Способ получения (мет)акриловой кислоты или (мет)акролеина

Иллюстрации

Показать все

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С. Целью настоящего изобретения является создание способа, в котором резкий подъем температуры подавляется даже после изменения условий реакции с целью повышения температуры для улучшения производительности, поэтому предотвращается дезактивация катализатора, и осуществляется стабильное получение. 2 з.п. ф-лы, 5 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к эффективному способу получения (мет)акролеина или (мет)акриловой кислоты в стабильном режиме газофазным каталитическим окислением, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, с использованием молекулярного кислорода.

Предпосылки создание изобретения

(Мет)акролеин или (мет)акриловую кислоту обычно получают реакцией газофазного каталитического окисления пропилена, пропана, изобутилена или (мет)акролеина с использованием молекулярного кислорода или газа, который содержит молекулярный кислород, в присутствии смешанного оксидного катализатора с использованием многотрубного реактора.

В каталитическом слое многотрубного реактора, используемого для реакции газофазного каталитического окисления, часто образуются горячие зоны (точки аномального выделения тепла в каталитическом слое), и предложено много способов подавления образования таких горячих зон.

В JP-A-7-10802 предложен способ получения (мет)акролеина или (мет)акриловой кислоты реакцией каталитического газофазного окисления исходного материала для (мет)акролеина или (мет)акриловой кислоты молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора с неподвижным слоем, в котором для того, чтобы предотвратить образование горячих зон (точки аномального выделения тепла в каталитическом слое), которые снижают выход целевого продукта, катализаторы последовательно заполняются таким образом, что скорость переноса каталитически активного вещества становится больше от зоны впуска исходного материала к зоне выпуска.

В JP-A-8-92147 рассматривается способ, где направление потока жидкости для отвода тепла (далее называемой "теплоносителем") в кожухе реактора и направление потока реакционного газа, вводимого в реактор, сделаны параллельными и затем поток теплоносителя поднимается, изгибаясь с использованием отражательной стенки, с получением разности температур теплоносителя между впуском и выпуском реактора не более 2-10°C, в результате чего температура теплоносителя делается однородной.

В JP-A-2000-93784 предложен способ, в котором поток газообразного исходного материала для реакции и поток теплоносителя делаются параллельными в нисходящем направлении и предотвращается застой газа там, где нет теплоносителя, чем подавляется образование горячих зон. Данный способ является также способом, в котором исходный газообразный материал подают от верхней зоны реактора, так что каталитический слой в реакционной трубе выполнен проходящим вниз, за счет чего заменяемым делается только катализатор вблизи впуска каталитического слоя, который наиболее легко разрушается.

В JP-В-53-30688 рассматривается способ получения акриловой кислоты реакцией окисления пропилена с использованием катализатора окисления, в котором катализатор в зоне на впуске газообразного исходного материала, где возможно образование горячих зон, разбавляется инертным веществом.

В JP-A-51-127013 предложен способ получения пропилена или изобутилена в реакторе с неподвижным слоем в присутствии катализатора окисления, где комбинируются нанесенный катализатор и формованный катализатор, содержащий по существу такую же композицию.

В JP-A-3-294239 предложен способ получения акролеина и акриловой кислоты газофазным каталитическим окислением пропилена с использованием многотрубного реактора с неподвижным слоем, отличающийся тем, что множество видов катализаторов, имеющих различные виды активности, которые получаются модификацией типа и/или количества щелочно-земельного металла, который является каталитическим компонентом, заполняются таким образом, что активность повышается от впуска к выпуску газообразного исходного материала.

С другой стороны, многотрубный реактор загружают твердым катализатором и используют для реакции с приведением катализатора в контакт с исходным материалом. Многотрубный реактор часто используют, когда температура реактора регулируется за счет эффективного отвода большого тепла реакции, выделяемого реакцией газофазного каталитического окисления, в которой окисляемое вещество взаимодействует с молекулярным кислородом в присутствии твердого катализатора, и имеется необходимость предотвращения быстрой деструкции катализатора, который подвергается воздействию чрезвычайно высокой температуры (горячие зоны) от тепла реакции.

Кроме того, в многотрубном реакторе множество труб размещено в вертикальном направлении, и поэтому, когда технологическая жидкость течет из верхней зоны или нижней зоны, зона технологической жидкости является зоной восходящего потока или нисходящего потока. Что касается теплоносителя, он также может подаваться в межтрубную зону из верхней зоны или нижней зоны кожуха реактора.

Соответственно, подобно обычному кожухотрубному теплообменнику имеются тип параллельного потока, где направления течения перерабатываемой жидкости и теплоносителя являются одинаковыми, и тип противотока, где направления течения технологической жидкости и теплоносителя являются противоположными. Когда также принимается во внимание направление течения жидкости, имеются 1) тип параллельного потока, когда технологическая жидкость является нисходящим потоком и теплоноситель является нисходящим потоком, 2) тип параллельного потока, когда технологическая жидкость является восходящим потоком и теплоноситель является восходящим потоком, 3) тип противотока, когда технологическая жидкость является восходящим потоком, тогда как теплоноситель является нисходящим потоком, и 4) тип противотока, когда технологическая жидкость является нисходящим потоком, тогда как теплоноситель является восходящим потоком.

В таком многотрубном реакторе предусмотрен способ, в котором теплоноситель циркулирует с наружной стороны (со стороны кожуха) узла реактора, поддерживается температура, необходимая для реакции, и, в то же самое время, так же, как в случае теплообменника, часто используемого на химических заводах, осуществляется теплообмен одновременно между технологической жидкостью (технологическим газом в случае реакции газофазного каталитического окисления) и теплоносителем, поэтому предотвращается деструкция или дезактивация катализатора в трубе в результате слишком большого подъема температуры технологической жидкости (образование горячих зон). Однако, несмотря на то, что во многих вышеуказанных изобретениях предлагается способ получения (мет)акролеина или (мет)акриловой кислоты реакцией газофазного каталитического окисления пропана, пропилена или изобутилена с использованием молекулярного кислорода или газа, который содержит молекулярный кислород, теплота реакции газофазного каталитического окисления является настолько высокой, что, например, когда повышают температуру реакции для улучшения производительности, температура отдельного места каталитического слоя становится слишком высокой, приводя к деструкции катализатора, или получается выход реакции из-под контроля в результате того, что температура становится выше, чем допустимая температура для катализатора, и это приводит к той проблеме, что катализатор оказывается невозможно использовать дальше.

Раскрытие сути изобретения

Целью настоящего изобретения является создание способа получения (мет)акролеина или (мет)акриловой кислоты путем проведения реакции газофазного каталитического окисления исходного материала, для получения (мет)акролеина или (мет)акриловой кислоты, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, содержащего множество трубчатых реакторов, оборудованных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, в котором даже после изменения условий реакции в отношении повышения температуры реакции для улучшения производительности подавляется быстрый подъем температуры, и предотвращается дезактивация катализатора, поэтому получение эффективно проводится в стабильном режиме.

Авторами настоящего изобретения установлено, что на установке, где (мет)акролеин, (мет)акриловую кислоту и т.д. получают газофазным каталитическим окислением пропана, изобутилена или пропилена с использованием многотрубного реактора, необходимо изменение температуры теплоносителя, когда изменяется производительность, например, при изменении подаваемого количества пропилена в качестве исходного материала, что способ изменения температуры теплоносителя является очень важным фактором, и что способ оказывает большое влияние на состояние реакции в реакторе после того, как осуществлено настоящее изобретение.

Таким образом, в соответствии с настоящим изобретением предусматривается способ получения (мет)акриловой кислоты или (мет)акролеина, имеющий следующие составные части, в результате чего достигается вышеуказанная цель настоящего изобретения.

1. Способ получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, оборудованных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и теплоноситель для регулирования температуры реакции способен течь снаружи указанных реакционных труб, причем данный способ получения (мет)акриловой кислоты или (мет)акролеина отличается тем, что изменение подъема температуры указанной реакции газофазного каталитического окисления проводится посредством изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не выше чем на 2°C для каждой операции изменения как таковой, (2) когда операции изменения проводятся непрерывно, операция изменения проводится так, что временной интервал от операции изменения непосредственно предшествующей данной, составляет не менее 10 мин.

2. Способ по п.1 выше, в котором разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой на впуске теплоносителя для регулирования температуры реакции составляет не менее 20°C.

3. Способ по п.1 или 2 выше, в котором активность каждого каталитического слоя реакционной трубы регулируется смешением с инертным веществом.

4. Способ по любому из п.п.1-3 выше, в котором число каталитических слоев реакционной трубы составляет от 1 до 10.

Краткое описание чертежей

На фигуре 1 представлено схематическое поперечное сечение, которое показывает один вариант многотрубного реактора теплообменного типа, используемого для способа газофазного каталитического окисления по настоящему изобретению.

На фигуре 2 представлен схематический чертеж, который показывает вариант отражательной стенки, используемой для многотрубного реактора теплообменного типа согласно настоящему изобретению.

На фигуре 3 представлен схематический чертеж, который показывает вариант отражательной стенки, используемой для многотрубного реактора теплообменного типа согласно настоящему изобретению.

На фигуре 4 представлено схематическое поперечное сечение, которое показывает вариант многотрубного реактора теплообменного типа, используемого для способа газофазного каталитического окисления настоящего изобретения.

На фигуре 5 представлено увеличенное поперечное сечение промежуточной трубной решетки, которая разделяет кожух многотрубного реактора теплообменного типа с фигуры 4.

Что касается обозначений на чертежах, 1b и 1с обозначают реакционные трубы, 2 - реактор, 3а и 3b обозначают кольцевые трубы ввода, 4а - разгрузочное отверстие для продукта, 4b - впуск питания исходного материала, 5а и 5b - трубные решетки, 6а и 6b - перфорированные отражательные перегородки, 6а' и 6b' - перфорированные отражательные перегородки, 7 - циркуляционный насос, 8а и 8а' - линии подачи теплоносителя, 8b и 8b' - линии отвода теплоносителя, 9 - промежуточная трубная решетка, 10 - теплозащитная решетка, 11, 14 и 15 - термометры, 12 - застойная зона, и 13 - дистанционная приставка.

Наилучший способ осуществления изобретения

Настоящее изобретение теперь будет дополнительно иллюстрировано нижеследующим.

Настоящее изобретение отличается тем, что в способе газофазного каталитического окисления для получения (мет)акриловой кислоты или (мет)акролеина режим изменения температуры многотрубного реактора, который заполнен катализатором, осуществляющим газофазное каталитическое окисление, осуществляется регулированием температуры теплоносителя на впуске.

Реакционная система

Типичными примерами реакционной системы в способе получения (мет)акролеина и (мет)акриловой кислоты, применяемой в промышленности, являются прямоточная система, система, где рециклируется непрореагировавший пропилен, и система, где рециклируется отходящий газ после горения, которые будут указаны ниже, и в настоящем изобретении нет ограничения на реакционные системы, включая указанные три.

(1) Прямоточная система

Данная система представляет собой способ, где в реакции первой стадии пропилен, воздух и водяной пар смешиваются, подаются и превращаются, главным образом, в акролеин и акриловую кислоту, и выходящий газ не отделяют от продукта, а подают в реакцию последней стадии. Распространенным является также способ, в котором воздух и водяной пар, которые являются необходимыми для реакции на последней стадии реакции, подают в это время на последнюю стадию реакции в дополнение к выходящему газу с предыдущих стадий реакции.

(2) Система, где рециклируется непрорегировавший пропилен

Данная система реализует способ, где газ - продукт реакции, содержащий акриловую кислоту, полученную на последней стадии реакции, вводится в сборник акриловой кислоты, так что акриловая кислота собирается в виде водного раствора, тогда как часть отходящего газа, содержащего непрореагировавший пропилен, в сборнике акриловой кислоты, подают в реакцию первой стадии, при этом часть непрореагировавшего пропилена рециклируется.

(3) Система, где рециклируется отходящий газ после горения

Данная система представляет собой способ, где газ - продукт реакции, содержащий акриловую кислоту, полученную в реакции последней стадии, вводят в сборник акриловой кислоты, так что акриловая кислота собирается в виде водного раствора, весь отходящий газ из сборника акриловой кислоты сгорает и окисляется, содержащиеся непрореагировавший пропилен и т.д. превращаются, главным образом, в диоксид углерода и воду, и часть полученного сгоревшего отходящего газа вводится в реакцию первой стадии.

Многотрубный реактор обычно используется в таком случае, когда теплота реакции является очень высокой, как в окислительной реакции, поэтому катализатор должен быть защищен точным контролем температуры реакции катализатора, и характеристики катализатора должны сохраняться в высокой степени, так что производительность реактора должна улучшаться.

В последние годы количество акриловой кислоты, вырабатываемой из пропилена, и метакриловой кислоты - из изобутилена (как акриловая кислота, так и метакриловая кислота здесь называются (мет)акриловой кислотой) значительно увеличилось как результат увеличения их спроса. Так, в мире построено много установок, и уровень производства расширен до не менее 100000 т/год для каждой установки. Так как уровень производства установки увеличивается, необходимо увеличить производительность каждого реактора окисления, и, как результат, нагрузка реактора газофазного каталитического окисления пропана, пропилена или изобутилена становится больше. Как результат этого имеется потребность в высокоэффективном многотрубном реакторе.

В настоящем изобретении предусматривается система, где окисляемое вещество подвергается газофазному каталитическому окислению газом, который содержит молекулярный кислород, с использованием многотрубного реактора, в котором цилиндрический кожух реактора, имеющий впуск питания исходного материала и разгрузочный выпуск продукта, множественные кольцевые трубы ввода для введения теплоносителя в цилиндрический кожух реактора или отвода теплоносителя из него, которые устанавливаются по наружному периметру цилиндрического кожуха реактора, устройство циркуляции, где множественные кольцевые трубы ввода соединены друг с другом, множественные реакционные трубы, которые ограничены множественными трубными решетками и содержат катализатор, и множественные отражательные перегородки для изменения направления теплоносителя, вводимого в кожух реактора, установлены в продольном направлении реактора. Вышеуказанная реакционная труба заполняется катализатором окисления, таким как катализатор типа Mo-Bi и/или катализатор типа Mo-V. Отличие способа настоящего изобретения состоит в том, что даже при изменении температурного режима может выполняться стабильная непрерывная работа, в частности, вследствие надлежащего задания температуры теплоносителя.

Предметом настоящего изобретения является способ газофазного каталитического окисления, в котором пропилен, пропан, изобутилен, (мет)акролеин или их смесь используются в качестве окисляемого вещества и подвергаются газофазному каталитическому окислению с использованием газа, который содержит молекулярный кислород, с получением (мет)акролеина или (мет)акриловой кислоты, (мет)акролеин, (мет)акриловая кислота или то и другое получаются из пропилена, пропана и изобутилена, (мет)акриловая кислота получается из (мет)акролеина.

"Технологический газ" в настоящем изобретении означает газ, который участвует в реакции газофазного каталитического окисления, такой как вещество, окисляемое в качестве газообразного исходного материала, газ, который содержит молекулярный кислород и получаемый продукт. "Исходный материал" означает окисляемое вещество.

Состав газообразного исходного материала

В многотрубный реактор, используемый для газофазного каталитического окисления вводят, главным образом, смешанный газ, содержащий, по меньшей мере, одно окисляемое вещество, выбранное из пропилена, пропана, изобутилена и (мет)акролеина, в качестве газообразного исходного материала, газ, который содержит молекулярный кислород, и водяной пар.

В настоящем изобретении концентрация окисляемого вещества в газообразном исходном материале составляет 6-10 мол.%, тогда как концентрация кислорода и водяного пара являются 1,5-2,5-кратной и 0,8-5-кратной соответственно относительно окисляемого вещества. Вводимый газообразный исходный материал разделяется в каждую реакционную трубу, проходит внутри реакционной трубы и взаимодействует в присутствии катализатора окисления, загруженного в нее.

Многотрубный реактор

Реакция газофазного каталитического окисления, использующая многотрубный реактор, представляет собой способ, который широко используется для получения метакриловой кислоты или (мет)акролеина из, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, с использованием молекулярного кислорода или газа, который содержит молекулярный кислород, в присутствии смешанного оксидного катализатора.

Многотрубный реактор, используемый в настоящем изобретении, обычно используется в промышленности, и особые ограничения для него отсутствуют.

Ниже вариант настоящего изобретения иллюстрируется в соответствии с фигурами 1-5.

Фигура 1

На фигуре 1 представлено схематическое поперечное сечение, которое показывает вариант многотрубного реактора теплообменного типа, используемого для способа газофазного каталитического окисления настоящего изобретения.

Реакционные трубы 1b, 1c фиксируются в трубных решетках 5а, 5b и устанавливаются в кожух 2 многотрубного реактора. Впуск питания исходного материала, который представляет собой впуск газообразного исходного материала для реакции, и разгрузочный выпуск продукта, которым является выпуск продукта, обозначаются 4а или 4b. Когда поток технологического газа и поток теплоносителя находятся в противотоке, направление потока технологического газа может быть любым, но, поскольку направление потока теплоносителя в кожухе реактора показано стрелкой на фигуре 1 как восходящий поток, 4b обозначает впуск питания исходного материала. На наружном периметре кожуха реактора установлена кольцевая труба ввода 3а для введения теплоносителя. Теплоноситель, когда давление повышается циркуляционным насосом 7 для теплоносителя, поднимается в кожухе реактора из кольцевой трубы ввода 3а, возвращается из кольцевой трубы ввода 3b в циркуляционный насос в результате изменения направления потока за счет взаимного размещения множественных перфорированных отражательных перегородок 6а, имеющих проход вблизи центра кожуха реактора, и перфорированных отражательных перегородок 6b, размещенных так, чтобы иметь проход между наружным периметром и кожухом реактора. Часть поглощающего тепло реакции теплоносителя из выпускной трубы, установленной в верхней части циркуляционного насоса 7, охлаждается теплообменником (не показано на чертеже), и вводится снова в реактор по линии подачи теплоносителя 8а. Регулирование температуры теплоносителя осуществляют с помощью контрольного термометра 14 регулированием температуры или скорости потока циркулирующего теплоносителя, вводимого по линии подачи теплоносителя 8а.

Хотя это зависит от характеристики используемого катализатора, регулирование температуры теплоносителя проводят таким образом, что разность температуры теплоносителя между линией подачи теплоносителя 8а и линией выгрузки теплоносителя 8b составляет 1-10°C или, предпочтительно, 2-6°C.

Предпочтительно устанавливать в главной части стенки внутри кольцевой трубы ввода 3а и 3b ректификационную тарелку (не показано на чертеже), так что распределение скорости потока теплоносителя в периферийном направлении делается минимальным. В качестве ректификационной тарелки используют пористую плиту, плиту, имеющую прорези или подобное, и ректификацию проводят таким образом, что площадь отверстия и шаг прорезей пористой плиты изменяются так, что теплоноситель втекает в нее со всей переферии с одинаковой скоростью потока. Температуру в кольцевой трубе ввода (3а, предпочтительно, вместе с 3b) можно регулировать при установке множественных термометров 15.

Хотя нет специального ограничения числа отражательных перегородок, установленных в кожухе реактора, предпочтительно, устанавливать три перегородки (две перегородки типа 6а и одна перегородка типа 6b) как обычно. В результате существования отражательной перегородки восходящий поток теплоносителя замедляется, но преобразуется в поток поперечного направления по отношению к направлению оси реакционной трубы, и теплоноситель собирается в центре от наружного периметра кожуха реактора, меняет свое направление в проходе отражательной перегородки 6а, идет к наружному периметру и достигает наружного цилиндра кожуха. Теплоноситель меняет снова свое направление у наружного периметра отражательной перегородки 6b, собирается в центре, поднимается к проходу отражательной перегородки 6а, идет к наружному периметру вдоль верхней тарелки трубы 5а кожуха реактора, проходит кольцевую трубу ввода 3b и циркулирует к насосу.

Термометр 11 устанавливают в реакционную трубу, размещенную в реакторе так, чтобы сигнал передавался даже к наружной части реактора, и регистрируется распределение температуры каталитического слоя в направлении оси трубы реактора. В реакционную трубу вводят множественные термометры, и термометры измеряют температуры в 5-20 точках в направлении оси трубы.

Отражательная перегородка (фигура 2, фигура 3)

Что касается отражательной перегородки, используемой в настоящем изобретении, может использоваться любая из овальной отражательной перегородки сегментного типа, как показано на фигуре 2, и отражательной перегородки дискового типа, как показано на фигуре 3, поскольку она имеет такую конструкцию, что отражательная перегородка 6а имеет проход вблизи центра кожуха реактора, отражательная перегородка 6b имеет проход между наружным периметром и наружным цилиндром кожуха, и теплоноситель изменяет свое направление в каждом проходе, так что проскок теплоносителя предотвращается, и скорость потока можно изменять. В обоих типах отражательной перегородки отношение между направлением потока теплоносителя и осью реакционной трубы является неизменным.

Что касается обычно используемой отражательной перегородки, то часто используется отражательная перегородка дискового типа, как показано на фигуре 3. Предпочтительно, площадь центрального прохода отражательной перегородки 6а составляет 5-50% или, предпочтительно, 10-30%, площади поперечного сечения кожуха реактора. Предпочтительно, площадь прохода между обечайкой кожуха реактора 2 и отражательной перегородкой 6b составляет 5-50% или, более предпочтительно, 10-30% площади поперечного сечения кожуха реактора. Когда величина прохода отражательных перегородок (6а и 6b) является слишком малой, прохождение теплоносителя становится длинным, потеря давления между кольцевыми трубами ввода (3а и 3b) увеличивается и затраты энергии циркуляционного насоса 7 на теплоноситель становятся большими. Когда величина прохода отражательной стенки является слишком большой, увеличивается число реакторов (1с).

Установленные интервалы отражательных перегородок (интервал между отражательными перегородками 6а и 6b, и интервал между отражательной перегородкой 6а и трубными решетками 5а, 5b) во многих случаях являются равными, хотя не всегда необходимо делать интервалы равными. Рекомендуется устанавливать таким образом, чтобы обеспечивалась необходимая скорость потока теплоносителя, определяемая теплом реакции окисления, выделяемым в реакционной трубе, и чтобы потеря давления теплоносителя становилась низкой. В кольцевой трубе ввода 3а при впуске теплоносителя необходимо избегать того, чтобы местоположение горячих зон распределения температуры в реакционной трубе и расположение отражательной перегородки становилось одинаковым. Это нужно потому, что, поскольку скорость потока теплоносителя вблизи поверхности отражательной перегородки снижается и коэффициент теплопередачи является низким, температура горячей зоны становится намного выше, когда расположение (перегородки) совпадает с горячей зоной.

Для того чтобы избежать того, что местоположение горячей зоны и расположение отражательной стенки станут одинаковыми, предпочтительно, проводить опережающие исследования с помощью экспериментов с использованием устройства малого масштаба (такого как лабораторное оборудование и пилотное оборудование) или с помощью компьютерного моделирования.

Фигура 4

На фигуре 4 представлено схематическое поперечное сечение многотрубного реактора, когда кожух реактора разделяется промежуточной трубной решеткой 9, и способ газофазного каталитического окисления настоящего изобретения также включает способ с ее использованием. В каждом из разделенных пространств циркулирует различный теплоноситель, для которого регулируемая температура различна. Газообразный исходный материал может быть введен через любой впуск из 4а и 4b (фигура 4), направление потока теплоносителя в кожухе реактора показано стрелкой как восходящий поток, и поэтому 4b, где поток газообразного исходного материала в качестве технологического газа находится в противотоке к потоку теплоносителя, является впуском для подачи исходного материала. Газообразный исходный материал, вводимый через впуск питания исходного материала 4b, затем взаимодействует в реакционной трубе реактора.

В многотрубном реакторе, показанном на фигуре 4, теплоноситель с различными температурами присутствует в верхней и нижней зонах (зона А и зона В на фигуре 4) в реакторе, разделенными промежуточной трубной решеткой 9, и, соответственно, имеются следующие ситуации в реакционной трубе. А именно, 1) ситуация, когда вся часть заполнена одним и тем же катализатором, и проводится реакция, в которой температура изменяется на впуске и выпуске газообразного исходного материала в реакционной трубе; 2) ситуация, когда катализатором заполнена часть со впуском для газообразного исходного материала, и не заполнена выпускная часть, что делает ее полой, или загружается инертное вещество, не имеющее реакционной способности, так что продукт реакции быстро охлаждается; и 3) ситуация, когда части со впуском и выпуском газообразного исходного материала заполняются различными катализаторами, и между ними катализатор не заполняет выпускную часть, делая ее пустой, или загружается инертное вещество, не имеющее реакционной способности, так что продукт реакции быстро охлаждается.

Например, пропилен, пропан или изобутилен в виде газа, смешанного с газом, содержащим молекулярный кислород, вводят через впуск для подачи исходного материала 4b в многотрубный реактор, показанный на фигуре 4, используемый для настоящего изобретения, и сначала получают (мет)акролеин на первой стадии по реакции более ранней стадии (зона А реакционной трубы) с последующим окислением указанного (мет)акролеина на второй стадии по реакции более поздней стадии (зона В реакционной трубы) с получением (мет)акриловой кислоты. Часть(секцию) первой стадии (далее может называться как "часть более ранней стадии") и часть(секцию) второй стадии (далее может называться как "часть более поздней стадии") заполняют различными катализаторами, и для каждого из них различным образом регулируют температуру, поэтому реакцию проводят в оптимальных условиях. Предпочтительно, часть, где имеется промежуточная трубная решетка, между частью более ранней стадии и частью более поздней стадии реакционной трубы, заполняют инертным веществом, которое не участвует в реакции.

Фигура 5

На фигуре 5 промежуточная трубная решетка показана с увеличением. Для частей более ранней и более поздней стадий регулируют различным образом температуру, и, когда разность температур превышает 100°C, теплопередача от высокотемпературного теплоносителя к низкотемпературному теплоносителю не является больше незначительной и точность реакционной температуры на низкотемпературной стороне имеет тенденцию к ухудшению. В таком случае необходимо вводить теплоизоляцию для предотвращения теплопередачи выше или ниже внутренней трубной решетки. Фигура 5 представляет собой случай, где используется теплоизоляционная плита, и, предпочтительно, две или три теплоизоляционные плиты 10 помещают в положение, которое примерно на 10 см выше или ниже промежуточной трубной решетки, так что образуется застойная зона 12, где теплоноситель находится полностью без течения, поэтому достигается теплоизоляционный эффект. Теплоизоляционная плита 10 крепится к промежуточной трубной решетке 9, например, дистанционной приставкой 13.

На фигуре 1 и фигуре 4 направление потока теплоносителя в кожухе реактора показано стрелкой как восходящий поток, хотя в настоящем изобретении также возможно обратное направление. При выборе направления потока циркуляции теплоносителя необходимо избегать явления, когда газ, или более конкретно, инертный газ, такой как азот, который может присутствовать на верхнем конце циркуляционного насоса 7 и кожуха реактора 2, захватывается потоком теплоносителя. В том случае, когда теплоноситель является восходящим потоком (фигура 1), в циркуляционном насосе отмечается явление кавитации, когда газ захватывается в верхней части циркуляционного насоса 7, поэтому в наихудшем случае насос выходит из строя. В том случае, когда теплоноситель является нисходящим потоком, явление захватывания газа имеет место в верхней части кожуха реактора и удерживаемая часть газовой фазы наблюдается в верхней части кожуха, поэтому верхняя часть реакционной трубы, где находится указанная зона, где удерживается газ, не охлаждается теплоносителем.

В качестве средства предотвращения удерживания газа является существенным то, чтобы была сформирована газовысвобождающая линия, поэтому газ в газовом слое замещается теплоносителем, для такой цели давление теплоносителя в линии подачи теплоносителя 8а делается высоким и линия разгрузки 8b теплоносителя устанавливается в как можно более высоком месте, поэтому рост давления в кожухе является предопределенным. Предпочтительно, линия разгрузки теплоносителя расположена, по меньшей мере, выше трубной решетки 5а.

Когда многотрубный реактор, как показано на фигуре 1, представляет собой многотрубный реактор, где пропилен, пропан или изобутилен окисляется газом, содержащим молекулярный кислород, и когда технологический газ находится в нисходящем потоке, или, другими словами, когда газообразный исходный материал идет из 4b, а продукт выгружается из 4а, концентрация (мет)акролеина, который является целевым продуктом, является высокой вблизи разгрузочного выпуска продукта 4а реактора и имеет место нагревание теплом реакции, поэтому температура технологического газа становится также высокой. Соответственно, в таком случае теплообменник предпочтительно помещается после реактора 4а на фигуре 1 для хорошего охлаждения технологического газа, поэтому реакция самоокисления (мет)акролеина не имеет места.

Когда предусмотрен многотрубный реактор, как показано на фигуре 4, и технологический газ является нисходящим потоком, или, другими словами, когда газообразный исходный материал идет из 4b, а продукт выгружается из 4а, концентрация (мет)акролеина, который является целевым продуктом, является высокой вблизи промежуточной трубной решетки 9, которая является конечной точкой реакции первой стадии (зона А реакционной трубы), и имеет место нагревание теплом реакции, поэтому температура технологического газа также становится высокой. Кроме того, когда катализатор заполняется только на первой стадии (зона А реакционной трубы: 5а-6а-6b-6а-9), реакция не осуществляется на второй стадии реакционных труб 1b, 1с (зона В реакционной трубы: между 9 и 5b), и технологический газ охлаждается теплоносителем, текущим по проходу со стороны кожуха, поэтому (мет)акролеин получается в таком режиме, что реакция самоокисления не имеет места. В таком случае катализатором не заполняют зону В (между 9 и 5b) реакционных труб 1b, 1с, но делают зону полой, или ее заполняют твердым веществом, не являющимся реакционно-способным. Последнее является предпочтительным для получения лучших характеристик теплопереноса.

Когда различными катализаторами заполняют зону первой стадии (зона А реакционной трубы: 5а-6а-6b-6а-9) многотрубного реактора, показанного на фигуре 4, и зону второй стадии (зона В реакционной трубы: 9-6a'-6b'-6a'-5b) того же реактора и при этом (мет)акролеин получают из пропилена, пропана или изобутилена на первой стадии, тогда как (мет)акриловую кислоту получают на второй стадии, температура каталитического слоя первой стадии является высокой по сравнению с температурой каталитического слоя второй стадии. Точнее, температуры зон вблизи конечной точки реакции первой стадии (6а-9) и вблизи начальной точки реакции второй стадии (9-6а') становятся высокими, и поэтому реакцию предпочтительно не осуществляют в таких зонах, но охлаждают технологический газ теплоносителем, текущим по проходу со стороны кожуха, поэтому (мет)акролеин получается таким образом, что реакция самоокисления не имеет места. В таком случае образуют часть, в которой зона вблизи промежуточной трубной решетки 9 (среди 6а-9-6a' реакционных труб 1b, 1с) не заполнена катализатором, но эту зону делают полой, или ее заполняют твердым веществом, не имеющим реакц