Способ получения l-треонина с использованием бактерии, принадлежащей к роду escherichia, в которой инактивирован ген tolc

Иллюстрации

Показать все

Изобретение относится к биотехнологии и представляет собой способ получения L-треонина с использованием бактерии, принадлежащей к роду Escherichia, которая модифицирована таким образом, что ген tolC в указанной бактерии инактивирован. Изобретение позволяет получать L-треонин с высокой степенью эффективности. 2 н. и 1 з.п. ф-лы, 2 ил., 2 табл.

Реферат

Область техники

Настоящее изобретение относится к микробиологической промышленности, в частности к способу получения L-аминокислоты с использованием бактерии семейства Enterobacteriaceae, модифицированной таким образом, что экспрессия гена tolC в указанной бактерии ослаблена.

Описание предшествующего уровня техники

Традиционно L-аминокислоты получают в промышленном масштабе методом ферментации с использованием штаммов микроорганизмов, выделенных из природных источников, или их мутантов. Как правило, микроорганизмы модифицируют для увеличения продукции L-аминокислот.

Для увеличения продукции L-аминокислот используются различные методики, включая трансформацию микроорганизма рекомбинантной ДНК (смотри, например, патент США 4278765). Другие методики для увеличения выхода продукта включают увеличение активностей ферментов, вовлеченных в биосинтез аминокислот, и/или устранение чувствительности целевого фермента к ингибированию продуцируемой аминокислотой по типу обратной связи (смотри, например, заявку РСТ WO 95/16042 или патенты США 4346170; 5661012 и 6040160).

Еще один путь для увеличения продукции L-аминокислот - ослабление экспрессии одного или нескольких генов, вовлеченных в деградацию целевой L-аминокислоты, генов, обеспечивающих отклонение предшественников целевой L-аминокислоты от пути биосинтеза L-аминокислоты, генов, вовлеченных в перераспределение потоков углерода, азота и фосфата, генов, кодирующих токсины, клеточные факторы и т.д.

TolC является порином внешней мембраны, участвующим в обеспечении потока нескольких гидрофобных и амфипатических молекул через мембрану. Белок TolC имеет бета-складчатую структуру и образует три цилиндра, каждый из которых состоит из 18-ти мембранных антипараллельных бета-тяжей. Белок TolC является мембранным компонентом, общим для нескольких систем выведения различных веществ.

Было установлено, что продукт гена tolC располагается на внешней мембране (Morona R., et al., J. Bacteriol., 153(2):693-699 (1983)). Белок TolC в виде триммера выделили из препарата внешней мембраны бактерии Escherichia coli и с помощью двухмерной проекции с разрешением 12 ангстрем установили его четвертичную структуру. Обнаружили, что белок TolC является белком внешней мембраны, каждый мономер которого входит в состав мембранного домена, предположительно имеет вторичную структуру бета-бочонка и С-концевой периплазматический домен. Связывание белка TolC с Sec-транслоказой для осуществления переноса через внутреннюю мембрану зависит от белка SecB (Baars L., et al., J. Biol. Chem., 281(15):10024-10034 (2006)).

Было показано, что мутации в гене tolC приводят к замедлению синтеза порина OmpF и к ускорению синтеза порина OmpC. Реконститугивные исследования подтвердили, что белок TolC образует во внешней мембране канал для пептидов. Обнаружили, что белок TolC необходим для функционирования многокомпонентной системы выведения ArcAB (Fralick J., J. Bacteriol, 178 (19):5803-5805 (1996)) и его гомологов AcrEF (Kobayashi K. et al. J. Bacteriol., 183(8): 2646-2653 (2001)) и YhiUV (Nishino K., et al., J. Bacteriol., 184(8):2319-2323 (2002)), системы выведения EmrAB (Borges-Walmsley M.L. et al., J. Biol. Chem., 278 (15):12903-12912 (2003)) и его гомолога EmrKY (Tanabe H., et al. J. Gen. Appt. Microbiol., 43:257-263 (1997)), системы выведения MdtABC (Nagakubo S., et al., J. Bacteriol., 184(15):4161-4167 (2002)) и системы экструзии макролида MacAB (Kobayashi N., et al., J. Bacteriol., 183(19):5639-5644 (2001)).

Штаммы с мутациями в гене tolC становятся толерантными к колицину Е1, у них нарушается чувствительность к бактериофагам, исчезает белок OmpF и возникает гиперчувствительность к детергентам, краскам и определенным антибиотикам.

Однако в настоящее время отсутствуют сообщения об инактивации гена tolC для целей получения L-аминокислот.

Описание изобретения

Целями настоящего изобретения являются повышение продуктивности штаммов-продуцентов L-аминокислот и предоставление способа получения L-аминокислоты с использованием указанных штаммов.

Данные цели были достигнуты путем обнаружения того факта, что ослабление экспрессии гена tolC может повысить продукцию L-аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, глицин, L-серин, L-аланин, L-аспарагин, L-аспарагиновая кислота, L-глутамин, L-глутаминовая кислота, L-пролин, L-аргинин, L-фенилаланин, L-тирозин и L-триптофан.

Настоящее изобретение предоставляет бактерию семейства Enterobacteriaceae, обладающую способностью к повышенной продукции аминокислот, таких как L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, глицин, L-серин, L-аланин, L-аспарагин, L-аспарагиновая кислота, L-глутамин, L-глутаминовая кислота, L-пролин, L-аргинин, L-фенилаланин, L-тирозин и L-триптофан.

Целью настоящего изобретения является предоставление бактерии-продуцента L-аминокислоты семейства Enterobacteriaceae, при этом указанная бактерия была модифицирована таким образом, что экспрессия гена tolC в этой бактерии ослаблена.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом экспрессия гена tolC ослаблена путем инактивации гена tolC.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Escherichia.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная бактерия принадлежит к роду Pantoea.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматической L-аминокислоты и неароматической L-аминокислоты.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанной выше бактерии, при этом указанная неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, глицина, L-серина, L-аланина, L-аспарагина, L-аспарагиновой кислоты, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.

Также целью настоящего изобретения является предоставление способа получения L-аминокислоты, который включает в себя:

- выращивание описанной выше бактерии в питательной среде с целью продукции и выделения L-аминокислоты в культуральную жидкость, и

- выделение указанной L-аминокислоты из культуральной жидкости.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная L-аминокислота выбрана из группы, состоящей из ароматических L-аминокислот и неароматических L-аминокислот.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная ароматическая L-аминокислота выбрана из группы, состоящей из L-фенилаланина, L-тирозина и L-триптофана.

Также целью настоящего изобретения является предоставление описанного выше способа, при этом указанная неароматическая L-аминокислота выбрана из группы, состоящей из L-треонина, L-лизина, L-цистеина, L-метионина, L-лейцина, L-изолейцина, L-валина, L-гистидина, глицина, L-серина, L-аланина, L-аспарагина, L-аспарагиновой кислоты, L-глутамина, L-глутаминовой кислоты, L-пролина и L-аргинина.

Более детально настоящее изобретение описано ниже.

Наилучший способ осуществления настоящего изобретения

1. Бактерия согласно настоящему изобретению

Бактерия согласно настоящему изобретению - это бактерия, принадлежащая к семейству Enterobacteriaceae, обладающая способностью к продукции L-аминокислоты, при этом бактерия модифицирована таким образом, что экспрессия гена E.coli у этой бактерии ослаблена.

Согласно настоящему изобретению термин «бактерия, обладающая способностью к продукции L-аминокислоты» означает бактерию, обладающую способностью к продукции и выделению L-аминокислоты в питательную среду, когда бактерия согласно настоящему изобретению выращивается в указанной питательной среде.

Термин «бактерия, обладающая способностью к продукции L-аминокислоты» в качестве применяемого здесь термина также означает бактерию, способную продуцировать и вызывать накопление любой L-аминокислоты в питательной среде в больших количествах, по сравнению с диким типом или родительским штаммом E.coli, таким как штамм E.coli К-12, и, предпочтительно означает, что указанный микроорганизм способен накапливать в среде целевую L-аминокислоту в количестве не менее чем 0.5 г/л, более предпочтительно, не менее чем 1.0 г/л. Термин «L-аминокислота» включает в себя L-аланин, L-аргинин, L-аспарагин, L-аспарагиновую кислоту, L-цистеин, L-глутаминовую кислоту, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин и L-валин.

Термин «ароматическая L-аминокислота» включает в себя L-фенилаланин, L-тирозин и L-триптофан. Термин «неароматическая L-аминокислота» включает в себя L-треонин, L-лизин, L-цистеин, L-метионин, L-лейцин, L-изолейцин, L-валин, L-гистидин, L-глицин, L-серин, L-аланин, L-аспарагин, L-аспарагиновую кислоту, L-глутамин, L-глутаминовую кислоту, L-пролин и L-аргинин. Предпочтительными, в частности, являются L-треонин, L-лизин, L-цистеин, L-лейцин, L-гистидин, L-глутаминовая кислота, L-фенилаланин, L-триптофан, L-пролин и L-аргинин.

Семейство Enterobacteriaceae включает бактерии, принадлежащие к роду Escherichia, Enterobacter, Erwinia, Klebsiella, Pantoea, Photorhabdus, Providencia, Salmonella, Serratia, Shigella, Morganella, Yersinia и т.д. Более конкретно, могут быть использованы бактерии, классифицируемые как принадлежащие к семейству Enterobacteriaceae в соответствии с таксономией, используемой в базе данных NCBI (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/htbinpost/Taxonomy/wgetorg?mode=Tree&id=1236&lvl=3&keep=l&srchmode=l&unlock). Бактерия, принадлежащая к роду Escherichia или Pantoea, предпочтительна.

Термин «бактерия, принадлежащая к роду Escherichia» означает, что бактерия относится к роду Escherichia в соответствии с классификацией, известной специалисту в области микробиологии. В качестве примера микроорганизма, принадлежащего к роду Escherichia, использованного в настоящем изобретении, но не ограничивается только ею, может быть упомянута бактерия Escherichia coli (E.coli).

Круг бактерий, принадлежащих к роду Escherichia, которые могут быть использованы в настоящем изобретении, не ограничен каким-либо образом, однако, например, бактерии, описанные в книге Neidhardt, F.C. et al. (Escherichia coli and Salmonella typhimurium, American Society for Microbiology, Washington D.C., 1208, Таблица 1), могут быть включены в число бактерий согласно настоящему изобретению.

Термин «бактерия, принадлежащая к роду Pantoea» означает, что бактерия относится к роду Pantoea в соответствии с классификацией, известной специалисту в области микробиологии. Недавно несколько видов Enterobacter agglomerans были заново классифицированы как Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii или подобные им, на основании анализа нуклеотидной последовательности 16S рРНК и т.д. (Int. J. Syst. BacterioL, 43, 162-173 (1993)).

Термин «бактерия, модифицированная таким образом, что в указанной бактерии экспрессия гена tolC ослаблена», означает, что бактерия модифицирована таким образом, что модифицированная бактерия содержит меньшее количество белка TolC по сравнению с немодифицированной бактерией, или что модифицированная бактерия становится неспособной синтезировать белок TolC.

Термин "инактивация гена tolC" означают, что модифицированный ген кодирует полностью нефункциональный белок. Возможно также, что модифицированный участок ДНК неспособен нормально экспрессировать ген в результате делеции части гена, сдвига рамки считывания гена, введения missense/nonsense мутации(й) или модификации прилегающей к гену области, в результате включения последовательностей, контролирующих экспрессию гена, таких как промоторы, энхансеры, аттенуаторы, сайты связывания рибосомы и т.д.

Уровень экспрессии гена можно оценить путем измерения количества мРНК, транскрибируемой с гена, с использованием ряда известных методов, включая блотинг по Нозерну, количественную ОТ-ПЦР и подобные им. Количество белка, кодируемого геном, можно измерить известными методами, включая SDS-PAGE с последующим иммуноблотингом (Вестерн блотингом) и подобными им.

Ген tolC (синонимы - ЕСК3026, weeA, b3035, colE1-i, mtcB, mukA, refI, toc) кодирует белок TolC (синонимы: канал внешней мембраны TolC, B3035, WeeA, Toc, RefI, MukA, MtcB). Ген tolC (нуклеотиды с номерами с 3,176,137 по 3,177,618 в последовательности с инвентарным номером NC_000913.2; gi:49175990; в базе данных GenBank) располагается между генами ycal и lpxK на хромосоме штамма E.coli К-12. Нуклеотидная последовательность гена tolC и аминокислотная последовательность кодируемого им белка TolC, кодируемая геном tolC, показана на SEQ ID NO: 1 и SEQ ID NO: 2, соответственно.

Поскольку в последовательностях ДНК разных родов или штаммов семейства Enterobacteriaceae могут существовать некоторые различия, нуклеотидная последовательность гена tolC, подлежащего инактивации, не ограничивается последовательностью гена, приведенной в SEQ ID No: 1, но также может включать последовательности генов, гомологичных последовательности, приведенной в SEQ ID No: 1. Поэтому, вариант белка, кодируемого геном tolC, может быть представлен белком с гомологией не менее 80%, предпочтительней не менее 90%, и, наиболее предпочтительно, не менее 95%, по отношению к полной аминокислотной последовательности, кодируемой геном tolC и показанной на SEQ ID NO.2, до тех пор, пока активность белка TolC сохраняется на том же уровне, как до инактивации.

Кроме того, ген tolC может быть представлен вариантом, который гибридизуется с нуклеотидной последовательностью, приведенной в Перечне последовательностей под номером 1 (SEQ ID NO: 1), или с зондом, который может быть синтезирован на основе указанной нуклеотидной последовательности, в жестких условиях, при условии, что указанный вариант кодирует функциональный белок TolC таким, каким он был до инактивации. "Жесткие условия" включают такие условия, при которых образуются специфические гибриды, например гибриды, имеющие гомологию не менее чем 60%, более предпочтительно не менее чем 70%, наиболее предпочтительно не менее чем 80%, еще более предпочтительно не менее чем 90%, и в наибольшей степени предпочтительно не менее чем 95%, а неспецифические гибриды, например, гибриды, имеющие меньшую перечисленной выше гомологию - не образуются. Например, демонстрацией жестких условий может служить однократная или многократная отмывка, предпочтительно двух- или трехкратная отмывка при концентрации солей 1×SSC, 0.1% SDS, предпочтительно 0.1×SSC, 0.1% SDS, при температуре 60°С. Продолжительность отмывки зависит от типа мембраны, используемой для блотинга, и, как правило, указывается производителями наборов в инструкции. Например, рекомендуемая продолжительность отмывки для мембран Hybond™ N+nylon (Amersham) в жестких условиях составляет 15 минут. Более предпочтительно повторить отмывку 2-3 раза. Длина зонда может быть выбрана соответствующим образом, в зависимости от условий гибридизации, и обычно варьирует в диапазоне от 100 п.о. до 1 тыс.п.о.

Гомология между двумя аминокислотными последовательностями может быть установлена с помощью хорошо известных методов, например, компьютерной программы BLAST 2.0.

Экспрессия гена tolC может быть ослаблена путем введения мутации в ген на хромосоме таким образом, что количество внутриклеточного белка TolC, кодируемого этим геном, снизится по сравнению с немодифицированным штаммом. Такая мутация может быть достигнута введением гена лекарственной устойчивости или делецией части гена или полноразмерного гена (Qiu, Z. and Goodman, M.F., J. Biol. Chem., 272, 8611-8617 (1997); Kwon, D.H. et al J. Antimicrob. Chemother., 46, 793-796 (2000)). Экспрессия гена tolC может быть также ослаблена путем модификации экспрессии регуляторной последовательности, такой как промотор, последовательность Шайна-Дальгарно (SD) и т.д. (WO 95/34672, Carrier, T.A. and Keasling, J.D., Biotechnol Prog 15, 58-64 (1999)).

Например, следующие методы могут применяться для введения мутации путем генной рекомбинации. Конструируется мутантный ген и бактерия, которая должна быть модифицирована, трансформируется фрагментом ДНК, содержащим мутантный ген. Затем нативный ген на хромосоме замещается мутантным геном с использованием гомологичной рекомбинации, а полученный штамм отбирается путем селекции. Такое замещение гена с использованием гомологичной рекомбинации может быть проведено методами с использованием линейной ДНК, как, например, метод известный как "Red-зависимая интеграция" или "интеграция посредством Red-системы" (Datsenko, K.A., Wanner, B.L., Proc. Natl. Acad. Sci. USA, 97, 12, 6640-6645 (2000)) и метод с использованием плазмиды, репликация которой чувствительна к температуре (патент США 6,303,383 или заявка Японии 05-007491 А). Далее, введение сайт-специфической мутации путем замещения гена с использованием гомологичной рекомбинации, как сказано выше, может также быть осуществлено с использованием плазмиды с пониженной способностью к репликации в клетке хозяина.

Экспрессия гена может быть также ослаблена путем встраивания транспозона или IS-фактора в кодирующую область гена (патент США 5175107) или с помощью традиционных методов, таких как облучение УФ-лучами или обработка нитрозогуанидином (N-метил-N'-нитро-N-нитрозогуанидин), сайт-направленный мутагенез, разрушение гена с помощью гомологичной рекомбинации и/или за счет мутации сдвига рамки (Yu, D. et al., Proc. Natl. Acad. Sci. USA, 2000, 97:12: 5978-83 and Datsenko, K.A. and Wanner, B.L., Proc. Natl. Acad. Sci. USA, 2000, 97:12: 6640-45), также названной «Red-зависимая интеграция».

Продукция белка TolC в соединении с MFP-белками (Membrane Fusion Proteins - Мембранные Белки Слияния) обеспечивает облегченный транспорт веществ через внешнюю мембрану Escherichia coli. Штаммы с делениями в гене tolC становятся гиперчувствительными к гидрофобным агентам в результате инактивации системы выведения arcАВ, обеспечивающей резистентность к различным лекарственным препаратам (Fralick J., J. Bacteriol., 178 (19):5803-5805 (1996)). Поэтому снижение или отсутствие активности белка ТоlC в бактерии согласно настоящему изобретению может быть установлено путем сравнения с родительским немодифицированным штаммом бактерии.

Наличие или отсутствие гена tolC на хромосоме бактерии можно обнаружить хорошо известными методами, включая ПЦР, блотинг по Саузерну и подобными им. Кроме того, уровень экспрессии гена можно оценить путем измерения количества мРНК, транскрибируемой с гена, с использованием ряда известных методов, включая блотинг по Нозерну, количественную ОТ-ПЦР и подобные им. Количество белка, кодируемого геном, можно измерить известными методами, включая SDS-PAGE с последующим иммуноблотингом (Вестерн блотингом) и подобными им. Например, распознование продукта гена tolC проводили путем приготовления авторадиографических снимков гелей после электрофореза меченых образцов из мини-клеточного штамма бактерий (Моrona R., et al., J. Bacteriol., 153(2):693-699 (1983)).

Методами приготовления плазмидной ДНК, разрезания и лигирования ДНК, трансформации, выбора олигонуклеотидов в качестве праймеров и подобные им могут являться обычные методы, хорошо известные специалисту в данной области. Эти методы описаны, например, в книге Sambrook, J., Fritsch, E.F., and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989).

Бактерии - продуценты L-аминокислоты

В качестве бактерии, согласно настоящему изобретению, которая модифицирована таким образом, что в ней ослаблена экспрессия гена tolC, может быть использована бактерия, способная продуцировать как ароматические, так и неароматические L-аминокислоты.

Бактерия, согласно настоящему изобретению, может быть получена путем инактивации гена tolC в бактерии, уже обладающей способностью продукцировать L-аминокислоты. С другой стороны, бактерия, согласно настоящему изобретению, может быть получена путем придания бактерии, в которой ген tolC уже инактивирован, способности продуцировать L-аминокислоты.

Бактерия-продуцент L-треонина

Примеры родительского штамма для получения бактерии-продуцента L-треонина, согласно настоящему изобретению, включают, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм E.coli TDH-6/pVIC40 (ВКПМ В-3996) (патенты США 5175107 и 5705371), штамм Е.coli 472T23/pYN7 (ATCC 98081) (патент США 5631157), штамм Е.coli NRRL-21593 (патент США 5939307), штамм Е.coli FERM ВР-3756 (патент США 5474918), штаммы E.coli FERM ВР-3519 и FERM ВР-3520 (патент США 5376538), штамм E.coli MG442 (Гусятинер и др., Генетика, 14, 947-956 (1978)), штаммы E.coli VL643 и VL2055 (Европейская патентная заявка ЕР 1149911 А) и подобными им.

Штамм TDH-6 является дефицитным по гену thrC, способен ассимилировать сахарозу и содержит ген ilvA с мутацией типа "leaky". Указанный штамм содержит мутацию в гене rhtA, которая обуславливает устойчивость к высоким концентрациям треонина и гомосерина. Штамм В-3996 содержит плазмиду pVIC40, которая была получена путем введения в вектор, производный от вектора RSF1010, оперона thrA*BC, включающего мутантный ген thrA, кодирующий аспартокиназа-гомосериндепидрогеназу I, у которой существенно снижена чувствительность к ингибированию треонином по типу обратной связи. Штамм В-3996 был депонирован 19 ноября 1987 года во Всесоюзном научном центре антибиотиков (РФ, 117105 Москва, Нагатинская ул., 3-А) с инвентарным номером РИА 1867. Указанный штамм также был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) (РФ, 117545 Москва, 1-й Дорожный проезд, 1) с инвентарным номером В-3996.

В качестве родительского штамма для получения бактерии-продуцента L-треонина, согласно настоящему изобретению, может также использоваться E.coli VKPM В-5318 (европейский патент EP 0593792 В). Штамм В-5318 является прототрофным по изолейцину и содержит плазмиду pVIC40, в которой регуляторная область треонинового оперона замещена чувствительным к температуре С1 репрессором фага λ и PR промотором. Штамм VKPM В-5318 был депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) 3 мая 1990 г. с инвентарным номером VKPM В-5318.

Предпочтительно, чтобы бактерия согласно настоящему изобретению была далее модифицирована таким образом, чтобы иметь повышенную экспрессию одного или нескольких следующих генов:

- мутантного гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи;

- гена thrB, кодирующего гомосеринкиназу;

- гена thrC, кодирующего треонинсинтазу;

- гена rhtA, предположительно кодирующего трансмембранный белок;

- гена asd, кодирующего аспартат-β-семиальдегиддегидрогеназу, и

- гена aspC, кодирующего аспартатаминотрансферазу (аспартаттрансаминазу).

Нуклеотидная последовательность гена thrA, кодирующего аспартокиназа-гомосериндегидрогеназу I из Escherichia coli, известна (номера нуклеотидов с 337 по 2799 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrA расположен на хромосоме штамма E.coli К-12 между генами thrL и thrB. Нуклеотидная последовательность гена thrB, кодирующего гомосеринкиназу из Escherichia coli, известна (номера нуклеотидов с 2801 по 3733 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrB расположен на хромосоме штамма E.coli К-12 между генами thrA и thrC. Нуклеотидная последовательность гена thrC, кодирующего треонинсинтазу из Escherichia coli, известна (номера нуклеотидов с 3734 по 5020 в последовательности с инвентарным номером NC_000913.2 в базе данных GenBank, gi: 49175990). Ген thrC расположен на хромосоме штамма E.coli К-12 между геном thrB и открытой рамкой считывания yaaX. Все три указанных гена функционируют как один треониновый оперон. Для усиления экспрессии треонинового оперона желательно удалить из оперона область аттенюатора, который влияет на транскрипцию (заявка РСТ WO 2005/049808, заявка РСТ WO 2003/097839).

Мутантный ген thrA, кодирующий аспартокиназу-гомосериндегидрогеназу I, устойчивую к ингибированию треонином по типу обратной связи, так же, как и гены thrB и thrC могут быть получены в виде единого оперона из хорошо известной плазмиды pVIC40, которая представлена в штамме-продуценте E.coli ВКПМ В-3996. Плазмида pVIC40 подробно описана в патенте США 5705371.

Ген rhtA расположен на 18 минуте хромосомы E.coli около оперона glnHPQ, который кодирует компоненты транспортной системы глутамина, ген rhtA идентичен ORF1 (ген ybiF, номера нуклеотидов с 764 по 1651 в последовательности с инвентарным номером ААА218541 в базе данных GenBank, gi:440181), расположен между генами рехВ и оmpХ. Участок ДНК, экспрессирующийся с образованием белка, кодируемого рамкой считывания ORF1, был назван геном rhtA (rht: resistance to homoserine and threonine). Также было показано, что мутация rhtA23 представляет собой замену А-на-G в положении -1 по отношению к старт кодону ATG (тезисы 17th International Congress of Biochemistry and Molecular Biology, тезисы 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No.457, европейская заявка EP 1013765 A).

Нуклеотидная последовательность гена asd из E.coli известна (номера нуклеотидов с 3572511 по 3571408 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi: 161313 07) и может быть получена с помощью ПЦР (полимеразная цепная реакция; ссылка на White, T.J. et al., Trends Genet., 5, 185 (1989)) с использованием праймеров, синтезированных на основе нуклеотидной последовательности указанного гена. Гены asd из других микроорганизмов могут быть получены сходным образом.

Также нуклеотидная последовательность гена aspC из E.coli известна (номера нуклеотидов с 983742 по 984932 в последовательности с инвентарным номером NC_000913.1 в базе данных GenBank, gi:16128895) и может быть получена с помощью ПЦР. Гены aspC из других микроорганизмов могут быть получены сходным образом.

Бактерия-продуцент L-лизина

Примеры бактерий-продуцентов L-лизина, принадлежащих к роду Escherichia, включают мутанты, обладающие устойчивостью к аналогу L-лизина. Аналог L-лизина ингибирует рост бактерий, принадлежащих к роду Escherichia, но это ингибирование полностью или частично снимается, когда в среде также присутствует L-лизин. Примеры аналога L-лизина включают, но не ограничиваются оксализином, лизингидроксаматом, S-(2-аминоэтил)-L-цистеином (АЕС), γ-метиллизном, α-хлорокапролактамом и так далее. Мутанты, обладающие устойчивостью к указанным аналогам лизина, могут быть получены путем обработки бактерий, принадлежащих к роду Escherichia, традиционными мутагенами. Конкретные примеры бактериальных штаммов, используемых для получения L-лизина, включают штамм Escherichia coli AJ 11442 (FERM BP-1543, NRRL B-12185; смотри патент США 4346170) и штамм Escherichia coli VL611. В этих микроорганизмах аспартокиназа устойчива к ингибированию L-лизином по принципу обратной связи.

Штамм WC 196 может быть использован в качестве бактерии-продуцента L-лизина Escherichia coli. Данный бактериальный штамм был получен путем селекции фенотипа устойчивости к АЕС у штамма W3110, производного от штамма Escherichia coli К-12. Полученный штамм был назван Escherichia coli AJ 13069 и был депонирован в Национальном Институте Биологических Наук и Человеческих Технологий, Агенство Промышленной Науки и Технологии, Министерство Международной Торговли и Промышленности (National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry), в настоящее время называющийся Национальный Институт Прогрессивной Промышленной Науки и Технологии, Международный Депозитарий Организмов для Целей Патентования, Централ 6, 1-1, Хигаши 1-Чоме, Тсукуба-ши, Ибараки-кен, 305-8566, Япония (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, Central 6, 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki-ken, 305-8566, Japan), 6 декабря 1994 года и получил инвентарный номер FERM Р-14690. Затем было произведено международное депонирование этого штамма согласно условиям Будапештского Договора 29 сентября 1995 года, и штамм получил инвентарный номер FERM BP-5252 (патент США 5827698).

Примеры родительских штаммов для получения бактерий, продуцирующих L-лизин согласно настоящему изобретению, также включают штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-лизина. Примеры ферментов, вовлеченных в биосинтез L-лизина, включают, но не ограничиваются ими, дигидродипиколинатсинтазу (dapA), аспартокиназу (lysC), дигидродипиколинатредуктазу (dapB), диаминопимелатдекарбоксилазу (lysA), диаминопимелатдегидрогеназу (ddh) (патент США. 6040160), фосфоенолпируваткарбоксилазу(pрс), аспартатсемиальдегиддегидрогеназу (asd), никотинамидадениндинуклеотидтрансгидрогеназу (pntAB) и аспартазу (aspA) (европейская заявка EP 1253195 A). Кроме того, родительские штаммы могут иметь повышенный уровень экспрессии гена, вовлеченного в процесс дыхания (суо) (европейская заявка EP 1170376 А), гена, кодирующего никотинамиднуклеотидтрансгидрогеназу (pntAB) (патент США 5830716), гена ybjE (заявка РСТ WO 2005/073390), или комбинации этих генов.

Примеры родительских штаммов для получения бактерий, продуцирующих L-лизин согласно настоящему изобретению, также включают штаммы, в которых снижена или отсутствует активность ферментов, которые катализируют реакции образования отличных от L-лизина соединений, ответвляющихся от основного пути биосинтеза L-лизина. Примеры ферментов, которые катализируют реакции образования отличных от L-лизина соединений, ответвляющихся от основного пути биосинтеза L-лизина, включают гомосериндегидрогеназу, лизиндекарбоксилазу (патент США 5827698) и малатдегидрогеназу (заявка РСТ WO 2005/010175).

Бактерия-продуцент L-цистеина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-цистеина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм E.coli JM15, трансформированный различными аллелями гена cysE, кодирующими устойчивые к ингибированию по типу обратной связи серинацетилтрансферазы (патент США 6218168; патентная заявка РФ 2003121601); штамм E.coli W3110, содержащий сверхэкспрессированные гены, кодирующие белок, способный к секреции соединений, токсичных для клетки (патент США 5972663); штаммы E.coli, содержащие цистеиндесульфогидразу со сниженной активностью (патент Японии JP 11155571 A2); штамм E.coli W3110 с повышенной активностью позитивного транскрипционного регулятора цистеинового регулона, кодируемого геном cysB (международная заявка РСТ WO 0127307 A1) и подобные им.

Бактерия-продуцент L-лейцина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-лейцина согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штаммы E.coli, устойчивые к лейцину (например, штамм E.coli 57 (VKPM В-7386, патент США 6124121)) или к аналогам лейцина, включающих, например, β-2-тиенилаланин, 3-гидроксилейцин, 4-азалейцин и 5,5,5-трифлуоролейцин (выложенные патентные заявки Японии 62-34397 и 8-70879), штаммы E.coli, полученные с помощью генно-инженерных методов, описанных в заявке РСТ 96/06926; E.coli штамм Н-9068 (JP8-70879 A2) и подобные им.

Бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, вовлеченных в биосинтез L-лейцина. Примеры таких генов включают в себя гены оперона leuABCD, и предпочтительно представлены мутантным геном leuA, кодирующим изопропилмалатсинтазу со снятым ингибированием L-лейцином по типу обратной связи (патент США 6403342). Кроме того, бактерия согласно настоящему изобретению может быть улучшена путем усиления экспрессии одного или нескольких генов, кодирующих белки, которые экспортируют L-аминокислоту из бактериальной клетки. Примеры таких генов включают в себя гены b2682 и b2683 (гены ygaZH) (европейская заявка EP 1239041 A2).

Бактерия-продуцент L-гистидина

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-гистидина согласно настоящему изобретению, включают в себя, но не ограничиваются бактериями-продуцентами L-гистидина, принадлежащими к роду Escherichia, такими как штамм E.coli 24 (ВКПМ В-5945, патент РФ 2003677); штамм E.coli 80 (ВКПМ В-7270, патент РФ 2119536); штаммы E.coli NRRL B-12116-B12121 (патент США 4388405); штаммы E.coli H-9342 (FERM ВР-6675) и Н-9343 (FERM ВР-6676) (патент США 6344347); штамм E.coli H-9341 (FERM BP-6674) (Европейский патент 1085087); штамм E.coli AI80/pFM201 (патент США 6258554) и подобными им.

Примеры родительских штаммов для получения бактерий, продуцирующих L-гистидин согласно настоящему изобретению, также включают штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-гистидина. Примеры ферментов, вовлеченных в биосинтез L-гистидина, включают АТФ-фосфорибозилтрансферазу (hisG), фосфорибозил-АМФ-циклогидролазу (hisI), фосфорибозил-АТФ-фосфогидролазу (hisIE), фосфорибозилформимино-5-аминоимидазолкарбоксамидриботидизомеразу (hisA), амидотрансферазу (hisH), гистидинолфосфатаминотрансферазу (hisC), гистидинолфосфатазу (hisB), гистидинолдегидрогеназу (hisD) и т.д.

Известно, что гены, кодирующие ферменты биосинтеза L-гистидина (hisG, hisBHAFI), ингибируются L-гистидином, поэтому способность к продукции L-гистидина также может быть значительно усилена введением мутации, придающей устойчивость к ингибированию по типу обратной связи, в ген АТФ-фосфорибозидтрансферазы (hisG) (патенты РФ. 2003677 и 2119536).

Специфические примеры штаммов, обладающих способностью к продукции L-гистидина, включают E.coli FERM-P 5038 и 5048, в которые был введен вектор, содержащий ДНК, кодирующую фермент биосинтеза L-гистидина (заявка Японии 56-005099 А), штаммы E.coli, в которые введен ген rht, для экспорта аминокислоты (европейская заявка EP 1016710 А), штамм E.coli 80, которому придана устойчивость к сульфагуанидину, DL-1,2,4-триазол-3-аланину и стрептомицину (ВКПМ В-7270, патент РФ 2119536) и т.д.

Бактерия-продуцент L-глутаминовой кислоты

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя, но не ограничиваются штаммами, принадлежащими к роду Escherichia, такими как штамм E.coli VL334 thrС+ Европейский патент ЕР 1172433). Штамм E.coli VL334 (ВКПМ В-1641) является ауксотрофом по L-изолейцину и L-треонину с мутациями в генах thrC и ilvA (патент США 4278765). В этот штамм была перенесена природная аллель гена thrC методом общей трансдукции с использованием бактериофага Р1, выращенного на клетках природного штамма E.coli К12 (ВКПМ В-7). В результате был получен штамм, ауксотроф по L-изолейцину, VL334thrC+ (BKПМ В-8961). Этот штамм обладает способностью к продукции L-глутаминовой кислоты.

Примеры родительских штаммов, используемых для получения бактерии-продуцента L-глутаминовой кислоты согласно настоящему изобретению, включают в себя, но не ограничиваются ими, штаммы, в которых усилена экспрессия одного или нескольких генов, кодирующих ферменты биосинтеза L-глутаминовой кислоты. Примеры ферментов, вовлеченных в биосинтез L-глутаминовой кислоты, включают глутаматдегидрогеназу, глутаминсинтетазу, глутаматсинтетазу, изоцитратдегидрогеназу, аконитатгидратазу, цитратсинтазу, фосфоенолпируваткарбоксилазу, пируваткарбоксилазу, пируватдегидрогеназу, пируваткиназу, фосфоенолпируватсинтазу, енолазу, фосфоглицеромутазу, фосфоглицераткиназу, глицеральдегид-3-фосфатдегидрогеназу, триозофосфатизомеразу, фруктозобифосфатальдолазу, фосфофруктониназу и глюкозофосфатизомеразу.

Примеры штаммов, модифицированных таким образом, что усилена экспрессия гена цитратсинтетазы, гена фосфоенолпируваткарбоксилазы и/или гена глутаматдегидрогеназы, включают описанные в европейских заявках EP 1078989 A, EP 955368 A и EP 952221 A.

Примеры родительских штаммов для получения продуцирующих L-глутаминовую кислоту бактерий, согласно настоящему исследованию, также включают штаммы, в которых снижена или отсутствует активность ферментов, которые катализируют синтез отличных от L-глутаминовой кислоты соединений, ответвляющихся от основного пути биосинтеза L-глутаминовой кислоты. Примеры таких ферментов включают изоцитратлиазу, α-кетоглутаратдегидрогеназу, фосфотрансацетилазу, ацетаткиназу, синтазу ацетогидроксикислот, ацетолактатсинтазу, форматацетилтрансферазу, лактатдегидрогеназу и глутаматдекарбоксилазу. Бактерии, принадлежащие к роду Escherichia, лишенные активности α-кетоглутаратдегидрогеназы или обладающие сниженной активностью α-кетоглутаратдегидрогеназы и способы их получения описаны в патентах США 5378616 и 5573945. Конкретно, примеры таких штаммов включают в себя следующие штаммы:

E.coli W311sucA::KmR

E.coli AJ 12624 (FERM ВР-3853)

E.coli AJ 12628 (PERM BP-3854)

E.coli AJ 12949 (FERM BP-4881)

E.coli W3110sucA::KmR - это штамм, полученный в результате разрушения гена α-кетоглутаратдегидрогеназы (далее называемого "ген sucA") в штамме E.coli W3110. У этого штамма активность α-кетоглутаратдегидрогеназы отсутствует полностью.

Другие примеры бактерии-продуцента L-глутаминовой кислоты включают в себя бактерии, принадлежащие к роду Escherichia и обладающие устойчивостью к антиметаболитам аспарагиновой кислоты и дефицитные по активности α-кетоглутаратдегидрогеназы, например, штамм AJ 13199 (FERM BP-5807) (патент США 5908768), или штамм FERM P-12379, дополнительно обладающий низкой активностью по расщеплению L-глутаминовой кислоты (патент США 5393671); штамм E.coli АЛЗ 138 (FERM BP-