Способ получения полимерного материала

Иллюстрации

Показать все

Изобретение относится к способу получения полимерного материала, обогащенного фосфором, который используют в качестве огнезащитной добавки. Описывается способ получения огнезащитного полимерного материала в две стадии взаимодействием исходных реагентов в реакторе. Первая стадия включает взаимодействие безводного пентоксида фосфора со вторым реагентом, выбранным из группы, состоящей из (а) диола, представляющего собой 1,3-пропандиол и 1,4-бутандиол, и (б) смеси циклического простого эфира и спирта с получением полимерного материала-предшественника. Вторая стадия включает реакцию полимерного материала-предшественника с циклическим простым эфиром, например этиленоксидом, пропиленоксидом и/или глицидолом, с получением готового продукта. Описывается также огнезащитная композиция, включающая полимерный материал в форме соли, полученная реакцией сложного эфира фосфорной кислоты с амином, выбранным из меламина и полиэтиленимина. Предложенный способ обеспечивает получение водонерастворимого вспучивающегося полимерного материала, способного к снижению воспламеняемости. 5 н. и 42 з.п. ф-лы, 3 ил., 5 табл.

Реферат

Область техники

Настоящее изобретение относится к способам получения полимерных материалов и к материалам, получаемым в соответствии с указанными способами. Более конкретно, но не исключительно, изобретение относится к способам приготовления полимеров, обогащенных фосфором, и к способам приготовления сложных эфиров фосфорных кислот, таких как неполные сложные эфиры фосфорных кислот.

Уровень техники

Вспучивание (intumescence) - это процесс, при котором твердое вещество под воздействием тепла превращается в относительно жесткую пену вспененного материала. Такая пена, которая благодаря этому расширению имеет значительно более низкую теплопроводность, чем исходный материал, применяется в качестве огнезащитного средства. Вспучивающиеся (intumescent) продукты наносят в их обычной форме на поверхность материалов и конструкций, для которых необходима защита от огня.

Вспучивающийся уголь состоит из аморфного углерода или углерода и графита, а также конденсированных фосфорных кислот. Сам по себе этот уголь не горюч. Основной принцип состоит в том, что если полимерный материал может быть модифицирован таким образом, что он подвергается термическому разложению так же, как и вспучивающийся материал, то он, таким образом, становится невоспламеняющимся.

Наличие в конструкциях воспламеняющихся веществ, таких как древесина, пластмассы, армированные стекловолокном пластмассы, повышает огнеопасность участка или позволяет пламени распространяться вдоль поверхности материала, в результате чего огонь захватывает площади, расположенные вдали от очага возгорания.

Существует два способа снижения пожарной опасности. Во-первых, в материалы могут быть добавлены огнезащитные добавки. Большинство огнезащитных добавок дорогостоящи, и, кроме того, они во многих случаях ухудшают свойства основного материала.

В альтернативном случае на поверхность материала может быть нанесено невоспламеняющееся покрытие. Оно действует удовлетворительно при условии, что огневой режим является ограниченным. Если пленка покрытия не обладает изолирующими свойствами, то тепло распространяется через пленку и достигает воспламеняющегося субстрата, который начинает выделять газ или коробиться, разрывая пленку и выходя на поверхность, где он подвергается воздействию огня (огневого режима). Поскольку вспучивающиеся покрытия под воздействием огня расширяются, образуя изолирующий слой, они предотвращают подвод теплоты к субстрату. Известно, что, например, при горении древесины распространение огня ограничено обугленным слоем, образующимся при сгорании.

Для обеспечения защиты от огня поверхности материалов и конструкций, для которых необходима такая защита, часто покрывают красками или другими покрытиями, включающими композиции, содержащие вспучивающиеся огнезащитные вещества. Под действием тепла композиции, содержащие вспучивающиеся огнезащитные вещества, начинают действовать, образуя вспененный/обугленный слой относительно негорючего материала. Этот негорючий слой служит изоляцией и предотвращает легкий доступ кислорода к материалу, на который он нанесен, таким образом снижая или замедляя перегрев и/или горение материала. Кроме того, вспучивающиеся материалы могут быть введены в герметизирующие составы, такие как уплотняющий состав, и после вспенивания с образованием слоя пены/угля они действуют как теплостойкие дымонепроницаемые уплотнения.

Вспучивающиеся огнезащитные композиции могут включать:

(а) источник нелетучей кислоты, обычно полифосфат аммония,

(б) органическое вещество, например карбонизующийся полиол, который может разлагаться под действием кислоты, выделяемой из полифосфата аммония, с образованием источника углерода, и

(в) источник инертных летучих газов, способствующих образованию пены/угля, который представляет собой вспенивающий агент. Источником летучих газов может быть, например, меламин. Вспучивающаяся пена/уголь вспучивающейся системы, катализируемой фосфорными кислотами, обычно состоит из аморфного углерода или углерода и графита и конденсированных фосфорных кислот.

Основополагающий принцип настоящей работы состоит во введении функциональных свойств катализируемой фосфатами системы в полимерную молекулу, которая обладает как свойствами полимерных смол, так и свойствами вспучивающихся материалов.

Поскольку в данном случае отсутствуют неэффективные подвижные группы и все функциональные группы находятся в контакте на молекулярном уровне, то проблем переноса не существует. Например, при протекании реакции в традиционном вспучивающемся материале, катализируемом фосфатами, присутствующий в материале полиол подвергается дегидратации под действием выделяющейся полифосфорной кислоты.

Очевидно, что при дегидратации карбонизующегося вещества с образованием углерода сначала должен быть образован сложный эфир фосфорной кислоты, являющийся интермедиатом этой реакции. Указанный сложный эфир фосфорной кислоты сразу же разлагается в момент образования, поскольку температура реакции находится выше температуры разложения указанного эфира. Однако, если бы сложный эфир фосфорной кислоты изначально присутствовал в исходном веществе, то реакция начиналась бы при более низкой температуре разложения указанного сложного эфира, а не при температуре разложения полифосфата аммония.

Объединение функциональных свойств связующего вещества, вспенивающего вещества, карбонизующегося вещества и катализатора, содержащихся в традиционной вспучивающейся композиции, в одной молекуле полимера путем создания стабильных фосфатных сложных эфиров карбонизующихся полиолов было осуществлено в так называемых «самостоятельно вспучивающихся полимерах» (Intrinsically Intumescent Polymers, IIP). В качестве доказательства теории молекулярной интеграции функциональных свойств, обусловливающих способность к вспучиванию, может быть рассмотрено утверждение о поведении IIP, полученных на основе солей мочевины и фитиновой (инозитгексафосфорной) кислоты.

Если оценивать поведение традиционного вспучивающегося материала и материала на основе IIP при помощи такого показателя, как потеря массы, которую наблюдают при нагревании материала, то композиции на основе IIP при получении из них пены угля оказываются на 40% более эффективными, чем традиционные композиции. Поскольку действие IIP начинается при температурах ниже 150°С, то они обеспечивают защиту от огня на более ранних стадиях огневого режима, чем композиции на основе АРР.

Разработан способ получения IIP, который позволяет осуществлять удешевленный синтез неполных сложных эфиров фосфорных кислот, не прибегая к традиционному способу, применяемому в синтезе пластификаторов на основе тримезиновой (1,3,5-бензолтрикарбоновой) кислоты (trimester plasticizers), в котором исходным материалом является оксихлорид фосфора или трихлорид фосфора. Указанные способы не подходят для получения полимерных материалов, обладающих высокой вязкостью. IIP на основе неполных сложных эфиров фосфорной кислоты получают при помощи уникального способа прямой этерификации.

В US A-2272668 описаны неполные эфиры фосфорной кислоты и способы их получения.

В US A-4458035 описан пенополиуретан, содержащий огнезащитный олигомерный сложный эфир.

В DE 10112155A описаны производное соли эфира фосфорной кислоты или аддукт эфира фосфорной кислоты или их смеси, способ их получения и применение.

В DE 19540861 А1 описан способ получения смесей олигомерных эфиров фосфорной кислоты и их применение в качестве огнезащитных агентов в пенополиуретанах.

Сущность изобретения

Может быть получен полимерный материал, описываемый следующей общей формулой:

где R1 представляет собой алкилен, R2 и R3 выбраны из группы, включающей H+, алкилен, алкил, простой алкилгликолевый эфир, и N составляет от 0,75 до 10.

В настоящем описании упомянуты карбонизующиеся вещества и карбонизующиеся полиолы. Карбонизующиеся полиолы представляют собой полиолы, которые при анаэробном пиролизе под действием окисляющих кислот превращаются в углерод, а не в газообразные продукты. Предполагают, что если основная часть углеродного скелета полимера находится в виде потенциально карбонизующихся групп, то этот полимер пиролизуется до углерода, а не до воспламеняющихся фрагментов.

В патентной литературе карбонизующимися веществами обычно называют полиолы, в которых более 40% массы молекулы составляют гидроксильные группы. В традиционных методиках ряд карбонизирующихся полиолов ограничен пентаэритритом, его димером и тримером, глицерином и сахарозой.

Однако в соответствии с настоящим способом карбонизующиеся полиолы могут включать этандиол, 1,3-пропандиол, глицерин, пентаэритрит и триметилолпропан. Этандиол и пропандиол, связанные в виде эфиров фосфорной кислоты, в этой системе ведут себя как карбонизирующиеся полиолы, в то время как в традиционных системах они переходят в летучее состояние перед тем, как подвергаются разложению.

Однако это определение «карбонизующегося вещества», выведенное из более ранних работ в настоящей области техники, не является адекватным. Структура, которая превращается в углерод в присутствии дегидратирующей кислоты, лучше всего может быть описана последовательностью связей -С-С-, в которой любой из атомов углерода отстоит не более чем на два атома углерода от углеродного атома, несущего либо гидроксильную группу, либо эфирную группу, либо группу дегидратирующей неорганической кислоты, либо азот, связанный с другим атомом углерода.

Такие соединения как 1,2-пропандиол, инозит, глюкоза или любой другой сахарид, хотя и соответствуют стандартному определению карбонизующихся полиолов, однако подвергаются этерификации неодинаковыми способами. Любой полиол, содержащий 40% гидроксильных групп, среди которых имеются вторичные спиртовые группы, разлагается под действием системы, предназначенной для непосредственной этерификации. Таким образом, определение, данное в патентной литературе, неверно еще с одной точки зрения. При описании сложных эфиров карбонизирующихся полиолов предпочтительным определением активных материалов является следующее: «полиолы, в которых масса первичных гидроксильных групп составляет 40% молекулярной массы».

В соответствии с другим аспектом настоящего изобретения предложен способ получения огнезащитного полимерного материала, включающий первую реакцию, в которой получают полимерный материал-предшественник, содержащий сложный эфир фосфорной кислоты, и вторую реакцию, в которой из полимерного материала-предшественника получают огнезащитный полимерный материал, при этом первая реакция включает взаимодействие первого реагента, содержащего безводный пентоксид фосфора, со вторым реагентом, отличающимся тем, что его выбирают из группы, состоящей из (а) диола и (б) циклического простого эфира и спирта, причем диол выбран из одного или более веществ, представляющих собой 1,3-пропандиол и 1,4-бутандиол, а циклический простой эфир выбран из одного или более веществ, представляющих собой тетрагидрофуран и тетрагидропиран, при этом полимерный материал-предшественник, получаемый из диола группы (а), имеет структуру, представленную формулой:

где R - алкилен, имеющий 3 или 4 атома углерода.

Способ может включать реакцию первого реагента, содержащего материал - источник фосфора, со вторым реагентом, причем указанный второй реагент включает или способен генерировать карбонизирующийся полиол или функциональный эквивалент полиола.

Спирт, применяемый при осуществлении настоящего способа, может включать спирт, имеющий одну гидроксильную группу, или полиол, такой как диол. Циклический простой эфир может включать этиленоксид и/или пропиленоксид, и/или тетрагидрофуран, и/или тетрагидропиран. Предпочтительно циклический простой эфир включает тетрагидрофуран.

В первом варианте выполнения способа первый и второй реагенты могут реагировать друг с другом с образованием полимерного материала-предшественника. Желательно, чтобы полимерный материал-предшественник содержал сложный эфир фосфорной кислоты, предпочтительно неполный сложный эфир фосфорной кислоты.

Реакция согласно первому варианту выполнения изобретения может быть представлена следующим уравнением:

Спирт, применяемый для этой реакции, может представлять собой полиол, такой как диол.

Полимерный материал-предшественник, получаемый по указанной реакции в соответствии с первым вариантом выполнения, может быть представлен следующей общей формулой:

В одном варианте выполнения полимерного материала-предшественника, полученного в соответствии с первой реакцией, R1 представляет собой алкилен, в котором количество атомов С равно 3 или 4, N равно 1, a R2 и R3 представляют собой Н+.

В другом варианте выполнения полимерного материала-предшественника, полученного в соответствии с первой реакцией, R1 представляет собой н-бутилен, R2 представляет собой H+, R3 представляет собой н-бутил или изобутил, изопропил или любую комбинацию указанных радикалов, а N составляет от 0,75 до 4.

В следующем варианте выполнения полимерного материала-предшественника, полученного в соответствии с первой реакцией, R1 представляет собой н-бутилен и/или 2,2-диметиленпропилен в молярном соотношении, превышающем 3:1, R2 и R3 представляют собой этил, Н+ и/или цепи простого этилгликолевого эфира, имеющего показатель кислотности от 30 до 70 мг КОН/г, а N находится в диапазоне от 2 до 10.

В следующем варианте выполнения полимерного материала, полученного в соответствии с первой реакцией, R1 представляет собой н-бутилен, R2 и R3 представляют собой этил и/или цепи простого этилгликолевого эфира, а N составляет от 2 до 10.

Если второй реагент, применяемый для получения полимерного материала-предшественника, образуемого в соответствии с первой реакцией, включает циклический простой эфир и спирт, то спирт может представлять собой инициатор реакции первого реагента с циклическим простым эфиром. Кроме того, или в альтернативном случае, спирт может быть агентом обрыва полимерной цепи в полимерном материале-предшественнике. Спирт может быть карбонизирующимся материалом. Предпочтительно карбонизирующийся материал превращается в углерод тогда, когда полученный полимерный материал, содержащий карбонизующийся материал, достигает температуры активации последнего, т.е. температуры, при которой начинается вспучивание продукта. Спирт может представлять собой спирт с короткой цепью и/или полиол, например диол.

Во втором варианте выполнения способа реакция может протекать следующим образом:

Предпочтительно углеродная цепь спирта или диола, применяемого во втором варианте выполнения настоящего способа, содержит четыре или менее атомов углерода. Это позволяет избежать образования воспламеняющихся веществ при действии пламени на полимерный материал, предлагаемый в соответствии с предпочтительным вариантом выполнения настоящего изобретения. Спирты, подходящие для применения в качестве второго реагента, могут включать одно или более из перечисленных веществ: метанол, этанол, изопропанол, н-пропанол, н-бутанол, изобутанол. Полиолы, подходящие для применения в качестве второго реагента, могут включать одно или более из перечисленных веществ: пентаэритрит, глицерин, триметилолпропан, этандиол, 1,2-пропандиол, 1,3-пропандиол, 1,4-бутандиол и глюкоза.

В первом варианте выполнения способа, который представляет собой второй аспект настоящего изобретения, диол может быть помещен в реакционный сосуд. Первый реагент может быть введен в реакционный сосуд при помощи подающего устройства. Предпочтительно первый реагент выдерживают в элементе для кратковременного хранения, обычно загрузочной воронке, и он может быть загружен в реактор при помощи загрузочного устройства, которое может включать трубопровод. На трубопроводе может быть установлен задающий механизм для перемещения первого реагента вдоль трубопровода. Задающий механизм может включать червячное устройство, такое как винт Архимеда.

Предпочтительно загрузочное устройство заканчивается в свободном пространстве реакционного сосуда. Для предотвращения протекания реакции между первым и вторым реагентом внутри загрузочного устройства в загрузочное устройство может быть подан инертный газ. Инертный газ может представлять собой азот.

Во втором варианте выполнения способа, который представляет собой второй аспект настоящего изобретения, в реакционный сосуд может быть помещен простой эфир, к которому затем прибавляют первый реагент и спирт. Предпочтительно первый реагент добавляют в реакционный сосуд при помощи подающего устройства. Предпочтительно первый реагент выдерживают в элементе для кратковременного хранения, желательно загрузочной воронке, и он может быть загружен в реактор при помощи загрузочного устройства, которое может включать трубопровод. На трубопроводе может быть установлен задающий механизм для перемещения первого реагента вдоль трубопровода. Задающий механизм может включать червячное устройство, такое как винт Архимеда. Спирт может быть загружен в реакционный сосуд при помощи устройства капельной подачи. При необходимости в реакционный сосуд может быть помещен еще один спирт.

Предпочтительно первый реагент и при необходимости диол или спирт может быть помещен в реакционный сосуд до того, как температура достигнет заданного значения. При достижении такой заданной температуры загрузку первого реагента и при необходимости спирта останавливают.

Для охлаждения реагентов реакционный сосуд может включать охлаждающее устройство. При снижении температуры реагентов ниже указанного заданного значения охлаждающее устройство может быть отключено, и загрузка первого реагента и при необходимости вторых реагентов может быть возобновлена.

Предпочтительно реагенты нагревают до указанной заданной температуры.

Заданная температура может находиться в диапазоне от 25°С до 65°С. Например, в одном из вариантов выполнения, в котором полимерный материал - предшественник получают из первого реагента и диола, температура может находиться в диапазоне от 33°С до 37°С, более предпочтительно составлять по существу 35°С. В другом варианте выполнения, например, в котором полимерный материал-предшественник получают из первого реагента и простого эфира и спирта, заданная температура может находиться в диапазоне от 25°С до 55°С, предпочтительно в диапазоне от 33°С до 37°С, более предпочтительно составлять 35°С.

Желательно, если загрузка первого реагента и при необходимости диола или спирта может быть остановлена или замедлена, когда температура смеси достигает по существу 37°С. Загрузка реагентов может быть возобновлена, когда температура опускается по существу до 33°С. Указанный диол может включать 1,3-пропандиол.

В альтернативном случае заданная температура может находиться в диапазоне от 43°С до 47°С, более предпочтительно составлять по существу 45°С. Загрузка первого реагента и, при необходимости, спирта может быть остановлена или замедлена, когда температура реакционной смеси достигает по существу 47°С. Загрузка реагентов может быть возобновлена, когда температура опускается по существу до 43°С. В этом варианте выполнения второй реагент может включать 1,4-пропандиол.

После добавления всех ингредиентов реакционная смесь может быть нагрета до температуры, находящейся в диапазоне от 55°С до 75°С, более предпочтительно по существу до 55°С или по существу до 75°С.

Для перемешивания реагентов в реакционном сосуде может быть установлено перемешивающее устройство.

Продукт, полученный в соответствии с реакцией первого и второго реагентов, может быть введен в реакцию с третьим реагентом. Третий реагент может включать циклический простой эфир, например этиленоксид, пропиленоксид и/или глицидол. Реакцию третьего реагента с указанным продуктом реакции можно представить следующим образом:

Если полимерный материал-предшественник получают из первого реагента и диола, то реагенты преимущественно смешивают в стехиометрических соотношениях.

Если полимерный материал-предшественник получают из первого реагента и простого эфира и спирта, то молярное отношение первого реагента к простому эфиру может находиться в диапазоне от 1:1 до 1,5:1, предпочтительно между 1,1:1 и 1,2:1.

Если продукт реакции первого реагента и простого эфира и спирта реагирует с третьим реагентом, то молярное отношение первого реагента к простому эфиру может находиться в диапазоне от 1:1 до 2:1, предпочтительно между 1,6:1 и 1,85:1. Реакция первого реагента и простого эфира с получением указанного продукта реакции может протекать при температуре в диапазоне от 25°С до 55°С, предпочтительно в диапазоне от 43°С до 47°С, более предпочтительно по существу составлять 45°С. Загрузка первого реагента и при необходимости спирта может быть остановлена или снижена, когда температура реакционной смеси достигает по существу 47°С. Загрузка реагентов может быть возобновлена, когда температура опускается по существу до 43°С.

Реакция вышеуказанного продукта реакции с третьим реагентом может протекать при температуре в диапазоне от 30°С до 60°С, предпочтительно в диапазоне от 40°С до 50°С.

Предпочтительно реакцию вышеуказанного продукта реакции с третьим реагентом проводят во втором реакционном сосуде, который может включать сосуд, снабженный изоляционной рубашкой, и может включать перемешивающее устройство, например ротор. В альтернативном случае перемешивающее устройство может создавать воронку в полимерном материале-предшественнике.

Полимерный материал-предшественник может находиться во втором реакционном сосуде, и может быть установлено питающее устройство для подачи четвертого реагента. Питающее устройство может включать барботер газа, который может быть установлен внутри второго реакционного сосуда, так чтобы третий реагент барботировал через полимерный материал-предшественник. В альтернативном случае питающее устройство может включать устройство для газификации, например газификационную колонну, при помощи которой во втором реакционном сосуде создают атмосферу, состоящую из третьего реагента. Предпочтительно полимерный материал-предшественник протекает через атмосферу третьего реагента. В реакционном сосуде может быть установлено конденсирующее устройство, которое позволяет конденсировать третий реагент так, чтобы он падал в виде капель на полимерный материал-предшественник. Полимерный материал-предшественник может находиться при температуре выше температуры кипения третьего реагента. Если полимерный материал-предшественник выдерживают при такой температуре, то третий реагент при контакте с полимерным материалом-предшественником переходит в газообразное состояние, и полученный газ примешивают к полимерному материалу-предшественнику при помощи перемешивающего устройства.

Полимерные материалы-предшественники могут быть получены при сшивании олигомеров диортофосфатных диэфиров 1,4-бутандиола, содержащих четыре или более атомов фосфора, которые получают реакцией пентоксида фосфора с тетрагидрофураном и любым первичным или вторичным спиртом или диолом, содержащим четыре или менее атомов углерода, или реакцией пентоксида фосфора с 1,3-пропандиолом или 1,4-бутандиолом.

Пентоксид фосфора предпочтительно представляет собой безводный пентоксид фосфора.

Для получения разветвленных олигомеров часть спиртов или диолов может быть заменена пентаэритритом и/или триметилолпропаном.

Затем олигомеры могут быть модифицированы реакцией остаточных кислотных ортофосфатных групп с циклическими простыми эфирами, выбранными из группы, состоящей из этиленоксида, пропиленоксида или глицидола.

Неконденсированные пирофосфатные группы могут оставаться в скелете олигомера или при нем.

В соответствии со следующим аспектом настоящего изобретения предложены вспучивающиеся и огнезащитные краски, лаки и покрытия, приготовленные из фосфорсодержащих олигомеров, описанных выше, сшитых мочевиной или меламин-формальдегидными смолами.

Указанные краски, лаки и/или покрытия могут быть приготовлены на водной основе, т.е. основным ингредиентом в их составе является вода, в которой растворены или суспендированы или распределены каким-либо иным способом остальные ингредиенты.

В соответствии со следующим аспектом настоящего изобретения предложены клеи, применяемые для изготовления огнестойких древесностружечных плит, в которых адгезив включает описанные выше олигомеры, сшитые мочевиной или меламин-формальдегидными смолами.

В соответствии со следующим аспектом настоящего изобретения предложены отливки, композиты и пены из феноло-альдегидных полимеров, получаемые при отверждении резольных фенольных смол под действием описанных выше кислотных олигомеров.

В соответствии со следующим аспектом настоящего изобретения предложены вспучивающиеся и огнезащитные пленки и отливки, получаемые из описанных выше модифицированных олигомеров, в которых остаточные кислотные группы ортофосфатов сшиты при помощи циклоалифатических эпоксидных смол.

В соответствии со следующим аспектом настоящего изобретения предложены вспучивающиеся и огнезащитные пленки и отливки, получаемые из описанных выше модифицированных олигомеров, в которых остаточные кислотные группы ортофосфатов сшиты при помощи полифункциональных азиридинов.

В соответствии со следующим аспектом настоящего изобретения предложены вспучивающиеся и огнезащитные пленки и отливки, получаемые из описанных выше модифицированных олигомеров, в которых остаточные кислотные группы ортофосфатов сшиты при помощи цинк-аммиачного комплексного соединения.

В соответствии со следующим аспектом настоящего изобретения предложены огнезащитные полиуретановые пленки, отливки и волокна, получаемые из описанных выше олигомеров, имеющих показатель кислотности, сниженный при помощи этиленоксида и/или пропиленоксида до величины менее 7 мг КОН/г, а затем сшитых при помощи изоцианатов.

Предпочтительно огнезащитные полиуретановые пленки, отливки и волокна могут быть получены из других полиолов, смешанных с олигомерами перед сшиванием изоцианатами.

В соответствии со следующим аспектом настоящего изобретения предложены огнезащитные жесткие и гибкие полиуретановые пены, получаемые из описанных выше олигомеров, показатель кислотности которых снижен при помощи этиленоксида и/или пропиленоксида до величины менее 7 мг КОН/г, модифицированных водой и сшитых при помощи изоцианатов.

Предпочтительно огнезащитные жесткие и гибкие полиуретановые пены получают из других полиолов, смешанных с олигомерами перед сшиванием изоцианатами.

В соответствии со следующим аспектом настоящего изобретения предложены огнезащитные покрытия, пленки и отливки или волокна, в которых описанные выше олигомеры, показатель кислотности которых снижен при помощи этиленоксида и/или пропиленоксида до величины менее 7 мг КОН/г, смешивают с другими полимерными материалами для придания указанным покрытиям, пленкам и отливкам или волокнам огнезащитных свойств.

В соответствии со следующим аспектом настоящего изобретения предложен способ получения описанных выше олигомеров, в котором указанную реакцию проводят, распределяя порошкообразный пентоксид фосфора в перемешиваемой реакционной смеси, причем скорость прибавления регулируют в соответствии с температурой реакционной смеси.

В соответствии со следующим аспектом настоящего изобретения предложена методика снижения кислотности описанных выше олигомеров и/или других неполных сложных эфиров фосфорных кислот посредством контакта газообразных этиленоксида и/или пропиленоксида со сложными эфирами фосфорных кислот.

В соответствии со следующим аспектом настоящего изобретения предложен способ приготовления материала в форме полимерной соли, включающий реакцию амина со сложным эфиром фосфорной кислоты, полученным описанным выше способом.

Способ приготовления материала на основе полимерной соли может включать реакцию другого реагента с амином и фосфатом. Указанный другой реагент может включать амин.

Указанный или каждый амин может включать органический амин. Предпочтительно указанный или каждый амин включает полиамин и/или полимер, содержащий функциональные аминогруппы. Предпочтительно полимер содержит множество функциональных аминогрупп.

Полиамин может включать меламин.

Полимер, содержащий функциональные аминогруппы, может включать полиэтиленимин.

В соответствии со следующим аспектом настоящего изобретения предложен способ получения полимерного материала, включающий реакцию меламина, сложного эфира фосфорной кислоты, полученного описанным выше способом, и полиэтиленимина.

Сложный эфир фосфорной кислоты может содержать неполный сложный эфир фосфорной кислоты. Сложный эфир фосфорной кислоты может быть продуктом реакции пентоксида фосфора с 1,4-бутандиолом и/или 1,3-пропандиолом и/или 1,2-этандиолом и/или пентаэритритом.

Сложный эфир фосфорной кислоты может быть продуктом реакции конденсированной фосфорной кислоты с 1,4-бутандиолом и/или 1,3-пропандиолом и/или 1,2-этандиолом и/или пентаэритритом.

Полимерный материал может включать полимерную соль, предпочтительно смесь полимерных солей.

Преимуществом предпочтительного варианта выполнения является то, что полимерный материал включает смесь полимерных солей, содержание фосфора в которых зависит от соотношения меламина и полиэтилениминового амина, используемого для реакции с неполным сложным эфиром фосфорной кислоты. При невысоком соотношении между меламином и полиэтиленимином получают полимерный материал с повышенным содержанием и пониженной энергией активации, по сравнению с материалом, полученным при использовании высокого отношения меламина к полиэтиленимину.

В некоторых вариантах выполнения способа получения материала на основе полимерной соли реакция может быть проведена при температуре до 100°С, предпочтительно при температуре от 85°С до 98°С.

В других вариантах выполнения способа получения материала на основе полимерной соли реакция может протекать при температуре в диапазоне от 90°С до 150°С, предпочтительно по существу при 135°С.

Сложный эфир фосфорной кислоты может включать ортофосфат.

Материал на основе полимерной соли может быть суспендирован и/или растворен в воде, создавая pH от 4 до 8.

Отношение меламина к полиэтиленимину может быть таким, что 40% кислотных функциональных групп нейтрализовано меламином и 60% кислотных функциональных групп нейтрализовано полиэтиленимином. Предпочтительно отношение меламина к полиэтиленимину может быть таким, что 5% кислотных функциональных групп нейтрализовано меламином и 95% кислотных функциональных групп нейтрализовано полиэтиленимином.

В соответствии со следующим аспектом настоящего изобретения предложена огнезащитная композиция, включающая описанный выше материал на основе полимерной соли.

Материал на основе полимерной соли может быть включен в матрицу из термореактивной или термопластичной смолы.

Краткое описание чертежей

Варианты выполнения настоящего изобретения, приведенные исключительно с иллюстративной целью, будут описаны ниже при помощи соответствующих чертежей, на которых изображено следующее.

На фиг.1 схематично показан аппарат для проведения первой операции способа получения полимерного материала;

на фиг.2 схематично показан аппарат для проведения второй операции способа получения полимерного материала и

на фиг.3 показана обобщенная последовательность реакций для обогащенных фосфором полимеров формы 1.

Подробное описание предпочтительных вариантов осуществления

На фиг.1 показан первый аппарат 10 для осуществления способа получения полимерного материала-предшественника. Первый аппарат 10 включает первый реакционный сосуд 12, в котором, как будет обсуждаться ниже, в первом варианте реализации может быть помещен двухатомный спирт, такой как 1,4-бутандиол, а во втором варианте реализации может быть размещен циклический простой эфир, такой как тетрагидрофуран.

Первый аппарат 10 далее включает загрузочную воронку 14, в которой находится порошкообразный безводный пентоксид фосфора. Загрузочная воронка 14 включает механическое перемешивающее устройство в виде гибких проволок 16, изготовленных из ПТФЭ (политетрафторэтилена). Из загрузочной воронки 14 отходит загрузочная трубка 18, достигающая свободного пространства внутри реакционного сосуда 12. Загрузочная трубка 18 включает питатель 20 в виде винта Архимеда для подачи порошкообразного безводного пентоксида фосфора в реакционный сосуд 12.

Для подачи азота в загрузочную трубку 18, создающего внутри загрузочной трубки 18 инертную атмосферу, устанавливают подачу 22 азота.

Реакционный сосуд 12 включает перемешивающее устройство 24 для перемешивания реагентов в сосуде 12.

Сосуд 12 имеет полую обечайку 26, к которой присоединена загрузочная трубка 28 для подачи охладителя, т.е. холодной воды, в полую обечайку 26 для поддержания нужной температуры внутри реакционного сосуда 12. Для контроля температуры реакции и подачи соответствующего сигнала контроллеру, управляющему скоростью течения охладителя, в реакционном сосуде 12 установлен термометр 30.

В случае второго варианта выполнения изобретения, в котором реагент, например тетрагидрофуран, сразу помещают в реакционный сосуд 12, внутри реакционного сосуда 12 устанавливают распределительное устройство 32 для распределения инициирующего и/или обрывающего цепь спирта (например диола). Распределительное устройство 32 включает воронку 34, из которой отходит удлиненная полая трубка 36, оканчивающаяся внутри реакционного сосуда 12.

На фиг.2 показан второй аппарат 40, в котором продукт реакции, проводимой в первом аппарате 10, вводят в реакцию с третьим реагентом, представляющим собой циклический простой эфир, такой как этиленоксид.

Второй аппарат 40 включает второй реакционный сосуд 42. Продукт реакции, полученный в первой реакции (происходящей в первом аппарате 10), может быть помещен во второй реакционный сосуд 42. Второй реакционный сосуд 42 имеет полую обечайку 44, в которую через загрузочную трубку 46 подают охлаждающую жидкость, например воду. Во втором реакционном сосуде 42 установлено второе распределительное устройство для подачи жидкого этиленоксида во второй реакционный сосуд 42. Второе распределительное устройство 48 включает воронку 50 и удлиненную полую трубку 52, отходящую от воронки 50 и заканчивающуюся внутри второго реакционного сосуда 42.

Верхняя часть 54 внутреннего пространства второго реакционного сосуда 42 обвита змеевиком 56 конденсатора, в который через подающую трубку 58 направляют охладитель. Охладитель выпускают из змеевика через выпускную трубку 60.

Во втором реакционном сосуде 42 для перемешивания реагентов установлена мешалка 62. Второй реакционный сосуд может быть снабжен изоляционной рубашкой 64.

Для приготовления различных структур соотношения загружаемых реагентов могут быть изменены в значительных пределах, которые могут быть рассчитаны, не прибегая к какой-либо теории, из нижеследующих соображений.

Можно считать, что каждый моль пентоксида фосфора содержит 6 связей в виде P-O-P.

Каждый моль полностью прореагировавшего спирта снижает количество связей P-O-P на две, с образованием одной связи РОН+ и одной связи POR.

Каждый моль полностью прореагировавшего первичного диола снижает количество связей P-O-P на четыре, с образованием двух связей

POH+ и двух связей POR(O-P). (Это обозначение указывает на то, что оба конца R п