Способ и устройство для повышения разборчивости речи с использованием нескольких датчиков
Иллюстрации
Показать всеИзобретение относится к устранению шума из речевых сигналов. Способ и система используют для оценки достоверного значения речи сигнал альтернативного датчика, принимаемый из датчика, отличного от микрофона с воздушной звукопроводимостью. При оценке используется сигнал альтернативного датчика исключительно или совместно с сигналом микрофона с воздушной звукопроводимостью. Достоверное значение речи оценивается без использования модели, обученной на обучающих данных с шумами, собранных из микрофона с воздушной звукопроводимостью. Согласно одному варианту осуществления к вектору, сформированному из сигнала альтернативного датчика, добавляются векторы поправки для формирования фильтра, применяемого к сигналу микрофона с воздушной звукопроводимостью для создания достоверной оценки речи. В других вариантах осуществления из сигнала альтернативного датчика определяется основной тон речевого сигнала, который используется для разложения сигнала микрофона с воздушной звукопроводимостью. Затем разложенный сигнал используется для определения достоверной оценки сигнала. Технический результат - обеспечение оптимальной оценки достоверного значения речи в условиях, когда сигнал альтернативного датчика отличается от сигнала микрофона с воздушной проводимостью. 3 н. и 12 з.п. ф-лы, 11 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к подавлению шума. В частности, настоящее изобретение относится к устранению шумов из речевых сигналов.
Уровень техники
Общей проблемой распознавания и передачи речи является искажение речевого сигнала аддитивным шумом. В частности, является трудно обнаруживаемым и/или корректируемым искажение из-за речи, производимой другим диктором.
Согласно одному способу устранения шума делается попытка смоделировать шум с использованием набора обучающих сигналов с шумами, собираемых при различных условиях. Указанные обучающие сигналы принимаются до испытательного сигнала, который должен быть декодирован или передан, и используются, исключительно, для обучающих целей. Хотя такие системы делают попытку формирования моделей, учитывающих шум, они являются эффективными только, если шумовые условия для обучающих сигналов соответствуют шумовым условиям для испытательных сигналов. Из-за большого количества возможных шумов и, по-видимому, неограниченных комбинаций шумов, очень трудно построить модели шумов на обучающих сигналах, которые могут обрабатывать каждое проверяемое условие.
Другим способом устранения шума является оценка шума в испытательном сигнале и, затем, вычитание ее из речевого сигнала с шумами. Обычно такие системы оценивают шум из предыдущих кадров испытательного сигнала. По существу, при изменении шума во времени, оценка шума для текущего кадра будет неточной.
Одна известная система для оценки шума в речевом сигнале использует гармоники человеческой речи. Гармоники человеческой речи формируют пики в частотном спектре. Указанные системы определяют спектр шума, определяя провалы между этими пиками. Затем, для обеспечения достоверного (без шумов) речевого сигнала, этот спектр вычитается из спектра речевого сигнала с шумами.
При кодировании речи для передачи по цифровому каналу связи, гармоники речи использовались также в кодировании речи для уменьшения количества данных, которые должны быть переданы. Такие системы осуществляют попытку разделения речевого сигнала на гармоническую составляющую и случайную составляющую. Затем каждая составляющая кодируется для передачи отдельно. В частности, одна система использовала модель гармоника + шум, в которой для выполнения разложения речевого сигнала подходит модель суммы синусоид.
В кодировании речи разложение выполняется для обнаружения параметризации речевого сигнала, точно представляющей входной речевой сигнал с шумами. Разложение не обладает способностью подавления шума.
В последнее время была разработана система, которая осуществляет попытку устранения шума с использованием комбинации с альтернативным датчиком, например микрофона с костной звукопроводимостью и микрофона с воздушной звукопроводимостью. Эта система обучается с использованием трех обучающих каналов: обучающего сигнала с шумами альтернативного датчика, обучающего сигнала с шумами микрофона с воздушной звукопроводимостью и достоверного обучающего сигнала микрофона с воздушной звукопроводимостью. Каждый из сигналов преобразуется в представление в виде значений характеристик. Характеристики сигнала с шумами альтернативного датчика и сигнала с шумами микрофона с воздушной звукопроводимостью комбинируются в одиночный вектор, представляющий сигнал с шумами. Характеристики достоверного сигнала микрофона с воздушной звукопроводимостью формируют одиночный достоверный вектор. Затем эти векторы используются для подготовки (обучения) соответствия между векторами с шумами и достоверными векторами. Однажды подготовленные, соответствия применяются к вектору с шумами, сформированному из комбинации испытательного сигнала с шумами альтернативного датчика и испытательного сигнала с шумами микрофона с воздушной звукопроводимостью. Указанное соответствие формирует достоверный вектор сигнала.
Указанная система является недостаточно оптимальной, когда шумовые условия испытательных сигналов не соответствуют шумовым условиям обучающих сигналов, так как соответствия разработаны для шумовых условий обучающих сигналов.
Сущность изобретения
Заявленные способ и система используют для оценки достоверного значения речи сигнал альтернативного датчика, принятый из датчика, отличного от микрофона с воздушной звукопроводимостью. Достоверное значение речи оценивается без использования модели, обученной на обучающих данных с шумами, собранных из микрофона с воздушной звукопроводимостью. Согласно одному варианту осуществления для создания оценки достоверной речи к вектору, сформированному из сигнала альтернативного датчика, добавляются векторы поправки для формирования фильтра, применяемого к сигналу микрофона с воздушной звукопроводимостью. В других вариантах осуществления из сигнала альтернативного датчика определяется основной тон речевого сигнала, который используется для разложения сигнала микрофона с воздушной звукопроводимостью. Затем разложенный сигнал используется для определения оценки достоверного сигнала.
Краткое описание чертежей
Фиг.1 - блок-схема одной вычислительной среды, в которой может быть осуществлено практически настоящее изобретение.
Фиг.2 - блок-схема альтернативной вычислительной среды, в которой может быть осуществлено практически настоящее изобретение.
Фиг.3 - блок-схема общей системы обработки речевых сигналов, согласно настоящему изобретению.
Фиг.4 - блок-схема системы для обучения параметров подавления шума согласно одному варианту осуществления настоящего изобретения.
Фиг.5 - блок-схема обучения параметров подавления шума с использованием системы фиг.4.
Фиг.6 - блок-схема системы для определения оценки достоверного речевого сигнала из испытательного речевого сигнала с шумами согласно одному варианту осуществления настоящего изобретения.
Фиг.7 - блок-схема способа определения оценки достоверного речевого сигнала с использованием системы фиг.6.
Фиг.8 - блок-схема альтернативной системы для определения оценки достоверного речевого сигнала.
Фиг.9 - блок-схема второй альтернативной системы для определения оценки достоверного речевого сигнала.
Фиг.10 - блок-схема способа определения оценки достоверного речевого сигнала с использованием системы фиг.9.
Фиг.11 - блок-схема микрофона с костной звукопроводимостью.
Подробное описание пояснительных вариантов осуществления
Фиг.1 иллюстрирует возможный вариант соответствующей среды 100 вычислительной системы, в которой может быть реализовано изобретение. Среда 100 вычислительной системы является только одним возможным вариантом соответствующей вычислительной среды и не предназначена для наложения какого-либо ограничения на область использования или на функциональные возможности изобретения. Также вычислительная среда 100 не должна интерпретироваться как зависимая от любого компонента или комбинации компонентов, иллюстрируемых возможной операционной средой 100, или как имеющая в них необходимость.
Изобретение может быть реализовано в отношении некоторых других конфигураций и сред универсальных и специальных вычислительных систем. Возможные варианты известных вычислительных систем, сред и/или конфигураций, которые могут быть использованы, включают в себя, например, персональные компьютеры, компьютеры-сервера, портативные или “дорожные” устройства, многопроцессорные системы, системы, основанные на микропроцессорах, компьютерные приставки к телевизору, программируемую бытовую электронику, сетевые персональные компьютеры (PC), миникомпьютеры, универсальные компьютеры, системы телефонной связи, распределенные вычислительные среды, содержащие любые из указанных систем или устройств и т.д.
Изобретение может быть описано в основном контексте команд, выполнимых компьютером, таких как программные модули, выполняемые компьютером. По существу, программные модули включают в себя процедуры, программы, объекты, компоненты, структуры данных и т.д., выполняющие конкретные задачи или реализующие определенные абстрактные типы данных. Изобретение предназначено для практического осуществления в распределенных вычислительных средах, в которых задачи выполняются удаленными устройствами обработки данных, соединенными через сеть связи. В распределенной вычислительной среде программные модули размещены на носителях информации локальных и удаленных компьютеров, включая запоминающие устройства.
Согласно фиг.1 возможная система для реализации изобретения содержит универсальное вычислительное устройство в виде компьютера 110. Компоненты компьютера 110 могут содержать, в частности, процессор 120, системную память 130 и системную шину 121, соединяющую различные компоненты системы, включая системную память, с процессором 120. Системной шиной 121 может быть любой из нескольких типов структур шины, включая шину памяти или контроллер памяти, периферийную шину и локальную шину, использующие любую из различных архитектур шины. В виде возможного варианта, такие архитектуры включают в себя шину архитектуры, соответствующую промышленному стандарту, ISA (АПС), шину микроканальной архитектуры, MCA (МКА), шину расширенной стандартной архитектуры для промышленного применения, EISA (РАПС), локальную шину Ассоциации по стандартам в области видеоэлектроники, VESA (АСВЭ), и 32-битовую системную шину PCI с возможностью расширения до 64 битов со скоростью передачи данных до 33 Мбайт/с, взаимодействие через которую происходит без участия центрального процессора (также известную, как шина Mezzanine) и т.д.
Компьютер 110, обычно, содержит несколько носителей информации, считываемых компьютером. Такой носитель информации, считываемый компьютером, может быть любым доступным носителем информации, к которому может осуществить доступ компьютер 110, и который включает в себя энергозависимый и энергонезависимый носитель информации, съемный и несъемный носитель информации. В виде возможного варианта носитель информации, считываемый компьютером, может включать в себя носитель информации компьютера и средство связи и т.д. Носитель информации компьютера включает в себя энергозависимый и энергонезависимый, съемный и несъемный носитель информации, реализованный любым способом или технологией для хранения информации, такой как команды, считываемые компьютером, структуры данных, программные модули или другие данные. Носитель информации компьютера включает в себя, например, оперативное запоминающее устройство RAM (ОЗУ), постоянное запоминающее устройство ROM (ПЗУ), электронно-перепрограммируемую постоянную память (EEPROM), флэш-память или другую технологию памяти, компакт диски CD-ROM, универсальные цифровые диски (DVD) или другой накопитель на оптических дисках, магнитные кассеты, магнитную ленту, накопитель на магнитных дисках или другие магнитные запоминающие устройства, или любой другой носитель информации, который может быть использован для хранения требуемой информации, и к которому может осуществить доступ компьютер 110. Средство связи обычно осуществляет команды, считываемые компьютером, структуры данных, программные модули или другие данные в модулированном сигнале данных, например, несущей или в другом механизме переноса информации и включает в себя любое средство доставки информации. Термин «модулированный сигнал данных» означает сигнал, который имеет одну или большее количество из набора его характеристик, или измененный таким образом, чтобы кодировать информацию в сигнале. В виде возможного варианта, средство связи включает в себя проводное средство, такое как проводная сеть или прямое кабельное соединение, и беспроводное средство, такое как акустическое, радио, инфракрасное и другое беспроводное средство и т.д. Комбинации любых упомянутых выше средств также должны быть включены в контекст носителей информации, считываемых компьютером.
Системная память 130 включает в себя носитель информации компьютера в виде энергонезависимой и/или энергозависимой памяти, такой как постоянное запоминающее устройство 131 (ПЗУ) и оперативное запоминающее устройство 132 (ОЗУ). Базовая система 133 ввода/вывода BIOS (БИОС), содержащая базовые процедуры, способствующие передаче информации между элементами внутри компьютера 110, например, используемые при запуске, в основном, хранится в ПЗУ 131. ОЗУ 132, в основном, содержит данные и/или программные модули, к которым можно осуществить доступ немедленно, и/или с которыми в текущее время оперирует процессор 120. В виде возможного варианта фиг.1, например, изображает операционную систему 134, прикладные программы 135, другие программные модули 135 и данные 137 программы.
Компьютер 110 также может содержать другие съемные/несъемные, энергозависимые/энергонезависимые носители информации компьютера. Исключительно в виде возможного варианта фиг. 1 изображает накопитель 141 на жестких дисках, который осуществляет считывание с несъемного энергонезависимого магнитного носителя информации или запись на него, накопитель 151 на магнитных дисках, который осуществляет считывание со съемного энергонезависимого магнитного диска 152 или запись на него, и накопитель 155 на оптических дисках, который осуществляет считывание со съемного энергонезависимого оптического диска 156, например, компакт-диска CD-ROM или другого оптического носителя информации, или запись на него. Другие съемные/несъемные, энергозависимые/энергонезависимые носители информации компьютера, которые могут использоваться в возможной операционной среде, включают в себя, в частности, кассеты с магнитной лентой, карты флэш-памяти, универсальные цифровые диски, цифровые видеоленты, твердотельное ОЗУ, твердотельное ПЗУ и т.д. Накопитель 141 на жестких дисках, обычно, подсоединен к системной шине 121 посредством интерфейса несъемной памяти, например интерфейса 140, а накопитель 151 на магнитных дисках и накопитель 155 на оптических дисках обычно подсоединены к системной шине 121 посредством интерфейса съемной памяти, например интерфейса 150.
Описанные выше и изображенные на фиг.1 накопители на дисках и соответствующие им носители информации компьютера обеспечивают хранение считываемых компьютером команд, структур данных, программных модулей и других данных для компьютера 110. На фиг.1, например, изображен накопитель 141 на жестких дисках, на котором хранятся операционная система 144, прикладные программы 145, другие программные модули 146 и данные 147 программы. Следует отметить, что указанные компоненты могут быть идентичны операционной системе 134, прикладным программам 135, другим программным модулям 136 и данным 137 программы, или отличны от них. Операционная система 144, прикладные программы 145, другие программные модули 146 и данные 147 программы здесь снабжены другими ссылочными позициями для пояснения того, что как минимум, они являются другими копиями.
Пользователь может осуществлять ввод команд и информации в компьютер 110 посредством устройств ввода данных, таких как клавиатура 162, микрофон 163 и указательное устройство 161, например мышь, шаровой указатель или сенсорная панель. В число других устройств ввода данных (не изображены) могут входить джойстик, игровая панель, спутниковая антенна, сканер или подобные устройства. Указанные и другие устройства ввода данных, часто, подсоединяются к процессору 120 посредством пользовательского интерфейса 160 для ввода/вывода данных, подсоединенного к системной шине, но они могут подсоединяться к процессору посредством другого интерфейса и других структур шины, таких как параллельный порт, игровой порт или универсальная последовательная шина (USB). Также к системной шине 121 посредством интерфейса, например видеоинтерфейса 190, может быть подсоединен монитор 191 или другой вид устройства отображения. В дополнение к монитору, компьютеры могут содержать также другие периферийные устройства вывода данных, такие как динамики 197 и принтер 196, которые могут быть подсоединены через интерфейс 195 периферийных устройств вывода данных.
Компьютер 110 эксплуатируется в среде с сетевой структурой с использованием логических соединений с одним или большим количеством удаленных компьютеров, например, удаленным компьютером 180. Удаленный компьютер 180 может быть персональным компьютером, переносным устройством, сервером, маршрутизатором, сетевым PC, одноранговым устройством или другим узлом общей сети и, обычно, содержит многие или все элементы, описанные выше в отношении компьютера 110. Логические соединения, изображенные на фиг.1, включают в себя локальную сеть связи LAN (ЛС) 171 и глобальную сеть связи WAN (ГС) 173. Такие сетевые среды часто используются в офисах, корпоративных вычислительных сетях, сетях интранет и в Интернете.
При использовании в сетевой среде ЛС компьютер 110 подсоединяется к ЛС 171 посредством сетевого интерфейса или адаптера 170. При использовании в сетевой среде ГС компьютер 110 обычно содержит модем 172 или другое средство для установления связи через ГС 173, такое как Интернет. Модем 172, который может быть внутренним или внешним, может подсоединяться к системной шине 121 посредством пользовательского интерфейса 160 для ввода данных или другого соответствующего механизма. В среде с сетевой структурой, программные модули, изображенные в отношении компьютера 110, или их части могут храниться в удаленных запоминающих устройствах. Например, в виде возможного варианта на фиг.1 удаленные прикладные программы 185 изображены резидентно хранящимися в удаленном компьютере 180. Ясно, что изображенные сетевые соединения являются возможными вариантами, и могут использоваться другие средства установления линии связи между компьютерами.
Фиг.2 - блок-схема мобильного устройства 200, которое является возможной вычислительной средой. Мобильное устройство 200 содержит микропроцессор 202, память 204, компоненты 206 ввода/вывода (I/O) данных, и интерфейс 208 связи для связи с удаленными компьютерами или другими мобильными устройствами. В одном варианте осуществления вышеупомянутые компоненты соединены для связи друг с другом через соответствующую шину 210.
Память 204 реализована в виде энергонезависимой электронной памяти, такой как оперативное запоминающее устройство (ОЗУ), с блоком батарейного питания (не изображен), чтобы при отключении общего питания мобильного устройства 200 не была потеряна информация, которая хранится в памяти 204. Часть памяти 204, предпочтительно, выделена в адресуемую память для выполнения программ, в то время как другая часть памяти 204, предпочтительно, используется для хранения, например для имитации хранения на накопителе на дисках.
Память 204 содержит операционную систему 212, прикладные программы 214, а также объектно-ориентированную память 216. При работе, предпочтительно, процессором 202 выполняется операционная система 212 из памяти 204. В одном предпочтительном варианте осуществления операционной системой 212 является операционная система марки WINDOWS® CE, серийно выпускаемая корпорацией Microsoft. Операционная система 212, предпочтительно, разработана для мобильных устройств и реализует возможности базы данных, которые могут использоваться приложениями 214 посредством набора представленных способов и интерфейсов прикладного программирования. Объекты в объектно-ориентированной памяти 216 поддерживаются приложениями 214 и операционной системой 212, по меньшей мере, в частности, в ответ на вызовы представленных способов и интерфейсов прикладного программирования.
Интерфейс 208 связи представляет многочисленные устройства и технологии, которые обеспечивают возможность передачи и приема информации мобильным устройством 200. Устройства включают в себя, в частности, проводные и беспроводные модемы, спутниковые приемники и бытовые тюнеры. Мобильное устройство 200 также может быть соединено с компьютером напрямую для обмена с ним данными. В таких случаях интерфейсом 208 связи может быть инфракрасный приемопередатчик или последовательное или параллельное соединение связи, которые все обладают способностью передачи потоковой информации.
Компоненты 206 ввода/вывода данных включают в себя разнообразные устройства ввода данных, например сенсорный экран, кнопки, ролики и микрофон, а также разнообразные устройства вывода данных, включая генератор звука, вибрационное устройство и дисплей. Перечисленные выше устройства приведены в качестве возможного варианта, и нет необходимости в наличии всех указанных устройств в мобильном устройстве 200. Дополнительно в объеме настоящего изобретения к мобильному устройству 200 могут быть присоединены или обеспечены с ним другие устройства ввода/вывода данных.
Фиг.3 обеспечивает базовую блок-схему вариантов осуществления настоящего изобретения. Согласно фиг.3 диктор (громкоговоритель) 300 формирует речевой сигнал 302, который обнаруживается микрофоном 304 с воздушной звукопроводимостью и альтернативным датчиком 306. Возможные варианты альтернативных датчиков включают в себя ларингофон, измеряющий вибрации горла пользователя, датчик с костной звукопроводимостью, размещенный на кости лица или на черепе пользователя (например, на челюстной кости) или рядом с ними, или в ухе пользователя, воспринимающий вибрации черепа и челюсти, соответствующие речи, производимой пользователем. Микрофон 304 с воздушной звукопроводимостью является видом микрофона, обычно используемым для преобразования звуковых волн в электрические сигналы.
Микрофон 304 с воздушной звукопроводимостью также принимает шум 308, производимый одним или большим количеством источников 310 шума. В зависимости от вида альтернативного датчика и уровня шума шум 308 может обнаруживаться также альтернативным датчиком 306. Однако, согласно вариантам осуществления настоящего изобретения, альтернативный датчик 306 обычно менее чувствителен к шуму окружающей среды, чем микрофон 304 с воздушной звукопроводимостью. Соответственно, сигнал 312 альтернативного датчика, сформированный альтернативным датчиком 306, в основном, содержит меньшее количество шума, чем сигнал 314 микрофона с воздушной звукопроводимостью, сформированный микрофоном 304 с воздушной звукопроводимостью.
Сигнал 312 альтернативного датчика и сигнал 314 микрофона с воздушной звукопроводимостью подаются на модуль 316 оценки достоверного сигнала, который оценивает достоверный сигнал 318. Оценка 318 достоверного сигнала подается на обработку 320 речи. Оценкой 318 достоверного сигнала может быть фильтрованный сигнал временной области (представленный временными значениями) или вектор, представленный значениями характеристик. Если оценка 318 достоверного сигнала является сигналом, представленным временными значениями, то обработка 320 речи может представлять собой слушающего абонента, систему кодирования речи или систему распознавания речи. Если оценка 318 достоверного сигнала является вектором, представленным значениями характеристик, то обработкой 320 речи, обычно, будет система распознавания речи.
Настоящее изобретение обеспечивает отдельные способы и системы для оценки достоверной речи с использованием сигнала 314 микрофона с воздушной звукопроводимостью и сигнала 312 альтернативного датчика. Одна система использует обучающие стереоданные для обучения векторов поправки для сигнала альтернативного датчика. Когда впоследствии указанные векторы поправки добавляются к испытательному вектору альтернативного датчика, они обеспечивают оценку вектора достоверного сигнала. Одно дополнительное расширение этой системы заключается сначала в отслеживании изменяющегося во времени искажения, а затем во включении этой информации в вычисление векторов поправки и в оценку достоверной речи.
Вторая система обеспечивает интерполяцию между оценкой достоверного сигнала, сформированной векторами поправки и оценкой, сформированной посредством вычитания оценки шума, имеющегося в испытательном сигнале воздушной звукопроводимости, из сигнала воздушной звукопроводимости. Третья система использует сигнал альтернативного датчика для оценки основного тона речевого сигнала и затем использует оцененный основной тон для определения оценки для достоверного сигнала. Ниже отдельно описана каждая из указанных систем.
Обучение стереовекторов поправки
На фиг.4 и 5 изображены блок-схемы обучения стереовекторов поправки для двух вариантов осуществления настоящего изобретения, которые основаны на векторах поправки для формирования оценки достоверной речи.
Способ определения векторов поправки начинается с этапа 500 фиг.5, на котором "достоверный" сигнал микрофона с воздушной звукопроводимостью преобразуется в последовательность векторов характеристик. Для этого диктор 400 на фиг.4 говорит в микрофон 410 с воздушной звукопроводимостью, который преобразует звуковые волны в электрические сигналы. Затем электрические сигналы стробируются аналого-цифровым преобразователем 414 для формирования последовательности цифровых значений, которые группируются конструктором 416 кадров в кадры значений. В одном варианте осуществления аналого-цифровой преобразователь 414 стробирует аналоговый сигнал в 16 кГц и 16 бит на выборку, вследствие этого создавая 32 килобайта речевых данных в секунду и конструктор 416 кадров каждые 10 миллисекунд создает новый кадр, который содержит 25 миллисекунд данных.
Каждый кадр данных, обеспеченный конструктором 416 кадров, преобразуется выделителем 418 характеристик в вектор характеристик. Согласно одному варианту осуществления выделитель 418 характеристик формирует кепстральные характеристики. В возможные варианты таких характеристик входят LPC (кодирование методом линейного предсказания) - производный кепстр, и коэффициенты кепстра Mel-частоты. В другие возможные варианты возможных модулей выделения характеристик, которые могут использоваться в настоящем изобретении, входят модули для выполнения кодирования методом линейного предсказания (КЛП), LPC, перцептивного линейного предсказания (ПЛП), PLP, и выделения характеристик слуховой модели. Следует отметить, что изобретение не ограничивается указанными модулями выделения характеристик, и что в контексте настоящего изобретения могут использоваться другие модули.
На этапе 502, фиг.5, сигнал альтернативного датчика преобразуется в векторы характеристик. Хотя преобразование на этапе 502 изображено после преобразования на этапе 500, согласно настоящему изобретению указанные части преобразования могут выполняться в любом порядке, на этапе 500 или после него. Преобразование на этапе 502 выполняется посредством процесса, подобного описанному выше для этапа 500.
В варианте осуществления, изображенном на фиг.4, этот процесс начинается, когда альтернативный датчик 402 обнаруживает физическое событие, связанное с производством диктором 400 речи, таким как вибрация кости или движение лица. Как изображено на фиг.11, в одном варианте осуществления микрофона 1100 с костной звукопроводимостью, к диафрагме 1104 нормального микрофона 1106 с воздушной звукопроводимостью приклеивается гибкая высокорастяжимая перемычка 1102. Такая гибкая перемычка 1102 проводит колебания от электрода (контакта) 1108 на коже пользователя непосредственно на диафрагму 1104 микрофона 1106. Движение диафрагмы 1104 преобразуется преобразователем 1110 в микрофоне 1106 в электрический сигнал. Альтернативный датчик 402 преобразует физическое событие в аналоговый электрический сигнал, который стробируется аналого-цифровым преобразователем 404. Характеристики стробирования для аналого-цифрового преобразователя 404 идентичны характеристикам, описанным выше для аналого-цифрового преобразователя 414. Выборки, обеспеченные аналого-цифровым преобразователем 404, собираются в кадры конструктором 406 кадров, который действует подобно конструктору 416 кадров. Затем эти кадры выборок преобразуются в векторы характеристик выделителем 408 характеристик, который использует способ выделения характеристик, идентичный используемому выделителем 418 характеристик.
Затем векторы характеристик для сигнала альтернативного датчика и сигнала с воздушной звукопроводимостью подаются на модуль 420 обучения подавлению шума, изображенный на фиг.4. На этапе 504, фиг.5, модуль обучения 420 подавлению шума группирует векторы характеристик для сигнала альтернативного датчика в смешанные составляющие. Такая группировка может быть выполнена посредством совместной группировки подобных векторов характеристик с использованием способа обучения максимального правдоподобия или посредством группировки векторов характеристик, совместно представляющих временной сегмент речевого сигнала. Для специалистов в данной области техники очевидно, что для группировки векторов характеристик могут использоваться другие способы, и что два способа, приведенных выше, предложены только в качестве возможных вариантов.
Затем на этапе 508, фиг.5, модуль обучения 420 подавлению шума определяет вектор поправки, rs, для каждой смешанной составляющей, s. Согласно одному варианту осуществления вектор поправки для каждой смешанной составляющей определяется с использованием критерия максимального правдоподобия. Согласно этому способу вектор поправки вычисляется, как:
Ур.1 |
где xt является значением вектора воздушной звукопроводимости для кадра t, а bt является значением вектора альтернативного датчика для кадра t. В Уравнении 1:
Ур. 2 |
где p(s) является просто одной из некоторого количества смешанных составляющих, а p(bt|s) моделируется, как Гауссовское распределение:
Ур. 3 |
со средним μb и дисперсией Гb, подготовленных (обученных) с использованием алгоритма максимизации (математического) ожидания (EM), где каждая итерация состоит из следующих этапов:
Ур. 4 | |
Ур. 5 | |
Ур. 6 |
Уравнение 4 представляет E-этап в алгоритме EM, который использует предварительно оцененные параметры. Уравнение 5 и Уравнение 6 представляют M-этап, который обновляет параметры с использованием результатов E-этапа.
E-этап и M-этап алгоритма повторяются до определения устойчивого значения для параметров модели. Затем эти параметры используются для оценки уравнения 1, чтобы сформировать векторы поправки. Затем векторы поправки и параметры модели записываются в записывающее устройство 422 для параметров подавления шума.
После определения вектора поправки для каждой смешанной составляющей на этапе 508 процесс обучения системы подавления шума, предусмотренной настоящим изобретением, завершается. Когда вектор поправки определен для каждой смешанной составляющей, векторы могут использоваться в способе подавления шума, предусмотренном настоящим изобретением. Ниже описаны два отдельных способа подавления шума, которые используют векторы поправки.
Подавление шума с использованием вектора поправки и оценки шума
Систему и способ, которые подавляют шум в речевом сигнале с шумами на основе векторов поправки и оценки шума, иллюстрируют блок-схема фиг.6 и блок-схема фиг.7, соответственно.
На этапе 700 испытательный звуковой сигнал, обнаруженный микрофоном 604 с воздушной звукопроводимостью, преобразуется в векторы характеристик. Испытательный звуковой сигнал, принятый микрофоном 604, содержит речь от диктора 600 и аддитивный шум из одного или большего количества источников 602 шума. Испытательный звуковой сигнал, обнаруженный микрофоном 604, преобразуется в электрический сигнал, который подается на аналого-цифровой преобразователь 606.
Аналого-цифровой преобразователь 606 преобразует аналоговый сигнал из микрофона 604 в последовательности цифровых значений. В отдельных вариантах осуществления аналого-цифровой преобразователь 606 стробирует аналоговый сигнал в 16 кГц и 16 бит на выборку, вследствие этого создавая 32 килобайта речевых данных в секунду. Эти цифровые значения подаются на конструктор 607 кадров, который в одном варианте осуществления группирует значения в 25-миллисекундные кадры, которые запускаются с интервалом в 10 миллисекунд.
Кадры данных, созданные конструктором 607 кадров, подаются на выделитель 610 характеристик, который выделяет характеристики из каждого кадра. Согласно одному варианту осуществления указанный выделитель характеристик отличен от выделителей 408 и 418 характеристик, которые использовались для обучения векторов поправки. В частности, согласно этому варианту осуществления выделитель 610 характеристик формирует вместо кепстральных значений значения энергетического спектра. Выделенные характеристики подаются на модуль 622 оценки достоверного сигнала, модуль 626 обнаружения речи и модуль 624 обучения модели шумов.
На этапе 702 физическое событие, например вибрация кости или движение лица, связанное с производством диктором 600 речи, преобразуются в вектор характеристик. Хотя этот этап изображен на фиг.7 как отдельный этап, для специалистов в данной области техники очевидно, что, в то же время, части этого этапа могут быть выполнены на этапе 700. На этапе 702 альтернативным датчиком 614 обнаруживается физическое событие. Альтернативный датчик 614 на основе физического события формирует аналоговый электрический сигнал. Этот аналоговый сигнал преобразуется аналого-цифровым преобразователем 616 в цифровой сигнал, и результирующие цифровые выборки группируются конструктором 617 кадров в кадры. Согласно одному варианту осуществления функционирование аналого-цифрового преобразователя 616 и конструктора 617 кадров подобно функционированию аналого-цифрового преобразователя 606 и конструктора 607 кадров.
Кадры цифровых значений подаются на выделитель 620 характеристик, который использует способ выделения характеристик, идентичный используемому для обучения векторов поправки. Как упомянуто выше, в возможные варианты таких модулей выделения характеристик входят модули для выполнения кодирования методом линейного предсказания (LPC), LPC - производного кепстра, перцептивного линейного предсказания (PLP), выделения характеристик слуховой модели и выделения характеристик кепстральных коэффициентов Mel-частоты (ХККМ), MFCC. Однако во многих вариантах осуществления используются способы выделения характеристик, которые формируют кепстральные характеристики.
Модуль выделения характеристик формирует поток векторов характеристик, каждый из которых соответствует отдельному кадру речевого сигнала. Указанный поток векторов характеристик подается на модуль 622 оценки достоверного сигнала.
Кадры значений из конструктора 617 кадров также подаются на выделитель 621 характеристик, который в одном варианте осуществления выделяет энергию каждого кадра. Значение энергии для каждого кадра подается на модуль 626 обнаружения речи.
На этапе 704 модуль 626 обнаружения речи использует характеристику энергии сигнала альтернативного датчика для определения, когда вероятно наличие речи. Эта информация передается на модуль 624 обучения модели шумов, который осуществляет попытку смоделировать шум в продолжение периодов, когда на этапе 706 речь отсутствует.
Согласно одному варианту осуществления модуль 626 обнаружения речи сначала исследует последовательность значений энергии кадра для обнаружения точек максимума энергии. Затем он осуществляет поиск точки минимума после точки максимума. Энергия этой точки минимума называется разделителем d энергии. Для определения того, содержит ли кадр речь, коэффициент k энергии e кадра определяется через разделитель d энергии, как: k=e/d. Доверительность q речи для кадра определяется, как:
Ур. 7 |
где α определяет переход между двумя состояниями, и в одной реализации ус