Сырьевая смесь и способ изготовления керамических изделий
Изобретение относится к производству керамических изделий строительного назначения и может быть использовано в технологии изготовления кирпича, керамических камней, черепицы, крупноразмерных стеновых блоков, тротуарных изделий. Сырьевая смесь для изготовления строительных керамических изделий включает природный песок, доменный и/или сталеплавильный шлак, причем содержание SiO2 в смеси составляет 70-85% при следующем соотношении компонентов, мас.%: природный песок - 60-80; доменный шлак - 0-40; сталеплавильный шлак - 0-40; растворимое стекло - 0-5. Способ изготовления строительных керамических изделий из вышеназванной сырьевой смеси включает приготовление сырьевой смеси, формование изделий и обжиг. Предварительно проводят совместное измельчение сырьевой смеси до дисперсности 20-50 мкм, прессование осуществляют при давлении 35-150 МПа, обжиг проводят по следующему режиму: подъем температуры до 500°С со скоростью 150-200°С/час, далее до 1050-1150°С со скоростью 65-150°С/час, выдержка при 1150°С - 1-2 часа, охлаждение со скоростью 100-150°С/час. Технический результат - повышение прочности на сжатие и морозостойкости материала, использование в качестве основного компонента сырьевой смеси - природного песка и утилизация различных отходов производства (доменных и сталеплавильных шлаков). 2 н.п. ф-лы, 3 табл.
Реферат
Предлагаемое изобретение относится к производству керамических изделий строительного назначения и может быть использовано в технологии изготовления кирпича, керамических камней, черепицы, крупноразмерных стеновых блоков, тротуарных изделий.
Известно большое количество изобретений (Патенты RU 2194680, 2284307, 2304123, 2287504), относящихся к составам керамических смесей и способам производства керамических изделий на их основе, но одним из основных компонентов в составе сырьевой смеси является глина. Одной из задач предлагаемого изобретения является исключение глинистой составляющей из состава смеси.
Известна сырьевая смесь, включающая кварцевый компонент в виде отходов обогащения железистых кварцитов или слюды-мусковита, нефелиновую добавку в виде нефелинового концентрата или отходов обогащения апатитонефелиновых руд, стеклобой и сульфитно-спиртовую барду при крупности компонентов массы менее 0.05 мм и их соотношении, мас.%: отходы обогащения железистых кварцитов или слюды-мусковита 69.85-79.32, нефелиновый концентрат или отходы обогащения апатитонефелиновых руд 7.26-10.83, стеклобой 8.36-22.38, сульфитно-спиртовая барда 0.5-5.0. Использование керамической массы позволяет получить стеновые кирпичные изделия, имеющие пористость 40.7-44.2% и теплопроводность 0.29-0.32 Вт/м·К, прочность при изгибе 4.5-8.3, прочность при сжатии 31-46 МПа, водопоглощение 20.3-21.6% (Патент RU 2230047).
Известно также изобретение, используемое в технологии изготовления кирпича, керамических камней, черепицы, крупноразмерных блоков. Согласно изобретению изготовление строительных изделий осуществляют путем приготовления формовочной массы, состоящей, мас.%: 0,1-50,0 песка, 3,4-15,0 оксида кальция, 0,1-4,0 активатора твердения в виде каустической или кальцинированной соды, соли аммония или смесей указанных веществ, в которую введен 0,1-4,0 силикат натрия в виде жидкого стекла, и глины, пластического формования изделий и их термообработки, включающей стадии предварительной осушки до влажности 10,0-11,5% при температуре 60-70°С, термовлажностной обработки в замкнутой атмосфере насыщенного пара при температуре 100-105°С в течение двух часов и последующей сушки с постепенным снижением влажности. Последующую сушку проводят в процессе постепенного подъема температуры от 105-130°С в течение 8-10 часов до остаточной влажности 1,0-1,5%. Формовочную массу приготавливают в три этапа: при этом на первом этапе осуществляют предварительное смешение компонентов формовочной смеси, на втором этапе - вылеживание ее в течение 12-24 часов до окончания гашения оксида кальция и гидролизации глины и на третьем этапе производят окончательную переработку формовочной смеси для придания ей однородности, подавая в вакуум-пресс после тонкого помола и растирания. Реализация заявленного изобретения позволяет удешевить производство и повысить качество выпускаемой продукции (Патент RU 2225379).
Недостатком аналогов является сложность технологического процесса и недостаточно высокие прочностные характеристики получаемых керамических изделий.
Наиболее близким аналогом заявляемого изобретения является формовочная масса из кремнеземсодержащего связующего, в качестве которого используются гидроксид щелочного металла или аммония, и кремнеземсодержащего заполнителя, в качестве которого используют речной, морской, карьерный пески, гранит, базальт и т.д. (Патент RU 2283818). Недостатком данного аналога является использование щелочесодержащих гидроксидов, требующих специальной щелочестойкой футеровки оборудования и снижающих водостойкость получаемых строительных изделий.
Наиболее близкими к предлагаемой сырьевой смеси и способу изготовления керамических изделий по технической сущности и достигаемому эффекту являются сырьевая смесь и способ изготовления по патенту RU 2287501.
Согласно патенту сырьевая смесь содержит микрокремнезем и алюмосиликатный компонент, в качестве которого используется термически обработанный закарбонизованный суглинок с содержанием СаО+MgO - 10-11%, а также углеродсодержащий отход Al-производства - пыль электрофильтров, при следующем соотношении компонентов, мас.%:
микрокремнезем | 60,9-70,5 |
термообработанный суглинок | 20,4-26,1 |
пыль электрофильтров | 9,1-13,0 |
Недостатком прототипа являются относительно низкие значения прочности на сжатие (18,4-27,2 МПа) и морозостойкости (85-175 циклов) материала и высокие значения водопоглощения (28,0-38,5%).
Задачей настоящего изобретения является разработка состава керамической смеси и создание способа, позволяющих получить керамический материал строительного назначения с повышенными прочностными свойствами, при этом ставится также цель использования в качестве основного компонента природного песка, поскольку создаваемый строительный материал предназначается для регионов, бедных другими сырьевыми компонентами (в частности, регионов Крайнего Севера), и утилизация различных отходов производства (доменных и сталеплавильных шлаков, зол и шлаков ТЭС).
Технический результат достигается тем, что предлагаемая сырьевая смесь содержит кремнезем и алюмосиликатный компоненты и отличается тем, что для обеспечения повышения прочности на сжатие до 130-160 МПа она включает в качестве кремнеземсодержащего компонента различные природные пески - кварцевый, речной, морской, строительный, в качестве алюмосодержащего компонента доменный и/или сталеплавильный шлак, причем содержание SiO2 в смеси составляет не менее 70-85% при следующем соотношении компонентов, мас.%:
природный песок | 60-80 |
доменный шлак | 0-40 |
сталеплавильный шлак | 0-40 |
растворимое стекло | 0-5. |
Используемый природный песок содержит SiO2 не менее 93%, в песке может присутствовать оксид алюминия в количестве 2%, оксиды железа, титана, калия, кальция. В качестве основной кристаллической фазы присутствует кварцеподобный твердый раствор на основе высокотемпературного кварца, встречаются вкрапления каолинита, полевого шпата и рутила. Гранулометрический состав песка представлен зернами в зависимости от вида песка от 100 до 300 мкм, по данным лазерного дисперсионного анализа удельная поверхность зерен составляет от 0,075 до 0,3 м2/г.
Доменный шлак имеет следующий химический состав, мас.%: SiO2 - 42,5; Al2O3 - 8,0; СаО - 42,6; MgO - 4,4; Fe2O3 - 0,4; SO3 - 2,1, представляет собой в основном стеклообразную смесь крупной и мелкой фракции светло-серого цвета от 1 до 30 мм. По данным петрографического анализа содержание стекла в пробе составляет 99,0%, встречаются вкрапления рудного минерала, вероятно, магнетита и силикатной фазы состава плагиоклаза техногенного происхождения. Крупные куски имеют пористое строение и раковистый излом.
Сталеплавильный шлак является неоднородной по размеру и составу смесью. Размер кусков от 1 до 20 мм, частично магнитен. Преобладают куски пористого строения. Имеет следующий химический состав, мас.%: SiO2 - 36,8; Al2O3 - 5,4; СаО - 33,1; MgO - 5,5; Fe2O3 - 13,2; SO3 - 0,6.
По данным петрографического анализа шлак имеет в основном кристаллическую структуру, неоднородную и сложную по минералогическому составу. Проведенный рентгенофазовый анализ выявил обилие присутствующих в сталеплавильном шлаке кристаллических фаз: присутствует кварц с d=3,58, как в кварцевом песке, пироксеновые твердые растворы, по составу близкие к диопсиду, фаялит, волластонит, магнетит γ - Fe.
Выбор металлургических шлаков обусловлен тем, что в процессе спекания при получении керамических изделий шлаки обеспечивают жидкофазный механизм спекания, обусловленный тем, что доменный шлак представляет собой стекловидную фазу, которая на ранней стадии спекания переходит в жидкое состояние, а сталеплавильный шлак в силу значительного количества оксидов железа плавится при температурах спекания и также играет роль компонента, обволакивающего зерна песка и связывающего их в дальнейшем в прочный монолит.
Целесообразно для повышения прочности сырца использовать силикат-глыбу в количестве до 5%. При приготовлении сырьевой смеси желательно, чтобы ее влажность составляла 3-5%.
Сочетание кварцевого песка, доменного и/или сталеплавильного шлака с добавлением растворимого стекла обуславливает образование при обжиге высокопрочных долговечных керамических изделий при применении предлагаемого способа.
Наиболее близким к предлагаемому способу по технической сущности и достигаемому эффекту является способ по патенту RU 2287501, включающий приготовление сырьевой смеси, формование, сушку, обжиг изделия при температуре 875 и 950°С, отличающийся тем, что перед приготовлением шихты закарбонизованный суглинок измельчают и подвергают термообработке при 500°С. Недостатком прототипа является то, что по приведенному способу получаются керамические материалы, имеющие относительно низкие значения прочности и морозостойкости и высокие значения водопоглощения.
Технический результат предлагаемого способа достигается тем, что предварительно проводят совместное измельчение сырьевой смеси до дисперсности 30-50 мкм, прессование осуществляют при давлении не ниже 35-150 МПа, обжиг проводят по следующему режиму: нагрев до 500°С со скоростью 150-200°С/час, далее до 1050-1150°С со скоростью 65-150°С/час, выдержка при температуре обжига 1-2 часа, охлаждение со скоростью 100-150°С/час.
Достижение заявляемого технического результата подтверждается следующими примерами. Составы сырьевых смесей приведены в таблице 1.
Пример 1
Для приготовления сырьевой смеси используют природный песок из региона Крайнего Севера и доменный шлак металлургического комбината. Дозируют компоненты в соотношении 60/40 и проводят их совместный помол в планетарной мельнице корундовыми шарами до удельной поверхности 1,5 м2/г с преобладанием частиц размером 20 мкм. Полученную смесь увлажняют водой до влажности не более 3%, и методом полусухого прессования при давлении 150 МПа формуют образцы для определения прочности на изгиб, на сжатие, керамических свойств и морозостойкости. Обжиг ведут по следующему режиму: подъем температуры до 500°С со скоростью 200°С/час, далее до 1150°С со скоростью 150°С/час, выдержка при 1150°С - 1 час, охлаждение со скоростью 150°С/час.
Другие примеры осуществления изобретения раскрыты в таблицах 1, 3.
Таблица 1 | ||||
Составы сырьевых смесей | ||||
№ | Песок | Доменный шлак | Сталеплавильный шлак | Растворимое стекло |
1 | 60 | 40 | - | - |
2 | 60 | 40 | - | 3 |
3 | 70 | 30 | - | - |
4 | 70 | 30 | - | 5 |
5 | 85 | 15 | - | - |
6 | 70 | - | 30 | - |
7 | 70 | 15 | 15 | - |
Выбранные сочетания сырьевых компонентов (кварцевого песка и доменного шлака, кварцевого песка и сталеплавильного шлака, кварцевого песка и смеси шлаков: доменного и сталеплавильного) в соотношении 60/40 и 70/30 в присутствии растворимого стекла и без него обеспечивают получение керамических изделий с прочностью на изгиб выше 70 МПа и прочностью на сжатие выше 130-160 МПа, водопоглощением ниже 1%, о чем свидетельствуют данные таблицы 2. Присутствие растворимого стекла в сырьевой смеси повышает прочность сырца и уменьшает процент брака.
Количество песка выше 80% приводит к снижению прочностных характеристик получаемого материала.
Содержание песка в сырьевой смеси меньше 60% не отвечает поставленной цели.
Таблица 2 | ||||||||
Прочностные и керамические свойства материалов, получаемых на основе заявляемых керамических смесей по заявляемому способу | ||||||||
№ смеси | Вид помола | S смесим2/г | Т-ра обжига °С | σизгиба, МПа | σсжатия, МПа | Плотность, кг/м3 | Водопоглощение, % | Морозостой-кость циклы |
1 | совместный | 1,5 | 1150 | 80 | 160 | 2470 | 0,3 | 250 |
1 | раздельный | 1150 | 43 | 105 | 2000 | 15,0 | 150 | |
2 | совместный | 1,35 | 1150 | 85 | 150 | 2450 | 0,4 | - |
3 | совместный | 1,5 | 1150 | 70 | 135 | 2300 | 0,7 | - |
4 | совместный | 1,4 | 1150 | 65 | 145 | 2350 | 1,0 | - |
5 | совместный | 1,6 | 1150 | 40 | 102 | 2010 | 12,5 | - |
6 | совместный | 1,42 | 1050 | 75 | 158 | 2400 | 0,8 | - |
7 | совместный | 1,55 | 1100 | 87 | 165 | 2430 | 0,25 | 270 |
Прото-тип | 950 | 22,8 | 1340 | 33,1 | 175 |
Выбранный интервал температур обжига обеспечивает участие жидкой фазы в процессах спекания, что придает конечному материалу высокие керамические и прочностные свойства.
При применении доменного шлака температура обжига не должна быть выше 1150°С, так как при более высоких температурах (1200°С и выше) наблюдается вспенивание и оплавление образцов. При температурах ниже 1050°С не происходит полного спекания и σизгиба не превышает 30 МПа.
При применении сталеплавильных шлаков температура обжига должна быть не выше 1100°С, при более высокой температуре происходит их оплавление.
Таблица 3 | |||||
Влияние температуры обжига на прочностные и керамические свойства получаемых материалов | |||||
№ | Т-ра обжига, °С | Прочность на изгиб, МПа | Водопоглощение, % | Пористость, % | Плотность, кг/м |
1-а | 1000 | 23,0 | 18,6 | 36,0 | 1900 |
1-б | 1050 | 31,0 | 13,0 | 25,6 | 1970 |
1-в | 1100 | 51,5 | 10,4 | 23,5 | 2250 |
1-г | 1150 | 80 | 0.3 | 0,75 | 2470 |
1-д | 1200 | Вспенивание и оплавление образца |
Важным технологическим параметром является скорость подъема температуры в интервале спекания, определяемом методом высокотемпературной дилатометрии. При скорости, меньшей 65°С/час, вести режим энергетически невыгодно, при скорости подъема выше 150°С/час неравномерно проходит усадка изделий. Это особенно важно для крупногабаритных изделий.
Таким образом, заявляемый состав и способ обладают следующими преимуществами:
- обеспечивают получение керамических материалов с повышенными прочностными характеристиками и морозостойкостью;
- используют дешевый недефицитный сырьевой компонент - природный песок (речной, морской, строительный, кварцевый) в количестве не менее 60%;
- в состав сырьевой смеси в качестве связующего зерен песка вводятся отходы производства - доменные и сталеплавильные шлаки;
- открывают возможность создания производства керамических изделий строительного назначения в регионах, бедных сырьевыми материалами, в частности регионах крайнего Севера России, и исключают дорогостоящие транспортные перевозки.
1. Сырьевая смесь для изготовления строительных керамических изделий, содержащая кремнезем- и алюмосодержащий компоненты, отличающаяся тем, что для обеспечения повышения прочности на сжатие до 130-160 МПа она включает в качестве кремнеземсодержащего компонента природный песок, в качестве алюмосодержащего компонента доменный и/или сталеплавильный шлак, причем содержание SiO2 в смеси составляет 70-85% при следующем соотношении компонентов, мас.%:
природный песок | 60-80 |
доменный шлак | 0-40 |
сталеплавильный шлак | 0-40 |
растворимое стекло | 0-5 |
2. Способ изготовления строительных керамических изделий из сырьевой смеси по п.1, включающий приготовление сырьевой смеси, формование изделий и обжиг, отличающийся тем, что предварительно проводят совместное измельчение сырьевой смеси до дисперсности 20-50 мкм, прессование осуществляют при давлении 35-150 МПа, обжиг проводят по следующему режиму: подъем температуры до 500°С со скоростью 150-200°С/ч, далее до 1050-1150°С со скоростью 65-150°С/ч, выдержка при 1150°С - 1-2 ч, охлаждение со скоростью 100-150°С/ч.