Способ получения диалкилкарбонатов
Иллюстрации
Показать всеИзобретение относится к усовершенствованному способу получения диалкилкарбонатов в результате взаимодействия спирта, например C1-С3 спиртов, с мочевиной, в котором примеси воды и карбаматов аммония в исходном сырье удаляют в предреакторе. Вода реагирует с исходной мочевиной с образованием карбамата аммония, который разлагают вместе с присутствующими в исходном сырье карбаматами аммония на аммиак и диоксид углерода. Кроме того, некоторое количество мочевины реагирует со спиртом в первом реакторе с образованием алкилкарбамата, который является предшественником диалкилкарбоната. Диалкилкарбонаты получают во второй реакционной зоне. Нежелательный побочный продукт алкил-N-алкилкарбаматы непрерывно отгоняют из второй реакционной зоны вместе с аммиаком, спиртом и диалкилкарбонатами при установившемся режиме работы реактора. Алкил-N-алкилкарбаматы могут быть превращены в гетероциклические соединения в третьей реакционной зоне для удаления в виде твердого материала из системы. Удаление примеси из потока сырья является главной целью использования предреактора. Дополнительное усовершенствование сделано за счет частичного превращения в предреакторе мочевины в алкилкарбамат, которое приводит к более высокой скорости получения диалкилкарбоната в первичном реакторе, уменьшению рецикла спирта в первичный реактор. Более высокая концентрация диалкилкарбоната в верхнем потоке из первичного реактора уменьшает затраты на выделение диалкилкарбоната. 4 н. и 19 з.п. ф-лы, 5 ил., 3 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к способу получения диалкилкарбонатов, в частности C1-C3 диалкилкарбонатов, в котором реакция происходит одновременно с разделением реагентов и карбонатных продуктов. Более конкретно, изобретение относится к способу, в котором спирт взаимодействует с мочевиной и/или алкилкарбаматом в присутствии катализатора на основе комплексного соединения. Более конкретно, изобретение относится к способу, в котором из потока сырья удаляют примеси для достижения стабильной работы катализатора, повышения скоростей реакций и бесперебойной работы следующего далее по схеме оборудования.
Предшествующий уровень техники
Диалкилкарбонаты являются важными соединениями, выпускаемыми промышленностью, самым важным из которых является диметилкарбонат (ДМК). Диметилкарбонат применяют в качестве метилирующего и карбонилирующего агента и в качестве сырья для получения поликарбонатов. Он может также использоваться как растворитель для замены хлорированных растворителей, таких как хлорбензол.
Несмотря на то, что цены как на диметилкарбонат, так и диэтилкарбонат в настоящее время слишком высокие для их применения в качестве топливной добавки, оба могут быть использованы в качестве оксигената в реформированном бензине и высокооктанового компонента. Диметилкарбонат содержит значительно больше кислорода (53%), чем МТБЭ (метилтретбутиловый эфир) или ТАМЭ (третамилметиловый эфир), и поэтому его меньше требуется для достижения такого же эффекта. Он имеет октановое число, равное 130, и он менее летуч, чем и МТБЭ и ТАМЭ.
Он обладает приятным запахом, в отличие от эфиров, и легче биоразлагаем.
В старых промышленных способах диметилкарбонат получали из метанола и фосгена. Из-за чрезвычайной токсичности и высокой стоимости фосгена предпринимались попытки разработать улучшенные способы без использования последнего.
В одном новом промышленном способе диметилкарбонат получают из метанола, оксида углерода, молекулярного кислорода и хлористой меди окислительным карбонилированием в двухстадийном способе в суспензии. Такой способ раскрыт в Европейском патенте EP 0460735A2. Главными недостатками этого способа являются низкая производительность, высокие затраты на выделение продуктов, образование побочных продуктов, высокие требования при переработке и необходимость в устойчивых к коррозии реакторах и трубопроводах.
Другой новый способ раскрыт в Европейских патентах EP 0742198A2 и EP 0505374B1, в которых диметилкарбонат получают через образование метилнитрита вместо метоксихлорида меди (I), приведенного выше. Побочными продуктами являются оксиды азота, диоксид углерода, метилформиат и прочие. Диметилкарбонат из потока продуктов реактора выделяют экстрактивной дистилляцией с растворителем, используя диметилоксалат в качестве растворителя для разрушения азеотропной смеси. Несмотря на то, что химия процесса проста и производительность повышена, способ очень сложен из-за разделения ряда материалов, соблюдения материального баланса в различных частях потока процесса, сложного регулирования процесса и необходимости иметь дело с метилнитритом, опасным химическим соединением.
В другом промышленном способе диметилкарбонат получают из метанола и диоксида углерода в двухстадийном процессе. Как раскрыто в Патентах США 4786741, 4851555 и 4400559, на первой стадии получают циклические карбонаты взаимодействием эпоксидов с диоксидом углерода. На второй стадии получают диметилкарбонат совместно с гликолем реакцией обмена циклических карбонатов с метанолом. Смотрите, например, Y. Okada, et al "Dimethyl Carbonate Production for Fuel Additives", ACS, Div. Fuel Chem., Preprint, 41 (3), 1996, и John F. Knifton, et al, "Ethylene Glycol-Dimethyl Carbonate Cogeneration", Journal of Molecular Chemistry, vol. 67, pp. 389-399, 1991. Хотя этот способ имеет преимущества, скорость реакции эпоксидов с диоксидом углерода низка и требуется высокое давление. Кроме того, реакция обмена циклического карбоната с метанолом ограничена условиями равновесия и метанол и диметилкарбонат образуют азеотроп, что осложняет их разделение.
Уже давно известно, что диалкилкарбонаты можно получить взаимодействием таких первичных алифатических спиртов, как метанол, с мочевиной (1) в присутствии различных гетерогенных и гомогенных катализаторов, таких как диметоксид дибутилолова, тетрафенилолово, и других. Смотрите, например, P. Ball et al, "Synthesis of Carbonates и Polycarbonates by Reaction of Urea with Hydroxy Compounds", C1 Mol. Chem., vol.1, pp 95-108, 1984. Аммиак является сопутствующим продуктом и может быть переработан в мочевину (2), как показано следующей последовательностью реакций.
Карбаматы получают при более низкой температуре с последующим получением диалкилкарбонатов при более высокой температуре, причем аммиак образуется на обоих стадиях.
Как уже было отмечено выше, две реакции являются обратимыми при требуемых условиях. По каталитической активности оловоорганические соединения располагаются в ряд R4Sn<R3SnX<<R2SnX2, где X=Cl, RO, RCOO, RCOS. Максимальная скорость реакции и минимальное образование побочных продуктов наблюдаются для диалкильных соединений олова (IV). Для большинства катализаторов (кислот Льюиса) заявляется о более высокой каталитической активности, если реакцию проводят в присутствии соответствующего coкатализатора (основания Льюиса). Например, предпочтительным coкатализатором для катализаторов на основе органических соединений олова (IV), таких как диметоксид дибутилолова, оксида дибутилолова и других, являются трифенилфосфин и 4-диметиламинопиридин. Однако термическое разложение промежуточных алкилкарбаматов и мочевины в изоциановую кислоту (HNCO) или изоциануровую кислоту ((HNCO)3) и спирт или аммиак (сопродукт разложения мочевины) также ускоряется такими оловоорганическими соединениями, как диметоксид дибутилолова или оксид дибутилолова, применяемые в синтезе диалкилкарбаматов. В заявке WO 95/17369 раскрывается способ получения диалкилкарбоната, такого как диметилкарбонат, в две стадии из спиртов и мочевины, на основе химии и катализаторов, описанных P. Ball et al. На первой стадии спирт взаимодействует с мочевиной с получением алкилкарбамата. На второй стадии получают диалкилкарбонат последующим взаимодействием алкилкарбамата со спиртом при более высоких температурах, чем на первой стадии. Реакции проводят в автоклаве. Однако, когда метанол взаимодействует с метилкарбаматом или мочевиной, также образуются побочные N-алкильные продукты, такие как метил-N-метилкарбамат (N-ММК) и N-алкилмочевина, согласно следующим реакциям:
Для минимизации образования побочных продуктов содержание диалкилкарбоната в реакторе поддерживают от 1 до 3 мас.% от общего содержания карбамата и спирта в растворе, находящегося в реакторе.
В Патенте США 6010976 диметилкарбонат (ДМК) синтезируют из мочевины и метанола с высоким выходом в одну стадию в присутствии высококипящих эфиров и гомогенного катализатора на основе комплекса олова.
Эфир как растворитель также служит комплексообразователем в образовании гомогенного комплексного катализатора из диметоксида или оксида дибутилолова in situ.
Разделение материалов, связанных со способами получения ДМК, является очень важным для его промышленного производства по экономическим причинам. В Европейском патенте EP 0742198A1 и Патенте США 5214185 раскрывается разделение ДМК из паровой смеси метанола и ДМК с использованием диметилоксалата (ДМОКС) в качестве экстракционного растворителя. Из-за высокой точки плавления ДМОКС (54°C), использование DMКС является неудобным и приводит к дополнительным расходам при разделении.
Как мочевина, так и спирты сильно гигроскопичны. Мочевина содержит примесь карбамата аммония. Поэтому вода и карбамат аммония являются примесями в исходных мочевине и спирте. Было обнаружено, что упомянутые примеси вызывают дезактивацию катализатора и забивание трубопровода на холодных участках в системе охлаждения (холодильника) верхнего потока пара из реактора. Вода вызывает дезактивацию катализатора, содержащего алкоксильные группы, например, метоксильные группы оловоорганического комплексного соединения, молекулы которого активно реагируют с молекулами воды, что приводит к гидролизу связи между атомом олова и атомом кислорода метоксильной группы. Карбамат аммония вызывает проблемы регулирования обратного давления в реакторе получения диалкилкарбоната и забивание системы охлаждения (холодильника) потока продукта в парообразном состоянии из реактора диалкилирования из-за осаждения карбамата аммония.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Вкратце, настоящее изобретение является улучшенным способом получения диалкилкарбоната, включающим стадии:
(a) подача потока, содержащего мочевину, спирт, воду и карбамат аммония в первую реакционную зону:
(b) одновременно в указанной первой реакционной зоне
(i) взаимодействие воды с мочевиной с образованием карбамата аммония,
(ii) разложение карбамата аммония, присутствующего в сырье, и карбамата аммония, образовавшегося в результате реакции воды с мочевиной, на аммиак и диоксид углерода, и
(c) удаление аммиака, диоксида углерода и указанного спирта из указанной первой реакционной зоны в виде первого верхнего погона;
(d) удаления мочевины и указанного спирта из указанной первой реакционной зоны;
(e) подачи указанной мочевины и указанного спирта во вторую реакционную зону;
(f) взаимодействия указанного спирта и мочевины в присутствии гомогенного катализатора, содержащего оловоорганическое комплексное соединение диалкилметоксида, в высококипящем растворителе с образованием диалкилкарбоната, и
(g) удаления диалкилкарбоната и указанного спирта из указанной второй реакционной зоны.
Диалкилкарбонаты получают реакцией спиртов, предпочтительно C1-C3 спиртов, с мочевиной или алкилкарбаматом или с обоими в присутствии комплексного оловоорганического соединения с высококипящим электронодонорным соединением, действующим в качестве растворителя, предпочтительно диалкоксид дибутилолова и высококипящий кислородсодержащий органический растворитель, когда реакцию проводят предпочтительно в ребойлере дистилляционного аппарата или в реакторе с мешалкой с одновременной дистилляцией диалкилкарбоната. Из вводимых исходных мочевины и спирта удаляют воду и карбаматы аммония, N-алкилированные побочные продукты и минимальную часть алкилкарбамата.
Воду удаляют реакцией с мочевиной в предреакторе, имеющем предварительную реакционную зону. Карбамат аммония удаляют разложением до аммиака и диоксида углерода в предреакторе. Кроме того, в предреакторе мочевину частично и селективно превращают в алкилкарбамат, что приводит к более высокой скорости реакции в первичном реакторе, уменьшению рецикла спирта в первичный реактор из установки или колонны извлечения диалкилкарбоната и более высокой концентрации диалкилкарбоната в верхнем потоке из первичного реактора. Более высокая концентрация диалкилкарбоната в верхнем потоке из первичного реактора снижает стоимость разделения диалкилкарбоната.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 схематично представлена технологическая схема одного варианта осуществления получения ДМК согласно настоящему изобретению.
На фиг. 2 схематично представлена схема установки разделения ДМК.
На фиг. 3 схематично представлен один вариант осуществления получения ДЭК согласно настоящему изобретению.
На фиг. 4 схематично показана схема варианта осуществления реакционно-дистилляционного колонного реактора для настоящего способа.
На фиг. 5 схематично показана схема варианта осуществления каталитического реактора с мешалкой с подсоединенной дистилляционной колонной для настоящего способа.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ
Примесь воды из вводимых исходных мочевины и спирта удаляют взаимодействием воды с мочевиной в предреакторе, в то время как карбамат аммония удаляют в предреакторе разложением его до аммиака и диоксида углерода. Предреактор должен эксплуатироваться при благоприятных условиях для разложения, так чтобы аммиак и диоксид углерода можно было удалять в виде паров. Если разложение не пройдет полностью, непрореагировавший карбамат аммония попадет в первичный реактор и превратится в мочевину и воду, мочевина в свою очередь разлагается на аммиак и диоксид углерода, вызывая дезактивацию катализатора. Мочевина частично превращается в предреакторе в алкилкарбамат. Следующие основные реакции протекают в предреакторе:
Так как вышеприведенные четыре реакции являются обратимыми и протекают одновременно в предварительной реакционной зоне в предреакторе, важным является регулирование температуры и давлений в предреакторе и первичном реакторе. Реакции (1), (2), (3) и (4) протекают в предреакторе при температуре от 200 до 380°F, предпочтительно - от 250 до 350°F в жидкой фазе в предреакторе. Предпочтительная область давлений в верхней части предреактора составляет от 30 до 300 psig. Однако давление в верхней части определяется в основном требуемой температурой в предреакторной колонне и составом жидкости в реакторе. Реакция (4) достигает равновесия и в отсутствие катализатора, но она идет значительно быстрее в присутствии такого катализатора, как комплексный катализатор на основе диалкоксид дибутилолова, и слабокислого или основного гетерогенного катализатора, такого как оксид цинка, оксид олова, оксид титана, оксид циркония, оксид молибдена, тальцит, карбонат кальция, цинк гидроксид карбонат, карбонат гидроксид циркония и так далее, нанесенный на инертный носитель, такой как диоксид кремния, прокаленный при высокой температуре (>850°C) оксид алюминия. Предпочтительная концентрация мочевины в жидкой фазе в предварительной реакционной зоне при данных условиях составляет менее 80 мас.%, предпочтительно 50 мас.%. Для того чтобы могло происходить разложение карбамата аммония, парциальные давления аммиака и диоксида углерода должны поддерживаться ниже давления разложения карбамата аммония. Также весьма желательно эффективно удалять продукты, аммиак и диоксид углерода, из предварительной реакционной зоны предреактора, предпочтительно, как вариант, в виде паровой смеси вместе со спиртом и любым удаляющим инертным газом. Пары спирта при желании могут применяться в качестве единственного газа для удаления. Таким образом, улучшение заключается в способе получения диалкилкарбонатов реакцией реагентов, включающих мочевину и спирт, содержащих воду и карбамат аммония в качестве примесей, включающим стадии:
(a) подача реагентов, содержащих мочевину и спирт, в первичную реакционную зону;
(b) подача оловоорганического соединения и высококипящего содержащего электронодонорный атом растворителя в указанную первичную реакционную зону; и
(c) одновременно в указанной первичной реакционной зоне
(i) взаимодействие спирта и мочевины в присутствии указанного оловоорганического соединения и указанного высококипящего содержащего электронодонорный атом растворителя с получением диалкилкарбоната; и
(ii) удаление диалкилкарбоната и аммиака из указанной первичной реакционной зоны в виде паров,
в котором улучшением является использование предварительной реакционной зоны перед первичной реакционной зоной для удаления воды и карбамата аммония из указанных реагентов в результате подачи реагентов сначала в предварительную реакционную зону при условиях, при которых указанная вода реагирует с мочевиной с образованием карбамата аммония, и разложение карбамата аммония до аммиака и диоксида углерода, и удаление аммиака и диоксида углерода из указанных реагентов перед подачей реагентов на стадию (b), предпочтительно при температурах в интервале от 200 до 380°F, более предпочтительно - от 250 до 350°F и предпочтительно в жидкой фазе. Предпочтительно, чтобы часть мочевины и спирта реагировали с образованием алкилкарбамата в предварительной реакционной зоне.
Предпочтительный вариант осуществления способа получения диалкилкарбонатов включает стадии:
(a) подачи мочевины, C1-C3 спирта в предреакционную зону;
(i) очистки от примесей сырья в предреакторе;
(ii) удаления аммиака, диоксида углерода и спирта в виде паров;
(iii) взаимодействия части мочевины и спирта в алкилкарбамат; и
(iv) удаления жидкого потока, содержащего алкилкарбамат, мочевину и спирт для введения в первичную реакционную зону;
(b) подачи оловоорганического соединения и высококипящего содержащего электронодонорный атом растворителя в указанную первичную реакционную зону;
(c) одновременно в указанной первичной реакционной зоне
(i) взаимодействия C1-C3 спирта, мочевины и алкилкарбамата в присутствии указанного оловоорганического соединения и указанного высококипящего содержащего электронодонорный атом растворителя с получением диалкилкарбоната; и
(ii) удаления диалкилкарбоната и аммиака, эфира, диоксида углерода, алкил-N-алкилкарбамата и алкилкарбамата из указанной первичной реакционной зоны в виде паров; и
(d) конверсии алкил-N-алкилкарбамата, отделенного от потока пара, и в небольшом потоке перевода жидкой реакционной среды из первичной реакционной зоны, в указанное гетероциклическое соединение ((RNCO)3 , где R является H или
CnH2n+1 и n=1, 2 или 3) в указанной третьей реакционной зоне очистки, и превращения алкилкарбамата в диалкилкарбонат;
(i) удаления гетероциклических соединений в потоке из третьей реакционной зоны в виде твердых материалов;
(ii) возврата перенаправленного потока жидкости в первичную реакционную зону и реакционную зону очистки, и
(iii) удаления аммиака, спирта и диалкилкарбоната в виде верхнего потока пара.
Этот вариант осуществления предлагает усовершенствования, которые включают использование предварительной реакционной зоны для удаления воды и карбамата аммония из указанной мочевины и спирта, предпочтительно, при температуре в интервале от 200 до 380°F, более предпочтительно - от 250 до 350°F и предпочтительно в жидкой фазе, и использование реакционной зоны очистки для превращения побочного продукта алкил-N-алкилкарбамата в гетероциклические соединения при температуре в интервале от 300 до 400°F в жидкой фазе для удаления из системы в виде твердого вещества.
Предпочтительным предреактором является колонный реактор с двумя размерами диаметра по высоте (больший диаметр в нижней части). Исходный раствор мочевины в спирте вводят в колонный предреактор в среднюю часть верхней секции с меньшим диаметром. Карбамат аммония в исходной мочевине разлагается на аммиак и диоксид углерода. Температура в колонне поддерживается от 200 до 380°F при давлении от 50 до 350 psig. Легкие продукты реакции, аммиак и диоксид углерода, удаляют из колонны в виде верхнего потока пара вместе с парами спирта. Мочевина в потоке сырья, по меньшей мере, частично превращается в этом предреакторе в алкилкарбамат. Эта реакция является экзотермической. Конверсия мочевины составляет более 10%, предпочтительно, более 50%. Превращение мочевины в алкилкарбамат может быть проведено и в отсутствии комплексного катализатора. Но с катализатором скорость превращения выше.
Удаление примеси воды и карбамата аммония из потока сырья решает проблемы, связанные с поддержанием катализатора в активном состоянии, регулированием давления в верхней части дистилляционной колонны, и забиванием поверхности охлаждения верхнего потока пара из первичного реактора из-за осаждения карбамата аммония. Очистку сырья от примесей проводят в предреакторе, который является реактором с дистилляционной колонной с двумя различными диаметрами по высоте. Удаление примеси из потока сырья является главной целью использования предреактора. Дополнительное усовершенствование сделано за счет, по меньшей мере, частичного превращения в предреакторе мочевины в алкилкарбамат, которое приводит к более высокой скорости реакции получения диалкилкарбоната в первичном реакторе, уменьшению рецикла спирта в первичный реактор из установки извлечения диалкилкарбоната, в силу более высокой концентрации диалкилкарбоната в верхнем потоке из первичного реактора. При получении диалкилкарбоната более высокая концентрация диалкилкарбоната в верхнем потоке из первичного реактора уменьшает затраты на выделение диалкилкарбоната.
Первичный реактор, в котором образуется диалкилкарбонат, является реактором с мешалкой, оборудованным теплообменником для извлечения скрытой теплоты потока паров продукта из первичного реактора. Извлекаемое тепло используют для рецикла спирта из колонны извлечения спирта в первичный реактор. В этом нет необходимости, а необязательно, чтобы жидкую реакционную среду механически перемешивали. В настоящем изобретении реакционно-дистилляционная колонна первичного реактора работает необычно, в результате чего нежелательные N-алкилированные побочные продукты удаляются из жидкой реакционной зоны в виде части верхнего потока продукта, что позволяет поддерживать содержание побочных продуктов на минимальном уровне, так что реактор может эксплуатироваться при постоянном уровне жидкости без заполнения жидкой реакционной зоны нежелательными побочными продуктами в течение длительного периода работы реактора без перебоев. Это чрезвычайно важно для промышленного получения диалкилкарбоната. Более низкие концентрации мочевины, алкилкарбамата и диалкилкарбоната в жидкой среде используют для минимизации скорости образования N-алкилированных побочных продуктов, за счет использования более высокой концентрации такого высококипящего растворителя, как триглим. Однако если концентрация алкилкарбамата является слишком низкой, может иметь место неприемлемо низкая производительность реактора по ДМК.
Было обнаружено, что для предотвращения накопления таких побочных продуктов, таких алкил-N-алкилкарбамат и гетероциклические соединения, в первичном реакторе, алкил-N-алкилкарбамат следует непрерывно отгонять из жидкой реакционной среды, при одновременном осуществлении реакции получения диалкилкарбоната, регулированием температуры и давления потока пара дистилляционной колонны первичного реактора, и превращать в гетероциклические соединения, которые могут быть удалены из системы в виде твердом виде. Другими словами, было обнаружено, что неизменные концентрации алкил-N-алкилкарбамата и гетероциклических соединений в данном жидком реакционном объеме первичной реакционной зоны могут поддерживаться при неизменном состоянии условий эксплуатации реактора. Было также обнаружено, что температура поверхности любой внутренней части первичного реактора при температуре ниже 550°F, предпочтительно ниже 450°F, весьма желательна для минимизации образования гетероциклических соединений в первичной реакционной зоне. Превращение алкил-N- алкилкарбаматов в гетероциклические соединения проводят использованием третьей реакционной зоны очистки.
Предпочтительным реактором очистки для этой цели является реактор с мешалкой, снабженный присоединенной дистилляционной колонной, конденсатором и сборником флегмы. Побочный продукт алкил-N-алкилкарбамат, полученный алкилированием алкилкарбамата с диалкилкарбонатом в первичной реакционной зоне, непрерывно удаляют в виде части верхнего потока пара вместе с другими продуктами регулированием температуры пара из первичной реакционной зоны при температуре в колонне выше, чем 255°F, предпочтительно выше 265°F.
Алкил-N-алкилкарбамат выделяют из верхнего потока из первичного реактора и вводят в реактор очистки. Реактор очистки предпочтительно эксплуатируют при температуре жидкой реакционной среды в интервале от 330 до 400°F. Важно, чтобы температура в колонне и давление в верхней части колонны регулировалось так, чтобы верхний поток пара не содержал алкил-N-алкилкарбамат. Обычно реактор очистки эксплуатируют при температуре и давлении в верхней части, по меньшей мере, на 2°F и 5 psig выше, чем в первичном реакторе.
Способ удаления побочных продуктов, раскрываемый в этом изобретении, может быть распространен на такие прототипы, как Патент США 6359163 B2 (2002) и заявка WO 95/17369 (1995), Патент США 6031122 (2000), и Европейский патент EP 1167339 (2002), посвященные получению диалкилкарбоната из мочевины и спирта независимо от того, используется ли растворитель или нет в первичном реакторе и реакторе очистки.
Для получения алкилкарбоната с большей молекулярной массой, такого как дипропилкарбонат, дибутилкарбонат и так далее, удаление алкил-N-алкилкарбамата из первичного реактор в виде частей верхнего потока становится трудным. Поэтому жидкую часть потока выводят из первичного реактора в большем количестве в реактор очистки. Алкил-N-алкилкарбамат в этом потоке перехода превращают в отделяемые высококипящие материалы в реакторе очистки, как раскрыто в этом изобретении. После удаления высококипящих отходов в нижнем потоке из реактора очистки, остающийся поток жидкости может быть возвращен в первичный реактор и реактор очистки.
Различные физические аппараты могут быть применены в качестве предреактора. Они включают реактор с дистилляционной колонной, реактор с мешалкой, барботажный реактор, трубчатый реактор, реактор с кипящим слоем или любую их комбинацию. Предпочтительным аппаратом является реактор с дистилляционной колонной, в котором реакции проводят при реакционно-дистилляционных условиях. Несмотря на обратимость реакций (1), (2) и (3), использование реактора с дистилляционной колонной позволяет сдвинуть равновесие трех реакций вправо, то есть к полному удалению воды и карбамата аммония из потока сырья. Мочевина частично превращается в предреакторе в алкилкарбамат, согласно обратимой реакции (4). Удалением аммиака из реакционной зоны в виде верхней газовой смеси равновесие реакции (4) также можно сдвинуть вправо. Частичное превращение мочевины в алкилкарбамат повышает скорость превращения алкилкарбамата в диалкилкарбонат в первичном реакторе и обеспечивает более высокую концентрацию диалкилкарбоната в верхнем потоке из первичного реактора, так как взаимодействие мочевины со спиртом с получением диалкилкарбоната протекает в две стадии, и реакция (4) является первой стадией.
Реакция образования диалкилкарбоната протекает следующим образом:
Реакцию (5) проводят в первичном реакторе в присутствии высококипящего растворителя в реакционно-дистилляционном режиме, чтобы создать благоприятное условие для быстрого удаления диалкилкарбоната из реакционной среды в момент его образования.
Скорость образования диалкилкарбоната в первичном реакторе более чувствительна к концентрации аммиака в реакционной среде в первичном реакторе, чем скорость образования алкилкарбамата в предреакторе, в силу химической термодинамики. Скорость образования диалкилкарбоната становится выше, если, при данной концентрации алкилкарбамата, имеется более низкая концентрация аммиака в жидкой реакционной среде в первичном реакторе. Температура реакционной среды в первичном реакторе составляет от 300 до 450°F, предпочтительно от 320 до 400°F, наиболее предпочтительно от 330 до 360°F при давлении от атмосферного до 150 psig, предпочтительно от 30 до 120 psig. Любая комбинация требуемых температуры и давления, которая приводит к высокой селективности по диалкилкарбонату, может быть получена подбором соответствующего высококипящего растворителя и регулирования концентрации растворителя в первичном реакторе. Весьма желательно, чтобы при эксплуатации первичный реактор имел температуру верхнего пара, по меньшей мере, около 300°F, предпочтительно выше, чем 320°F, для извлечения скрытой теплоты верхнего потока пара, используемого для рецикла спирта в виде перегретых паров спирта в первичный реактор и предреактор.
Использование высококипящего растворителя в первичном реакторе позволяет проводить реакцию при низком давлении и низкой концентрации карбамата в жидкой реакционной среде. Более низкое давление способствует более быстрому удалению диалкилкарбоната из жидкой реакционной среды в паровую фазу, приводя к более низким концентрациям диалкилкарбоната в жидкой реакционной среде. Чем ниже концентрации диалкилкарбоната и карбамата/мочевины в жидкой реакционной среде, тем ниже количество нежелательных побочных продуктов, связанных с N-алкилированием и разложением продуктов, мочевины, алкилкарбамата и N-алкилированных продуктов в первичном реакторе. Предпочтительный растворитель для синтеза диалкилкарбонатов должен обладать следующими свойствами: (1) растворитель должен иметь температуру кипения, по меньшей мере, на 20°F выше температуры кипения продукта, диалкилкарбоната; и (2) Он не должен образовывать азеотропную смесь с диалкилкарбонатом. Примерами такого растворителя являются высококипящие эфиры, кетоны, углеводороды, и их эфиры и смеси; диметиловый эфир триэтиленгликоля, диалкиловый эфир тетраэтиленгликоля, анизол, диметоксибензол, тиметокситолуол, алкилоксалат, декалин, тетралин, ксилол, декан и так далее, или их смеси.
Поток перегретых паров спирта непосредственно вводят в жидкую реакционную зону для снабжения теплом реакцию превращения алкилкарбамата в диалкилкарбонат, которая является слабоэндотермической, и удаляют диалкилкарбонат и аммиак из жидкой реакционной среды, как только образуется диалкилкарбонат. Требуемая суммарная концентрация алкилкарбамата и мочевины, объединенных в реакционной среде, составляет от 10 до 60 мас.%, предпочтительно от 15 до 50 мас.% от суммарного количества материалов в жидкой реакционной среде. Требуемая концентрация диалкилкарбоната в реакционной среде составляет от 0,5 до 12 мас.%, предпочтительно от 2 до 9 мас.% от суммарного содержания материалов в жидкой реакционной среде. Мольное отношение алкилкарбамата к спирту в жидкой реакционной среде составляет от 0,2:1 до 2:1, предпочтительно от 0,3:1 до 1,5:1. Концентрация оловоорганического комплексного катализатора составляет от 2 до 20 мас.% олова, предпочтительно от 5 до 17 мас.% олова от общего содержания всех материалов в жидкой реакционной зоне в первичном реакторе. Следует отметить, что катализатор также ускоряет нежелательные побочные реакции, обсужденные выше. Проведение реакции при более низкой температуре снижает побочные реакции. Однако скорость получения диалкилкарбоната также снижается, что не может быть приемлемым для промышленного получения ДМК. Требуемая концентрация высококипящего растворителя в реакционной среде в первичном реакторе составляет от 2 до 65 мас.%, предпочтительно от 2,5 до 55 мас.% от суммарного количества материалов в реакционной среде.
Применяемый катализатор при установившихся условиях является каталитической системой на основе оловоорганического комплекса, полученной из оловоорганического комплексного соединения диалкоксида диалкилолова,
R'4-nSn(OR)n·xL (где R' является алкильной группой, арильной или аралкильной группой; R=алкил; n=1 или 2; x=1 или 2; L является электронодонорным атомом, содержащим монодентатный или бидентатный лиганд). Примерами L являются такие молекулы электронодонорного лиганда, как простые эфиры, сложные эфира, кетоны, альдегиды, органические фосфины или их смеси; диметиловый эфир триэтиленгликоля, диметиловый эфир тетраэтиленгликоля, диметилоксалат, диметилмалонат, диметилсукцинат, анизол, диметоксибензол, диметокситолуол, этиленгликоль, катехин, 1,4-диоксан-2,3-диол, 2-метилтетрагидрофуран-3-он, 2,3-пентандион, 2,4-пентандион, 3-метилтетрагидропиран, трифенилфосфин и другие. Гомогенная каталитическая система является квазиравновесной смесью различных оловоорганических соединений. Соответствующие катализаторы этого типа и способ их получения описаны в Патентах США 6010976 и 6392078, содержание которых приводится в описании путем ссылки на них.
Применяемая каталитическая система при установившихся реакционных условиях является смесью различных растворимых оловоорганических мономерных, димерных и олигомерных соединений, которые получают рядом возможных реакций. Эти различные оловоорганические соединения находятся в большой или меньшей степени в квазиравновесном состоянии при данных условиях реакции. Оксид диалкилолова, галогениды диалкилолова, бис(ацетилацетонат) диалкилолова и карбоксилаты диалкилолова, такие как диацетат дибутилолова, оксалат дибутилолова, малонат дибутилолова, диацетат дибутилолова, бис(ацетилацетонат) дибутилолова могут быть использованы для образования растворимых каталитических комплексных соединений олова in situ при пуске первичного реактора в результате реакции со спиртом в присутствии такого высококипящего растворителя, как триглим. Алкильные группы, присоединенные к атому олова, могут быть одинаковыми или различными. Например, предшественником катализатора может быть дибутилолово, бутилбензилолово, бутилфенилолово, бутилоктилолово или диалкоксид ди-2-фенилэтилолова, дигалогениды, гидроксигалогенид, диацетат или оксид. Сопутствующие продукты, воду, карбоновую кислоту или саляную кислоту, непрерывно удаляют из жидкой реакционной среды в виде верхнего потока пара в присутствии высококипящего растворителя при низком давлении. Соответствующая температура для реакции образования катализатора составляет от 200 до 400°F и давление - от атмосферного до 150 psig. В предпочтительном варианте осуществления метанол, этанол или пропанол, в зависимости от предполагаемого диалкилкарбонатного продукта, непрерывно подают насосом в первичный реактор. Или метанол или этанол являются приемлемыми для получения МЭК. Реакцию образования катализатора преимущественно проводят в присутствии разбавленного алкилкарбамата, алкил-N-алкилкарбамата или диалкильного раствора в первичном реакторе. Предполагается, что во время этой реакции образования катализатора режим работы дистилляционной колонны должен соответствовать условиям, которые позволяют удалять сопутствующие продукты, воду, карбоновую кислоту или хлористый водород, в виде верхнего потока вместе со спиртом в виде верхнего продукта из реакционной зоны. Для получения диметилкарбоната растворимую комплексную оловоорганическую каталитическую систему получают простым смешением диметоксида дибутилолова с триглимом (в качестве комплексообразователя для образования оловоорганического комплексного катализатора) и метанолом в первичном реакторе до инициирования реакции образования диалкилкарбоната в присутствии высококипящего растворителя. Для получения диэтилкарбоната растворимую комплексную оловоорганическую каталитическую систему предпочтительно получать с использованием диметоксида дибутилолова с триглимом и этанолом в первичном реакторе. По мере протекания реакции метоксильные группы в катализаторе замещаются этоксильными группами.
Рассмотрим теперь фиг. 1, где схематично показана технологическая схема одного из вариантов осуществления изобретения. На фиг. 1 приведена технологическая схема улучшенного способа без установки разделения ДМК. Установка разделения ДМК приведена на фиг. 2. Реакционно-дистилляционный колонный реактор 111 используют в качестве предреактора для удаления примесей из потока сырья и для частичной конверсии мочевины в метилкарбамат. Раствор мочевины получают в баке 131 смешением исходной мочевиной 1 и потока метанола 3. Поток метанола состоит из потока подачи свежего метанола 2 и потока рециркуляции метанола 4, который является частью потока рециркуляции метанола 30 из установки разделения ДМК. Поток рециркуляции метанола 30 из установки разделения ДМК (см. фиг. 2) разделяется на три потока (4 и 33 через 31, и 32) для использования для приготовления раствора мочевины, в первичный реактор 112 и реактор очистки 113. Исходный раствор мочевины 5 из бака 131 вводят посередине более