной целью настоящего изобретения является обеспечение способов осуществления с использованием простых аналоговых фильтров или простой DSP. Другой целью настоящего изобретения является снижение требований к характеристикам громкоговорителя, месту установки громкоговорителя, местонахождению слушателя и различиям между слушателями. Еще одной целью настоящего изобретения является обеспечение эффективного воспроизведения окружающего звука при использовании обычно доступных звукозаписей окружающего звука. Далее целью настоящего изобретения явлется генерирование фантомных источников звука, которые воспринимаются как исходящие из области пространства, охватывающей разные точки вокруг или позади слушателя, включая области непосредственно слева и справа от слушателя.

Патенты США №№4489432; 4497064; 4569074 и 4630298 раскрывают метод использования расположения главных и вспомогательных громкоговорителей в системе воспроизведения стереозвука для устранения IАС и создания реалистичного акустического поля, выходящего за пределы места расположения громкоговорителей с использованием сигналов от обычно доступных стереозаписей. Описания этих патентов целиком включены сюда в качестве ссылок. Например, изображающая известный уровень техники Фиг.1 (Фиг.10 патента США №4489432) показывает конкретно, какое расположение главных и вспомогательных громкоговорителей может быть использовано для создания фантомного источника звука за пределами области размещения громкоговорителей от двух входных сигналов. На основании описаний патентов США №№4489432; 4497064; 4569074 и 4630298 специалистам в данной области техники будет понятно, что система, сконструированная в соответствии с этими описаниями, способна создавать фантомные источники звука в любой точке пространства впереди слушателя более или менее независимо от местонахождения громкоговорителей в соответствии с информацией о локализации, содержащейся в двух записанных сигналах, используемых в качестве входных сигналов. Способы, описанные в этих патентах, пригодны также для создания стабильного звукового образа, когда в двух записанных сигналах, используемых в качестве входных сигналов, отсутствует информация о локализации.

В соответствии с одним вариантом исполнения настоящего изобретения в системе воспроизведения звука, имеющей по меньшей мере четыре входа для приема по меньшей мере четырех входных аудиосигналов, например сигналов левого фронтального, правого фронтального, левого и правого каналов окружающего звука, причем правый главный громкоговоритель и левый главный громкоговоритель находятся, соответственно, в правом и левом положениях главных громкоговорителей относительно оси громкоговорителей, расположенных на равном расстоянии от основного положения прослушивания. Основное положение прослушивания (LL) определяется в общем как пространственное положение с размещением головы слушателя лицом к главным громкоговорителям вдоль центральной оси положения слушателя и с положением правого уха и положением левого уха вдоль проходящей через уши оси, причем положения правого и левого ушей разделены максимальным междуушным звуковым расстоянием Δtmax, а основное положение прослушивания определяется, в частности, как точка на проходящей через уши оси, равноудаленная от правого и левого ушей. Центральная ось положения слушателя CLA определяется как линия, проходящая через основное положение прослушивания и точку на оси громкоговорителей, равноудаленную от правого и левого главных громкоговорителей. Правый вспомогательный громкоговоритель и левый вспомогательный громкоговоритель расположены в положениях правого и левого вспомогательных громкоговорителей по существу на оси громкоговорителей левого и правого главных громкоговорителей и на равном расстоянии от основного положения прослушивания LL. За счет точного размещения вспомогательных громкоговорителей по отношению к главным громкоговорителям, использования соответствующих модификаций и комбинаций левого и правого окружающих сигналов для создания управляющих сигналов для главных и вспомогательных громкоговорителей, и соответствующей фильтрации составляющих указанных управляющих сигналов, слушатель, находящийся в точке основного положения прослушивания LL, получает ощущение окружающего звука от громкоговорителей, расположенных только впереди слушателя.

Краткое описание чертежей

Фиг.1 представляет собой схему, иллюстрирующую кажущееся местонахождение источника, создаваемого за счет расположения, раскрытого в патенте США №4489432, Фиг.10.

Фиг.2 представляет собой схему, изображающую первый вариант исполнения настоящего изобретения.

Фиг.2а представляет собой схему, изображающую комбинации сигналов по первому варианту исполнения настоящего изобретения.

Фиг.2b представляет собой схему, изображающую добавление пятого входного аудиосигнала к первому варианту исполнения настоящего изобретения.

Фиг.3 изображает семейство амплитудно-частотных характеристик звуков, приходящих с разных угловых направлений.

Фиг.4 изображает семейство амплитудно-частотных характеристик с указанием разности частотных характеристик между звуками, приходящими из областей, расположенных впереди слушателя и позади слушателя, у ближнего уха слушателя.

Фиг.5 изображает семейство амплитудно-частотных характеристик с указанием разности частотных характеристик между звуками, приходящими из областей, расположенных впереди слушателя и позади слушателя, у дальнего уха слушателя.

Фиг.6 изображает семейство амплитудно-частотных характеристик, представляющих разность между кривыми соотношений фронтальных и тыльных сигналов для ближнего уха, изображенными на Фиг.4, и кривыми соотношений фронтальных и тыльных сигналов для дальнего уха, изображенными на Фиг.5, для каждой пары зеркально отображаемых фронтального и тыльного источников звука.

Фиг.7 представляет собой схематическое изображение воспринимаемых тыльных звуков из точки, расположенной позади слушателя.

Фиг.8 представляет собой схематическое изображение воспринимаемых кажущихся местонахождений источников звука в широкой пространственной области позади слушателя при использовании настоящего изобретения.

Фиг.9 изображает семейство кривых, рассчитанных путем вычитания частотной характеристики, изображенной на Фиг.3, для звуков, приходящих с конкретного направления к ближайшему уху слушателя, из частотной характеристики звуков, приходящих с того же направления к дальнему уху слушателя.

Фиг.10 представляет собой схему, изображающую второй вариант исполнения настоящего изобретения.

Фиг.11 представляет собой схему, изображающую третий вариант исполнения настоящего изобретения.

Фиг.12 представляет собой схему, изображающую четвертый вариант исполнения настоящего изобретения.

Фиг.13 представляет собой схему, изображающую пятый вариант исполнения настоящего изобретения.

Фиг.13а представляет собой схему, изображающую комбинации сигналов по пятому варианту исполнения настоящего изобретения.

Фиг.14 представляет собой схему, изображающую примерные воспринимаемые положения источников звука впереди слушателя и кажущиеся воспринимаемые положения источников звука позади слушателя при использовании пятого варианта исполнения настоящего изобретения.

Фиг.15 представляет собой схему, изображающую шестой вариант исполнения настоящего изобретения.

Фиг.16 представляет собой схему, изображающую примерные воспринимаемые положения источников звука впереди слушателя при использовании шестого варианта исполнения настоящего изобретения.

Фиг.17 представляет собой схему, изображающую седьмой вариант исполнения настоящего изобретения.

Фиг.18 представляет собой схему, изображающую примерные кажущиеся воспринимаемые положения источников звука позади слушателя при использовании седьмого варианта исполнения настоящего изобретения.

Фиг.19 представляет собой схему, изображающую восьмой вариант исполнения настоящего изобретения.

Фиг.20 представляет собой схему, изображающую комбинации сигналов по девятому варианту исполнения настоящего изобретения.

Фиг.21 представляет собой схему, изображающую десятый вариант исполнения настоящего изобретения.

Детальное описание изобретения

Предпочтительные варианты исполнения настоящего изобретения описаны далее со ссылкой на чертежи, на которых одинаковые буквенные/цифровые обозначения указывают идентичные или функционально подобные элементы. Хотя обсуждаются конкретные конфигурации и схемы, следует понимать, что это делается только в целях иллюстрации. Специалисту в соответствующей области техники будет понятно, что другие конфигурации и схемы могут быть использованы без выхода за пределы сущности и объема изобретения.

Фиг.2 и 2а изображают первый предпочтительный вариант исполнения настоящего изобретения. Как показано на Фиг.2, предусмотрены четыре входных аудиосигнала, только в качестве примера и без каких-либо ограничений, соответствующих каналам сигнала системы окружающего звука. Подразумевается, что они могут быть любыми четырьмя входными аудиосигналами. Однако, для обеспечения понятности и единства описания, эти сигналы будут называться в данном описании левыми сигналом окружающего звука LS; левым фронтальным сигналом LF; правым фронтальным сигналом RF и правым сигналом окружающего звука RS. Предусмотрены также левый и правый ящики громкоговорителей LSE и RSE. Левый ящик громкоговорителей LSE содержит по меньшей мере один левый главный громкоговоритель LMS и по меньшей мере один левый вспомогательный громкоговоритель LSS. Правый ящик громкоговорителей RSE содержит по меньшей мере один правый главный громкоговоритель RMS и по меньшей мере один правый вспомогательный громкоговоритель RSS. Как хорошо известно специалистам в данной области, немодифицированные аудиосигналы, воспроизводимые парой громкоговорителей, например, в типичной акустической стереосистеме, воспринимаются слушателем, сидящим перед громкоговорителями, как исходящие из области пространства, расположенной между двумя громкоговорителями. Таким образом, звуки, создаваемые только главными левым и правым громкоговорителями LMS и RMS, воспринимаются слушателем, находящимся в точке основного положения прослушивания LL, как исходящие из пространственной области источников звука, расположенной примерно между и ограниченной фактическими положениями левого и правого главных громкоговорителей LMS и RMS.

Как изображено на Фиг.2, слушатель, находящийся в точке основного положения прослушивания LL, имеет левое ухо Le и правое ухо Re. Средняя точка между левым ухом Le и правым ухом Re находится на центральной оси расположения слушателя CLA. Как отмечено в патенте США №4489432, целиком включенным сюда в качестве ссылки, положения правого и левого ушей разделены максимальным междуушным звуковым расстоянием Δtmax. Как также объясняется в патенте США №4489432 и изображено на Фиг.2, звуковое расстояние t представляет собой время, необходимое для прохождения звука от левого главного громкоговорителя LMS до левого уха Le, а звуковое расстояние t+Δt представляет собой время, необходимое для прохождения звука от левого главного громкоговорителя LMS до правого уха Re. Аналогично звуковое расстояние t обозначает также время, необходимое звуку от правого главного громкоговорителя RMS на то, чтобы достичь правого уха Re, и звуковое расстояние t+Δt обозначает также время, необходимое звуку от правого главного громкоговорителя RMS на то, чтобы достичь левого уха Le. Аналогично t+Δt обозначает также время, необходимое звуку от правого вспомогательного громкоговорителя RSS на то, чтобы достичь правого уха Re, и время, необходимое звуку от левого вспомогательного громкоговорителя LSS на то, чтобы достичь левого уха Le.

Как также изображено на Фиг.2, левый сигнал окружающего звука LS проходит через разностный фильтр фронтального и тыльного сигналов 1 и суммируется с левым фронтальным сигналом LF в сумматоре 3. Суммарный сигнал затем передается на левый главный громкоговоритель LMS. Аналогично правый сигнал окружающего звука RS проходит через разностный фильтр фронтального и тыльного сигналов 2 и суммируется с правым фронтальным сигналом RF в сумматоре 4. Суммарный сигнал затем передается на правый главный громкоговоритель RMS.

Разностные фильтры фронтального и тыльного сигналов 1 и 2 модифицируют сигналы окружающего звука LS и RS таким образом, чтобы возле ушей слушателя и в определенном диапазоне частот они примерно совпадали с частотной характеристикой звуковых сигналов, источник которых находится позади слушателя, несмотря на то, что они испускаются источником, находящимся впереди слушателя. Эта модификация поясняется со ссылкой на Фиг.3-6. Фиг.3 изображает семейство амплитудно-частотных характеристик, представляющих частотную характеристику на барабанной перепонке слушателя по сравнению с условиями свободного поля для звуков, поступающих от источников звука с разными угловыми положениями в горизонтальной плоскости. Фиг.4 изображает другое семейство амплитудно-частотных характеристик, рассчитанных путем вычитания частотной характеристики, приведенной на Фиг.3 для звуков, приходящих к ближнему уху слушателя от источников звука, находящихся впереди слушателя, из частотной характеристики для звуков, приходящих от зеркального отражения источника звука, находящегося позади слушателя. Например, как показано на Фиг.3, вычитание кривой для звуков, приходящих к левому уху слушателя под углом 45 градусов впереди слушателя, из кривой для звуков, приходящих к левому уху под углом 135 градусов позади слушателя, дает кривую, обозначенную "45-135 deg." на Фиг.4. Таким образом, если разностные фильтры фронтального и тыльного сигналов 1 и 2 на Фиг.2 имеют примерно характеристики, например, разностной фронтально-тыльной амплитудно-частотной характеристики по Фиг.4, обозначенной "45-135 deg.", и левый и правый главные громкоговорители LMS и RMS расположены под углом примерно 45 градусов по обе стороны от центральной оси расположения слушателя CLA, слушатель, находящийся в точке основного положения прослушивания LL, будет воспринимать примерно такую же частотную характеристику для сигналов окружающего звука LS и RS на барабанной перепонке соответствующего ближнего уха, как если бы эти звуки приходили от источников звука, расположенных позади слушателя в точках, являющихся зеркальными отражениями фактических положений источников звука LMS и RMS впереди слушателя, из которых в действительности исходят сигналы окружающего звука LS и RS.

Фиг.5 изображает аналогичное семейство разностных фронтально-тыльных амплитудно-частотных характеристик, рассчитанных путем вычитания частотной характеристики, изображенной на Фиг.3, для звуков, приходящих к дальнему уху слушателя от источников звука, расположенных впереди слушателя, из частотной характеристики для звуков, приходящих от источников звука, находящихся в зеркально отраженных положениях позади слушателя. Применение разностных фильтров фронтального и тыльного сигналов с такими характеристиками к звукам, приходящим к дальнему уху слушателя от источников звука, находящихся в своем действительном положении впереди слушателя, будет дублировать частотную характеристику на барабанной перепонке дальнего уха слушателя звука, приходящего от зеркально отраженного положения источника звука позади слушателя. Например, возвращаясь снова к Фиг.3, вычитание кривой для звуков, приходящих к левому уху слушателя под углом минус 45 градусов из положения впереди слушателя, из кривой для звуков, приходящих к левому уху под углом минус 135 градусов из положения позади слушателя, дает кривую, обозначенную "45-135 deg." на Фиг.5. Таким образом, если разностные фильтры фронтального и тыльного сигналов 1 и 2 на Фиг.2 имеют примерно характеристики, например, разностной фронтально-тыльной амплитудно-частотной характеристики на Фиг.5, обозначенной "45-135 deg.", a левый и правый главные громкоговорители LMS и RMS расположены под углом примерно 45 градусов по обе стороны от центральной оси слушателя CLA, то слушатель, находящийся в точке основного положения прослушивания LL, будет воспринимать примерно такую же частотную характеристику для сигналов окружающего звука LS и RS на барабанной перепонке соответствующего дальнего уха, как если бы источники звука находились в положении позади слушателя, являющемся зеркальным отражением фактического положения источников звука LMS и RMS впереди слушателя, от которых в действительности исходят сигналы окружающего звука LS и RS.

Фиг.6 изображает семейство амплитудно-частотных характеристик, представляющих разность между кривыми соотношения фронтальных и тыльных сигналов для ближнего уха, изображенными на Фиг.4, и кривыми соотношения фронтальных и тыльных сигналов для дальнего уха, изображенными на Фиг.5, для каждой пары зеркальных отражений фронтального и тыльного расположения источников звука. При рассмотрении Фиг.6 видно, что кривые соотношения фронтальных и тыльных сигналов для ближнего уха и дальнего уха являются по существу одинаковыми до частоты примерно 2500 Гц. Можно также увидеть при рассмотрении Фиг.4 и 5, что разностные фронтально-тыльные амплитудно-частотные характеристики как для ближнего, так и для дальнего уха очень близки до частоты примерно 2500 Гц для источников звука, расположенных в интервале примерно между 30 и 60 градусами по обе стороны от центральной оси слушателя CLA впереди слушателя. Если разностные фильтры фронтального и тыльного сигналов 1 и 2 имеют характеристики, примерно соответствующие, например, разностной фронтально-тыльной амплитудно-частотной характеристике по Фиг.4, обозначенной "45-135 deg.", до частоты примерно 2500 Гц, то слушатель, находящийся в точке основного положения прослушивания LL, будет воспринимать примерно такую же частотную характеристику до примерно 2500 Гц на обоих барабанных перепонках для сигналов, моифицированных с помощью указанных разностных фильтров фронтального и тыльного сигналов 1 и 2, как если бы источники звука были расположены в положениях позади слушателя, представляющих собой зеркальные отражения фактического положения источников звука левого и правого главных громкоговорителей LMS и RMS впереди слушателя, при размещении левого и правого главных громкоговорителей LMS и RMS в интервале примерно между 30 и 60 градусами по обе стороны от центральной оси расположения слушателя CLA. Как изображено на Фиг.7, если входные сигналы разностных фильтров фронтального и тыльного сигналов 1 и 2 являются, например, левым и правым сигналами окружающего звука LS и RS, слушателю будет казаться, что левый и правый сигналы окружающего звука LS и RS создаются фантомными громкоговорителями, расположенными позади слушателя в точках, представляющих собой зеркальное отражение положений левого и правого громкоговорителей PLS и PRS.

Таким образом, в данном первом варианте исполнения разностные фильтры фронтального и тыльного сигналов 1 и 2 по Фиг.2 могут иметь характеристики, которые ограничивают частотный диапазон значениями ниже примерно 2500 Гц и которые имеют примерно частотную характеристику кривой, обозначенной

"45-135 deg." на Фиг.4, для частот ниже примерно 2500 Гц. Как указывалось выше и как изображено на Фиг.6, поскольку разностные фронтально-тыльные амплитудно-частотные характеристики ниже примерно 2500 Гц очень близки в интервале угловых положений как для ближнего, так и для дальнего ушей, то даже если громкоговорители расположены не точно под углом 45 градусов к центральной оси расположения слушателя CLA, разностные фильтры фронтального и тыльного сигналов 1 и 2 все равно создадут у слушателя ощущение того, что звуки приходят от зеркально отраженных положений, находящихся позади слушателя, как изображено на Фиг.7. Несмотря на приведенное выше обсуждение, эксперименты показали, что в некоторых вариантах осуществления настоящего изобретения желательно, чтобы частотная характеристика разностных фильтров фронтального и тыльного сигналов 1 и 2 заходила значительно выше 2500 Гц. Было также обнаружено, что в некоторых вариантах осуществления желательно включить полосовое предыскажение от примерно плюс 4 дБ до плюс 8 дБ на частоте примерно 12 кГц.

Возвращаясь снова к Фиг.2, после прохождения через разностный фильтр фронтального и тыльного сигналов 1, левый сигнал окружающего звука LS проходит через инвертор 5 и низкочастотный фильтр 11. Он затем проходит через сумматор 10, в котором суммируется с правым сигналом окружающего звука RS, прошедшим через разностный фильтр фронтального и тыльного сигналов 2 и низкочастотный фильтр 8, таким образом, чтобы полученный суммарный сигнал состоял из модифицированного левого сигнала окружающего звука LS', вычтенного из модифицированного правого сигнала окружающего звука RS'. Суммарный сигнал затем передается на правый вспомогательный громкоговоритель RSS, расположенный в правом ящике громкоговорителей RSE. Аналогично после прохождения через разностный фильтр фронтального и тыльного сигналов 2 правый сигнал окружающего звука RS проходит через инвертор 6 и низкочастотный фильтр 12. Затем он проходит через сумматор 9, в котором суммируется с левым сигналом окружающего звука RS, пропущенным через разностный фильтр фронтального и тыльного сигналов 1 и низкочастотный фильтр 7, таким образом, чтобы полученный суммарный сигнал состоял из модифицированного правого сигнала окружающего звука RS', вычтенного из модифицированного левого сигнала окружающего звука LS'. Суммарный сигнал затем передается на левый вспомогательный громкоговоритель LSS, расположенный в левом ящике громкоговорителей LSE. Низкочастотные фильтры 7, 8, 11 и 12 могут иметь характеристики, ограничивающие частотную характеристику до уровня ниже примерно 1 кГц, как раскрыто в патенте США №4630298, обычно с целью стабилизации кажущегося местонахождения источников звука, повышения допустимых пределов движения головы слушателя, улучшения иллюзии кажущегося местонахождения источников звука для слушателя, не находящегося в точке основного положения прослушивания LL, и расширения допустимых пределов местонахождения главных и вспомогательных громкоговорителей. Однако в некоторых вариантах осуществления настоящего изобретения желательно, чтобы указанные низкочастотные фильтры имели частотную характеристику, значительно выходящую за 1 кГц, или выбрать одну частоту отсечки для низкочастотных фильтров 7 и 8, и другую частоту отсечки для низкочастотных фильтров 11 и 12. В одном конкретном варианте осуществления данного варианта исполнения настоящего изобретения низкочастотные фильтры 7 и 8 имеют частотную характеристику, доходящую до примерно 5 кГц, а низкочастотные фильтры 11 и 12 имеют частотную характеристику, доходящую до приблизительно 1,8 кГц.

В соответствии с данным первым вариантом исполнения Фиг.2а изображает общую структуру модифицированных и суммарных сигналов, передаваемых на каждый громкоговоритель, где символ штриха (') указывает на то, что исходный входной аудиосигнал был соответствующим образом модифицирован с помощью средств модификации и суммирования сигнала 20. Следует понимать, что в пределах объема настоящего изобретения и как изображено на Фиг.2а любые пригодные средства могут быть использованы для обеспечения соответствующей модификации и суммирования сигнала. В дополнение, и как описано выше, эксперименты показали, что в пределах объема настоящего изобретения многие варианты конкретной описанной тут модификации сигнала эффективно обеспечивают приемлемую иллюзию окружающего звука от громкоговорителей, расположенных только впереди слушателя. Конкретно описанные тут модификации сигнала приводятся только для примера и не являются ограничительными.

В данном первом варианте исполнения левый вспомогательный громкоговоритель LSS и правый вспомогательный громкоговоритель RSS располагаются по отношению к левому главному громкоговорителю LMS и правому главному громкоговорителю RMS и к слушателю в соответствии с описаниями патентов США №№4489432; 4497064; 4569074 и 4630298 с целью устранения IAC и создания реалистичного акустического поля, выходящего за пределы области размещения громкоговорителей. Как показано на Фиг.1, отображающей известный уровень техники, и описано в указанных выше патентах США, левый и правый вспомогательные громкоговорители LSS и RSS могут быть расположены на общей оси громкоговорителей с левым и правым главными громкоговорителями LMS и RMS. Однако, как также обсуждается в указанном выше патенте США №4497064, вспомогательные громкоговорители могут быть размещены в любой точке пространства, создающей требуемое значение времени задержки по отношению к соответствующим главным громкоговорителям, для звуков, направленных на уши слушателя. Как изображено на Фиг.2 и обсуждается в патентах США №№4489432; 4497064; и 4569074, в том случае, когда главные и вспомогательные громкоговорители расположены вдоль общей оси громкоговорителей, предпочтительное расстояние между соответствующими главными и вспомогательными громкоговорителями с каждой стороны примерно равно величине от максимального звукового интервала

Δtmax до примерно 150% Δtmax, что обеспечивает соответствующее изменение времени задержки между громкоговорителями Δt' без выхода за пределы существа и назначения настоящего изобретения. Как показано на Фиг.1, изображающей известный уровень техники, способы, раскрытые в патентах США №№4489432; 4497064; 4569074 и 4630298, пригодны для создания кажущихся местонахождений источников звука в интервале до примерно 90 градусов слева и справа от центральной оси расположения слушателя CLA впереди слушателя от двух входных аудиосигналов, таких как используемые в нормальной стереозаписи. Как было описано выше, в первом варианте исполнения настоящего изобретения, разностные фильтры фронтального и тыльного сигналов 1 и 2 на Фиг.2 выбирают таким образом, чтобы они преобразовывали частотную характеристику источников звука, расположенных впереди слушателя, в частотную характеристику, примерно соответствующую положению источников звука, воспринимаемых обоими барабанными перепонками слушателя, в точках зеркального отражения позади слушателя, для заданного частотного диапазона. Таким образом, способы, раскрытые в патентах США №№4489432; 4497064; 4569074 и 4630298, модифицированные, как описано тут, и в сочетании с вышеупомянутыми манипуляциями с сигналом, создадут иллюзию расположения источников звука в интервале примерно 90 градусов слева и справа от центральной оси расположения слушателя позади слушателя, из левого и правого входных сигналов окружающего звука LS и RS. На Фиг.8 показаны только пути прохождения для левого и правого сигналов окружающего звука LS и RS вместе с примерным интервалом воспринимаемых тыльных положений источников звука PRSL от левого и правого сигналов окружающе