Способ получения жаростойкого бетона
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из жаростойких бетонов. Технический результат - повышение жаростойкости бетона. Способ получения жаростойкого бетона включает дозирование заполнителя и компонентов вяжущего, их перемешивание, формование изделий и их твердение с последующим комбинированным выдерживанием изделий, в качестве заполнителя используют отсев дробления диабаза с насыпной плотностью 1565-1580 кг/м3 и модулем крупности Мкр=4,0-4,9 при соотношении фракций,%: фр. 5 мм - 2,5-55, фр. 2,5 мм - 22,5-26, фр. 1,25 мм - 6,7-15, фр. 0,63 мм - 1,7-23, фр. 0,315 мм - 3,3-17, фр. 0,14 мм - 5-18, фр. менее 0,14 мм - 2-2,3, а в качестве вяжущего - золощелочное вяжущее, состоящее из золы-уноса I поля, полученной от сжигания бурого Канско-Ачинского угля на ТЭЦ-7 г. Братска Иркутской области, и жидкого стекла, изготовленного из многотоннажного отхода производства ферросилиция Братского ферросплавного завода микрокремнезема с насыпной плотностью 230-245 кг/м3 и содержащего высокодисперсные кристаллические частицы графита и β-модификации карбида кремния в количестве 10-13%, с силикатным модулем n=1 и плотностью р=1,38-1,42 г/см3 при следующем соотношении компонентов, мас.%: указанная зола-унос 17,8-38,9, указанное жидкое стекло 20,0-30,2, указанный отсев диабаза 35,0-60,0%, формуют изделия прессованием под нагрузкой 7-10 МПа, а твердение осуществляют в камере тепловлажностной обработки при температуре 80-85°С по режиму 1+3+3+3 часа с последующей комбинированной выдержкой распалубленных пропаренных изделий в течение 15 суток в воде, а затем в течение последующих 15 суток в воздушно-сухих условиях при температуре 15-25°С. 1 табл.
Реферат
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из жаростойких бетонов.
Известен способ получения жаростойкого бетона, заключающийся в приготовлении вяжущего, подготовке заполнителя, приготовлении бетонной смеси, формовании изделий и их тепловой обработки [Тотурбиев Б.Д. Строительные материалы на основе силикат-натриевых композиций. - М.: Стройиздат., 1988. - 208 с.: ил. - ISBN 5-274-00161-0, с.176-180].
Недостатками способа являются многокомпонентность бетонной смеси, необходимость предварительного измельчения каждого из трех компонентов вяжущего с последующим совместным их помолом, что требует использования энергоемкого оборудования: дробилок, мельниц и в конечном счете приводит к усложнению всего процесса и удорожанию готовой продукции.
Наиболее близким к изобретению, по технической сущности, является способ получения строительного материала, включающий дозирование кварцевого песка и компонентов вяжущего, их перемешивание и формование образцов, тепловлажностную обработку, причем в качестве вяжущего используют вяжущее, состоящее из золы-уноса, полученной от сжигания бурого Канско-Ачинского угля на ТЭЦ-7 г. Братска Иркутской области, и углеродсодержащего жидкого стекла, изготовленного из многотоннажного отхода производства кристаллического кремния Братского алюминиевого завода - микрокремнезема и содержащего до 6-7 мас.% высокодисперсных углеродистых примесей - графита С и карборунда SiC с силикатным модулем n=1 и плотностью ρ=1,45-1,49 г/см3 [Патент РФ №2130904, 1999 г.].
Недостатком описываемого способа являются относительно невысокие показатели жаростойкости строительного материала.
Задачей, решаемой предлагаемым изобретением является повышение качества бетона.
Технический результат - повышение жаростойкости бетона.
Указанный технический результат при осуществлении изобретения достигается тем, что способ получения жаростойкого бетона включает дозирование заполнителя и компонентов вяжущего, их перемешивание, формование изделий и их твердение с последующим комбинированным выдерживанием изделий, в качестве заполнителя используется отсев от дробления диабаза с насыпной плотностью ρ=1565-1580 кг/м3 и модулем крупности Мкр=4,9-4,0 при следующем соотношении фракций:
фр. 5 мм | 2,5-55% |
фр. 2,5 мм | 22,5-26% |
фр. 1,25 мм | 6,7-15% |
фр. 0,63 мм | 1,7-23% |
фр. 0,315 мм | 3,3-17% |
фр. 0,14 мм | 5-18% |
фр. менее 0,14 мм | 2-2,3% |
а в качестве вяжущего используется золощелочное вяжущее, состоящее из золы-уноса I поля, полученной от сжигания бурого Канско-Ачинского угля на ТЭЦ-7 г. Братска Иркутской области и жидкого стекла, изготавливаемого из многотоннажного отхода производства ферросилиция Братского ферросплавного завода - микрокремнезема с насыпной плотностью 230-245 кг/м3 и содержащего высокодисперсные кристаллические частицы графита и β-модификации карбида кремния в количестве 10-13%, с силикатным модулем n=1 и плотностью ρ=1,38-1,42 г/см3, при следующем соотношении компонентов, мас.%:
Указанная зола-унос | 17,8-38,9 |
Указанное жидкое стекло | 20,0-30,2 |
Указанный отсев диабаза | 35,0-60,0, |
формуются изделия прессованием под нагрузкой 7-10 МПа, а твердение осуществляется в камере тепловлажностной обработки при температуре 80-85°С по режиму 1+3+3+3 часа с последующей комбинированной выдержкой распалубленных пропаренных изделий в течение 15 суток в воде, а затем в течение последующих 15 суток - в воздушно-сухих условиях при температуре 15-25°С.
Пример. Образцы бетона готовились следующим образом. Зола-унос первого поля перемешивалась с отсевом от дробления диабаза с насыпной плотностью ρ=1572 кг/м3 и модулем крупности Мкр=4,3. После этого все затворялось жидким стеклом из микрокремнезема с силикатным модулем n=1 и плотностью ρ=1,42 г/см3. При этом для получения жидкого стекла использован микрокремнезем с насыпной плотностью р=240 кг/м3 и содержащий высокодисперсные кристаллические частицы графита и β-модификации карбида кремния в количестве 12%. Смесь золы, отсева от дробления диабаза и жидкого стекла перемешивалась в бетоносмесителе принудительного действия в течение 3-4 мин. Формование образцов производилось прессованием под нагрузкой 8 МПа. Твердели образцы в камере тепловлажностной обработки при температуре 80-85°С по режиму 1+3+3+3 часа. После этого образцы распалубливались и выдерживались сначала в течение 15 суток в воде, а затем в течение последующих 15 суток - в воздушно-сухих условиях при температуре 15-25°С. После этого часть образцов подвергалась испытанию на прочность, а остальные образцы подвергались испытаниям на жаростойкость. Испытания на жаростойкость осуществлялись следующим образом. Для этого образцы помещались в сушильный шкаф, где при температуре 105±5°С находились в течение 48 часов. Затем высушенные образцы помещались в камерную электрическую печь. Скорость подъема температуры составляла 150°С/ч, выдержка при температуре 1000°С составляла 4 часа. Остывание образцов осуществлялось вместе с печью до комнатной температуры. Жаростойкость оценивалась по остаточной прочности. Аналогично изготовлены и испытаны образцы еще двух составов. Предлагаемые составы и результаты испытаний представлены в таблице.
Таблица | ||||||
№ п/п | Свойства жидкого стекла | Состав смеси, мас.ч., % | Жаростойкостьбетона по остаточной прочности (Rocт), % | |||
Силикатный модуль | Плотность, г/см3 | Зола-унос | Жидкое стекло | Отсев диабаза | ||
1 | 1 | 1,38 | 23,1 | 30,0 | 46,9 | 125 |
2 | 1 | 1,40 | 27,3 | 22,1 | 50,6 | 105 |
3 | 1 | 1,42 | 35,2 | 27,0 | 37,8 | 98 |
Анализ полученных данных показывает, что по предлагаемому способу получены жаростойкие бетоны, так как остаточная прочность образцов, испытанных при температуре 1000°С, достаточно высока и составляет от 98 до 125%.
Жаростойкость предлагаемого бетона обусловлена достаточно высокой термической стойкостью и прочностью используемых материалов - золощелочного вяжущего и диабазового заполнителя. Кроме того, высокое содержание в жидком стекле их микрокремнезема высокодисперсных кристаллических частиц графита и β-модификации карбида кремния, обладающих высокой термической стойкостью, также способствуют увеличению жаростойкости предлагаемого бетона. Увеличение жаростойкости бетона после выдерживания пропаренных образцов в течение 15 суток в воде и последующих 15 суток - в воздушно-сухих условиях при температуре 15-25°С связано с продолжающимися процессами структурообразования золощелочного вяжущего - формированием цеолитоподобных минералов (известно, что этот процесс достаточно длительный). И, наконец, способ формования бетона также влияет на его жаростойкость. При прессовании образцов под нагрузкой 7-10 МПа удается получить более плотную и слитную структуру бетона, способную противостоять воздействию высоких температур.
Способ получения жаростойкого бетона, включающий дозирование заполнителя и компонентов вяжущего, их перемешивание, формование изделий и их твердение с последующим комбинированным выдерживанием изделий, отличающийся тем, что в качестве заполнителя используется отсев от дробления диабаза с насыпной плотностью 1565-1580 кг/м3 и модулем крупности Мкр=4,0-4,9 при следующем соотношении фракций:
фр. 5 мм | 2,5-55% |
фр. 2,5 мм | 22,5-26% |
фр. 1,25 мм | 6,7-15% |
фр. 0,63 мм | 1,7-23% |
фр. 0,315 мм | 3,3-17% |
фр. 0,14 мм | 5-18% |
фр. менее 0,14 мм | 2-2,3%, |
Указанная зола-унос | 17,8-38,9 |
Указанное жидкое стекло | 20,0-30,2 |
Указанный отсев диабаза | 35,0-60,0, |