Цеолитные катализаторы с контролируемым содержанием промотирующего элемента и улучшенный способ обработки углеводородных фракций
Изобретение относится к промотированным катализаторам на смешанной подложке цеолит/алюмосиликат с малым содержанием макропор и к способам гидрокрекинга/гидроконверсии и гидроочистки, в которых они применяются. Катализатор содержит по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB и группы VIII Периодической системы, промотирующий элемент в контролируемом количестве, выбранный из оксида фосфора, и подложку на основе цеолита Y, определяемого постоянной а элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, и на основе алюмосиликата, содержащего оксид кремния (SiO2) в количестве, превышающем 5% вес. и меньше или равном 95% вес. Катализатор содержит следующие характеристики: средний диаметр пор, общий объем пор, удельную поверхность по БЭТ, объем пор разных размеров, характеризуется рентгенограммой и плотностью набивки катализатора. Технический результат - катализатор позволяет получить выгодные селективности по средним дистиллятам, т.е. по фракциям с начальной температурой кипения по меньшей мере 150°С и конечной, доходящей до значения начальной температуры кипения остатка, например, ниже 340°С или также 370°С. 3 н. и 25 з.п. ф-лы, 4 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к промотированным катализаторам на подложках на основе алюмосиликатной матрицы и на основе цеолита Y, определяемого постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, и к способам гидрокрекинга, гидроконверсии и гидроочистки, в которых они используются.
Задачей способа является главным образом получение средних дистиллятов, то есть фракций с начальной температурой кипения по меньшей мере 150°C и конечной, доходящей до значений начальной температуры кипения остатка, например, ниже 340°C или также 370°C.
Предшествующий уровень техники
Гидрокрекинг тяжелых нефтяных фракций является очень важным способом очистки, который позволяет получить из чрезмерно тяжелых и малоценных фракций более легкие фракции, такие как бензин, реактивное топливо и легкие газойли, что заставляет владельцев нефтеперерабатывающих предприятий адаптировать свое производство к структуре запросов. Некоторые способы гидрокрекинга позволяют получить также сильно очищенные остатки, которые могут представлять собой отличную основу для масел. По сравнению с каталитическим крекингом выгода от каталитического гидрокрекинга состоит в получении средних дистиллятов, реактивного топлива и газойлей очень хорошего качества. Напротив, полученный бензин имеет гораздо более низкое октановое число, чем бензин, произведенный каталитическим крекингом.
Гидрокрекинг является способом, который привлекает гибкостью трех своих основных составляющих: применяемых рабочих условий, типов используемых катализаторов и того, что гидрокрекинг углеводородных фракций может быть реализован в одну или две стадии.
Катализаторами гидрокрекинга, использующимися в процессах гидрокрекинга, могут быть любые катализаторы бифункционального типа, объединяющие кислотную функцию с гидрирующей функцией. Кислотную функцию несут подложки, поверхность которых варьируется, как правило, от 150 до 800 м2/г и которые имеют поверхностную кислотность, такие как галогенированные оксиды алюминия (в частности, хлорированные или фторированные), комбинации оксидов бора и алюминия, аморфные алюмосиликаты и цеолиты. Гидрирующую функцию несут либо один или несколько металлов группы VIII Периодической системы элементов, либо сочетание по меньшей мере одного металла группы VIB Периодической системы с по меньшей мере одним металлом группы VIII.
Равновесие между этими двумя, кислотной и гидрирующей, функциями является одним из параметров, которые управляют активностью и селективностью катализатора. Слабая кислотная функция и сильная гидрирующая функция дают малоактивные катализаторы, работающие, как правило, при повышенной температуре (больше или равной 390-400°C) и с малой объемной скоростью питания (VVH, выраженная в объеме загрузки для обработки на единицу объема катализатора в час, обычно меньше или равна 2), но дают очень хорошую селективность по средним дистиллятам. Наоборот, сильная кислотная функция и слабая гидрирующая функция дают активные катализаторы, но имеющие менее хорошую селективность по средним дистиллятам (реактивное топливо и газойли).
Одним типом обычных катализаторов гидрокрекинга являются катализаторы на основе аморфных, умеренно кислых подложек, таких, например, как алюмосиликаты. Эти системы используются для получения средних дистиллятов хорошего качества и, возможно, базовых масел. Эти катализаторы применяются, например, в двухстадийных процессах.
Поведение этих катализаторов тесно связано с их физико-химическими характеристиками и, в частности, с их текстурными характеристиками. Так, вообще говоря, присутствие макропор в катализаторах, содержащих алюмосиликат (таких, какие описаны, например, в патенте US 5370788) является недостатком. Под макропорами понимаются поры, диаметр которых больше 500 Å. Выгодно также повышать плотность наполнения катализаторов, чтобы улучшить их каталитические характеристики. В этом отношении благоприятно использовать катализаторы с малым полным объемом пор. Таким путем при том же полном объеме пор получают лучшую каталитическую активность.
Также, поведение катализаторов тесно коррелирует с их структурой, аморфной или кристаллической. Что касается катализаторов, содержащих как часть цеолит или смесь цеолитов, они имеют более высокую каталитическую активность, чем катализаторы с аморфными алюмосиликатами, но имеют более высокую селективность по легким продуктам.
Хотя хорошие показатели могут быть получены улучшением текстурных характеристик, поведение этих катализаторов связано также с природой гидрирующей фазы. Таким образом, гидрирующая активность будет играть роль в реакциях гидродесульфурации (HDS), гидродеазотирования (HDN), гидродеароматизации (HDA) и влиять на стабильность катализатора.
Стремясь разрешить эти проблемы, заявитель обнаружил, причем неожиданным образом, что введение в матрицу с низким содержанием макропор определенных цеолитов, одних или вместе с компонентами с улучшенной гидрирующей функцией, позволяет получить катализаторы, проявляющие улучшенные каталитические характеристики в процессах гидрокрекинга. Заявитель неожиданно обнаружил также, что добавление контролируемого (регулируемого) содержания промотирующих элементов в катализаторы, имеющие такие текстурные характеристики, приводит к неожиданным каталитическим показателям в гидрокрекинге/гидроконверсии и в гидроочистке.
Более точно, изобретение относится к промотированному катализатору гидрокрекинга на подложке на основе цеолита Y, определяемого постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, и на основе алюмосиликатной матрицы с пониженным содержанием макропор, и к способам гидрокрекинга/гидроконверсии и гидроочистки, в которых он применяется.
Методы характеризации
В дальнейшем описании изобретения под удельной поверхностью понимается удельная поверхность по БЭТ, определяемая по адсорбции азота согласно стандарту ASTM D 3663-78, основанному на методе Брунауэра-Эммета-Теллера, описанном в журнале "The Journal of American Society", 60, 309, (1938).
В дальнейшем описании изобретения под объемом по ртути подложки и катализаторов понимается объем, измеренный методом ртутной порозиметрии путем вдавливания согласно стандарту ASTM D4284-83 при максимальном давлении 4000 бар, при использовании поверхностного натяжения 484 дин/см и угле контакта 140° для аморфных алюмосиликатных подложек. Средний диаметр по ртути определяют как такой диаметр, что все поры с размером меньше этого диаметра составляют 50% объема пор (VHg), в интервале, составляющем от 36' до 1000'. Одно из оснований, почему предпочтительно использовать подложку как основу для определения распределения пор, состоит в том, что угол контакта ртути меняется после пропитки металлами, причем в зависимости от природы и типа металлов. Угол смачивания принят равным 140°, следуя рекомендациям работы "Techniques de l'ingénieur, traité analyse et caractérisation (Инженерные методы, обработка анализа и характеризация)", P. 1050-5, авторы Jean Charpin и Bernard Rasneur.
Чтобы получить лучшую точность, значения объема по ртути в мл/г, приводимые далее в тексте, соответствуют значению полного объема ртути (полный объем пор, измеренный вдавливанием по ртутной порозиметрии) в мл/г, измеренного на образце, минус значение объема ртути в мл/г, измеренного на том же образце при давлении, соответствующем 30 фунт на квадратный дюйм (около 2 бар). Средний диаметр по ртути определяют также как такой диаметр, что все поры размером меньше этого диаметра составляют 50% от полного объема пор по ртути.
Наконец, чтобы лучше охарактериризовать распределение пор, определяют следующие критерии распределения пор по ртути: объем V1, соответствующем объему, содержащемуся в порах, диаметр которых меньше среднего диаметра минус 30 Å. Объем V2 соответствует объему, содержащемуся в порах диаметром, больше или равным среднему диаметру минус 30 Å и меньшим среднего диаметра плюс 30 Å. Объем V3 соответствует объему, содержащемуся в порах диаметром, больше или равным среднему диаметру плюс 30 Å. Объем V4 соответствует объему, содержащемуся в порах, диаметр которых меньше среднего диаметра минус 15 Å. Объем V5 соответствует объему, содержащемуся в порах диаметром больше или равным среднему диаметру минус 15 Å и меньше среднего диаметра плюс 15 Å. Объем V6 соответствует объему, содержащемуся в порах диаметром, больше или равным среднему диаметру плюс 15 Å.
Распределение пор, измеренное по адсорбции азота, определяется по модели Баррета-Джойнера-Халенда (BJH). Изотерма адсорбции-десорбции азота по модели BJH описана в журнале "The Journal of American Society", 73, 373, (1951) авторами E.P.Barrett, L.G.Joyner и P.P.Halenda. В дальнейшем описании изобретения под объемом адсорбции азота понимается объем, измеренный для P/P0=0,99 - давления, для которого предполагается, что азот заполнил все поры. Средний диаметр по десорбции азота определяется как такой диаметр, что все поры с диаметром меньше этого составляют 50% объема пор (Vp), измеренного на ветви десорбции изотермы азота.
Под адсорбционной поверхностью понимается поверхность, рассчитанная по адсорбционной ветви изотермы. Сошлемся, например, на статью A.Lecloux в "Mémoires Société Royale des Sciences de Liège, 6éme série, Tome I, fasc. 4, pp.169-209 (1971)".
Содержание натрия измерено по атомно-абсорбционной спектрометрии.
Рентгеновская дифракция является методом, который может использоваться для характеристики подложек и катализаторов по изобретению. В дальнейшем изложении рентгенографический анализ проводится с порошком на дифрактометре Philips PW 1830, работающим в отраженных лучах и оборудованным задним монохроматором, используя излучение CoKalpha (λKα1=1,7890 Å, λKα2=1,793 Å, отношение интенсивности Kα1/Kα2=0,5). Для рентгенограммы оксида гамма-алюминия отсылаем базе данных ICDD, карточка 10-0425. В частности, два наиболее интенсивных пика находятся в положении, соответствующем d, составляющему от 1,39 до 1,40 Å, и d, составляющему от 1,97 Å до 2,00 Å. Величиной d называется межплоскостное расстояние внутри решетки, которое рассчитывается из углового положения, используя соотношение, называемое Брэгговским (2d(hkl)·sin(θ)=n·λ). Под оксидом гамма-алюминия в дальнейшем тексте понимается, помимо прочего, например, оксид алюминия, входящий в группу, состоящую из оксидов алюминия гамма кубического, гамма псевдокубического, гамма тетрагонального, гамма плохо- или малокристаллического, гамма с большой поверхностью, гамма с малой поверхностью, гамма, полученный из бемитов, гамма, полученный из кристаллизованного бемита, гамма, полученный из мало- или плохо кристаллизованного бемита, гамма, полученный из смеси кристаллизованного бемита и аморфного геля, гамма, полученный из аморфного геля, гамма в эволюции к дельта. Что касается положения дифракционных пиков оксидов алюминия эта, дельта и тета, можно сослаться на статью B.C. Lippens, J.J. Steggerda в Physical and Chemical aspects of adsorbents and catalysts, E.G. Linsen (Ed.), Academic Press, London. 1970, p.171-211.
Для подложек и катализаторов по изобретению рентгенограмма выявила широкий пик, характерный для присутствия аморфного оксида кремния.
Кроме того, во всем следующем тексте соединение оксида алюминия может содержать аморфную фракцию, плохо обнаруживаемую методами РД. Таким образом, далее подразумевается, что соединения оксида алюминия, используемые или описываемые в тексте, могут содержать аморфную или плохо кристаллизованную фракцию.
Матрицы катализаторов согласно изобретению были проанализированы методом твердотельной 27Al ЯМР ВМУ на спектрометре фирмы Brüker типа MSL 400, с зондом 4 мм. Скорость вращения образцов составляла порядка 11 кГц. Потенциально, ЯМР алюминия позволяет различить три типа алюминия, химические сдвиги которых указаны ниже:
от 100 до 40 м.д.: алюминий типа тетра-координированного, обозначаемый AlIV,
от 40 до 20 м.д.: алюминий типа пента-координированного, обозначаемый AlV,
от 20 до -100 м.д.: алюминий типа гекса-координированного, обозначаемый AlVI.
Атом алюминия имеет квадрупольное ядро. В определенных условиях анализа (слабые радиочастотные поля: 30 кГц, малый угол импульса: π/2 и образец, насыщенный водой) метод ЯМР с вращением под магическим углом (ВМУ) является количественным методом. Разложение спектров ЯМР ВМУ позволяет напрямую связать с количеством различных компонентов. Спектр калибруется по отношению к химическому сдвигу 1М раствора нитрата алюминия. Сигнал алюминия принимается за ноль. Авторы изобретения решили суммировать сигналы между 100 и 20 м.д. для AlIV и AlV, что соответствует площади 1, и между 20 и -100 м.д. для AlVI, что соответствует площади 2. В дальнейшем описании изобретения под октаэдрической долей AlVI понимается следующее отношение площадь 2/(площадь 1+площадь 2).
Окружение кремния в алюмосиликатах исследуется с помощью 29Si-ЯМР. Таблицы химических сдвигов как функции степени конденсации были выведены в работе G.Engelhardt и D.Michel: "High resolution solid-state NMR of silicates and zeolites (Твердотельный ЯМР высокого разрешения силикатов и цеолитов)" (Wiley), 1987.
29Si-ЯМР показывает химические сдвиги разных состояний кремния, таких, как Q4 (от -105 м.д. до - 120 м.д.), Q3 (от -90 м.д. до -102 м.д.) и Q2 (от -75 м.д. до - 93 м.д.). Центры с химическим сдвигом -102 м.д. могут быть центрами типа Q3 или Q4, назовем их центрами Q3-4. Определения центров следующие:
центры Q4: Si соединен с 4Si (или Al),
центры Q3: Si соединен с 3 Si(или Al) и 1 OH,
центры Q2: Si соединен с 2 Si(или Al) и 2 OH.
Алюмосиликаты по изобретению являются соединениями кремния типа Q2, Q3, Q3-4 и Q4. Многие компоненты будут иметь тип Q2, приблизительно порядка 10-80%, предпочтительно от 20 до 60% и предпочтительнее от 20 до 40%. Доля видов Q3 и Q3-4 тоже велика, примерно порядка 5-50%, предпочтительно от 10 до 40% для обоих видов.
Окружение кремния было исследовано методом ЯМР КП/ВМУ 1H→29Si (300 МГц, скорость вращения: 4000 Гц). В этом случае должен откликаться только кремний, соединенный со связями OH. Таблица используемых химических сдвигов является таблицей Kodakari и др., Langmuir, 14, 4623-4629, 1998. Соотнесения следующие: -108 ppm (Q4), -99 ppm (Q3/Q4(1 Al)), -91 ppm (Q3/Q3(1 Al)), -84 ppm (Q2/Q3(2Al), -78 ppm (Q2/Q3(3 Al) и -73 ppm Q1/Q2 (3 Al).
Алюмосиликаты по изобретению представлены в виде суперпозции нескольких массивов. Основной пик этих массивов обычно расположен вблизи -110 ppm.
Одним из методов характеризации подложек и катализаторов по изобретению, который может применяться, является просвечивающая электронная микроскопия (ПЭМ). Для этого используют электронный микроскоп (типа Jeol 2010 или Philips Tecnai20F, возможно со сканированием), оборудованный энергодисперсионным спектрометром (ЭДС) для рентгенографического анализа (например, Tracor или Edax). ЭДС-детектор должен позволять обнаруживать легкие элементы. Сочетание этих двух средств, ПЭМ и ЭДС, позволяет комбинировать обработку изображений и локальный химический анализ с хорошим пространственным разрешением.
Для этого типа анализа образцы тонко измельчают сухим способом в ступке; затем порошок вводят в смолу, чтобы получить ультратонкие фракции толщиной примерно 70 нм. Эти фракции собирают на решетках из Cu, покрытых пленкой аморфного углерода с отверстиями, служащей подложкой. Затем они вводятся в микроскоп для наблюдения и анализа во вторичном вакууме. В таком случае при анализе изображений зоны образца легко отличимы от зон смолы. Затем проводят определенное число анализов, минимум 10, предпочтительно от 15 до 30, на разных зонах промышленного образца. Размер электронного пучка для анализа зон (определяющий примерно размер анализируемых зон) составляет в диаметре максимум 50 нм, предпочтительно 20 нм, еще более предпочтительно 10, 5, 2 или 1 нм в диаметре. В режиме сканирования анализируемая зона будет функцией размера зоны сканирования и не больше размера пучка, обычно уменьшенного.
Полуколичественная обработка рентгеновских спектров, полученных с помощью спектрометра ЭДС, позволяет определить относительную концентрацию Al и Si (в атомных %) и отношение Si/Al для каждой анализируемой зоны. В этом случае можно рассчитать среднее отношение Si/Alm и стандартное отклонение для этого набора измерений. В следующих неограничивающих примерах описания изобретения зондом, используемым для охарактеризования подложек и катализаторов по изобретению, если не указано другое, является зонд 50 нм.
Цеолиты, используемые для получения катализаторов гидрокрекинга, отличаются несколькими параметрами, такими как их мольное отношение SiO2/Al2O3 в матрице, постоянность кристаллической решетки, распределение пор, удельная поверхность, способность поглощать ионы натрия, а также способность адсорбировать пары воды.
Уровень пиков и доля кристаллической фракции являются важными параметрами для рассмотрения. Уровень пиков и доля кристаллической фракции определяются по рентгеновской дифракции относительно стандартного цеолита, используя процедуру, выводимую из метода ASTM D3906-97 "Определение относительных интенсивностей дифракции рентгеновских лучей для типа материалов, содержащих фожазит". Можно сослаться на этот метод в том, что касается общих условий применения этой процедуры и, в частности, приготовления образцов и стандартов.
Рентгенограмма состоит из характерных линий кристаллической фракции образца и фона, вызванного в основном диффузией аморфной или микрокристаллической фракции образца (слабый сигнал от диффузии связан с аппаратурой, воздухом, держателем образца и т.д.) Уровень пиков цеолита является отношением, в заданной угловой зоне (обычно для 2θ от 8 до 40°, когда используют излучение Kα меди, λ=0,154 нм), площади спектральных линий цеолита (пики) к полной площади рентгенограммы (пики+фон). Это отношение пики/(пики+фон) пропорционально количеству кристаллического цеолита в материале. Чтобы оценить кристаллическую долю образца цеолита Y, сравнивают уровень пиков образца этого цеолита со стандартом, считающимся кристаллическим на 100% (например, NaY). Уровень пиков цеолита NaY, идеально кристаллизованного, составляет порядка 0,55-0,60.
Плотность набивки (DRT) измеряют способом, описанным в работе "Applied Heterogenous Catalysis", авторы J.F. Le Page, J. Cosyns, P. Courty, E. Freund, J-P. Franck, Y. Jacquin, B. Juguin, C. Marcilly, G. Martino, J. Miquel, R. Montarnal, A. Sugier, H. Van Landeghem, Technip, Paris, 1987. Градуированный цилиндр приемлемых размеров наполняют катализатором путем последовательных добавок и между каждой добавкой катализатор уплотняют, встряхивая цилиндр до достижения постоянного объема. Это измерение обычно проводится со 1000 см3 катализатора, уплотненного в цилиндре, у которого отношение высоты к диаметру близко к 5:1. Это измерение может быть проведено предпочтительно в автоматизированном устройстве, таком как Autotap®, выпускаемом в продажу Quantachrome®.
Кислотность матрицы измеряют инфракрасной спектрометрией (ИК). ИК-спектры записываются интерферометром Nicolet, тип Nexus-670 с разрешение 4 см-1 с аподизацией типа Happ-Gensel. Образец (20 мг) прессуют в виде прочной пластины, затем помещают в ячейку для анализа in-situ (25-550°C, печь, закрытая от ИК-лучей, вторичный вакуум 10-6 мбар). Диаметр пластины составляет 16 мм.
Образец обрабатывают следующим образом, чтобы удалить физически сорбированную воду и частично дегидроксилировать поверхность катализатора, чтобы получить изображение, характерное для кислотности катализатора при работе:
повышение температуры от 25°С до 300°С на 3 часа,
плато при 300°С в течение 10 часов,
снижение температуры с 300°С до 25°С за 3 часа.
Затем основный зонд (пиридин) адсорбируется при насыщающем давлении при 25°С, затем термодесорбируется согласно следующим стадиям:
- 25°С в течение 2 часов во вторичном вакууме,
- 100°С 1 час во вторичном вакууме,
- 200°С 1 час во вторичном вакууме,
- 300°С 1 час во вторичном вакууме.
Спектр записывается при 25°С в конце предварительной обработки и на каждой стадии десорбции в переходном режиме при времени накопления 100 с. Спектры приводятся к изо-массе (что предполагает одинаковую толщину) (точно 20 мг). Число центров Льюиса пропорционально площади пика, максимум которого находится у 1450 см-1, причем включены все примыкания. Число центров Бренстеда пропорционально площади пика, максимум которого находится у 1545 см-1. Отношение числа центров Бренстеда к числу центров Льюиса, B/L, оценивается как отношение площадей двух описанных выше пиков. Обычно используют площадь пиков при 25°С. Это отношение B/L обычно рассчитывается из спектров, записанных при 25°С, в конце предварительной обработки.
Когда вводят промотирующий элемент Р, и/или В, и/или Si, его распределение и местоположение может быть определено такими средствами, как микрозонд Кастэнга (профиль распределения различных элементов), просвечивающая электронная микроскопия в сочетании с рентгенографическим анализом компонентов катализатора, или также картрированием распределения элементов, присутствующих в катализаторе, с помощью электронного микрозонда. Эти методы позволяют доказать присутствие этих экзогенных элементов, добавленных после синтеза алюмосиликата согласно изобретению.
Полный состав катализатора может быть определен рентгеновской флуоресценцией на катализаторе в распыленном состоянии или по атомной абсорбции после травления катализатора кислотой.
Измерение локального состава на микронном масштабе, в отличие от полного состава катализатора, может проводиться с помощью электронного микрозонда. Это измерение можно провести, определяя содержание металла в зонах размером несколько кубических микрон на длину диаметра частицы катализатора, которую называют единицами измерения. Это измерение позволяет оценить макроскопическое распределение элементов внутри частицы. В определенных случая его можно реализовать на масштабе нанометров методом STEM (Scanning Transmission Electron Microscopy (просвечивающая сканирующая электронная микроскопия)).
Анализы проводятся с электронным микрозондом CAMECA SX100 (снабженным 5 спектрометрами волновой дисперсии) (предпочтительная аппаратура) или, возможно, на JEOL 8800R (4 спектрометра). Параметры накопления следующие: напряжение ускорения 20 кВ, ток 80 или 200 нА и время считывания 10 с или 20 с в зависимости от уровня концентрации. Частицы покрывают смолой, затем шлифуют до их диаметра.
Следует отметить, что название диаметр относится не только к частицам в виде шарика или экструдата, но, в более общем смысле, к любой форме частиц; фактически диаметром называется характерный размер частицы, на которой проводится измерение.
Измерения проводятся на образце, представляющем собой слой или часть катализатора, который будет использоваться в каталитическом слое. Считается, что анализы должны быть сделаны по меньшей мере на 5 частицах с по меньшей мере 30 измерениями на частицу, равномерно распределенными по длине диаметра.
Обозначим CMo, CNi, CW и CP локальные концентрации (выраженные в %) соответственно молибдена, никеля, вольфрама и фосфора.
Можно также выражать концентрации в атомных %, причем относительные отклонения будут такими же.
Интересно приготовить катализаторы, имеющие однородные концентрации CMo, CNi, CW и CP по всей длине экструдата. Интересно также получить катализаторы, имеющие разные концентрации CMo, CNi, CW и CP в центре и на периферии. Эти катализаторы имеют профиль распределения, называемый "кюветой" или "куполом". Другим типом распределения является корочковое распределение, где элементы активной фазы распределены на поверхности.
Подробное описание изобретения
Более точно, изобретение относится к катализатору, содержащему:
- по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB и группы VIII Периодической системы,
- от 0,01 до 5,5% промотирующего элемента, выбранного из фосфора, бора и кремния, предпочтительно бора или фосфора и более предпочтительно фосфора,
- и подложку на основе цеолита Y, определяемого постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, и на основе алюмосиликата, содержащего оксид кремния (SiO2) в количестве выше 5% вес. и меньше или равном 95% вес.,
причем указанный катализатор имеет следующие характеристики:
- средний диаметр пор, измеренный ртутной порозиметрией, составляет от 20 до 140 Å,
- общий объем пор, измеренный ртутной порозиметрией, составляет от 0,1 мл/г до 0,5 мл/г, предпочтительно меньше 0,45 мл/г и более предпочтительно меньше 0,4 мл/г,
- общий объем пор, измеренный азотной порозиметрией, составляет от 0,1 мл/г до 0,5 мл/г, предпочтительно меньше 0,45 мл/г и более предпочтительно меньше 0,4 мл/г,
- удельная поверхность по БЭТ составляет от 100 до 600 м2/г, предпочтительно меньше 500 м2/г, очень предпочтительно меньше 350 м2/г и еще более предпочтительно меньше 250 м2/г,
- объем пор, измеренный ртутной порозиметрией, составляемый порами диаметром выше 140 Å, меньше 0,1 мл/г,
- объем пор, измеренный ртутной порозиметрией, составляемый порами диаметром выше 160 Å, меньше 0,1 мл/г,
- объем пор, измеренный ртутной порозиметрией, составляемый порами диаметром выше 200 Å, меньше 0,1 мл/г, предпочтительно меньше 0,075 мл/г и более предпочтительно меньше 0,05 мл/г,
- объем пор, измеренный ртутной порозиметрией, составляемый порами диаметром выше 500 Å, строго больше 0,01 мл/г и меньше 0,1 мл/г, предпочтительно больше 0,02 мл/г и меньше 0,07 мл/г и еще более предпочтительно больше 0,03 мл/г и меньше 0,07 мл/г,
- рентгенограмма, содержащая по меньшей мере основные характеристические линии по меньшей мере одного из переходных оксидов алюминия, входящий в группу, состоящую из оксидов алюминия альфа, ро, хи, эта, гамма, каппа, тета и дельта,
- плотность набивки катализатора выше 0,75 г/см3, предпочтительно выше 0,85 г/см3, очень предпочтительно выше 0,95 см3/г и еще более предпочтительно выше 1,05 г/см3.
В зависимости от введенной доли цеолита рентгенограмма катализатора обычно содержит также основные характеристические линии выбранного цеолита или цеолитов.
Изобретение относится также к способу гидрокрекинга и/или гидроконверсии и к способу гидроочистки углеводородных фракций с применением указанных катализаторов.
Характеристики подложки катализатора согласно изобретению
Подложка катализатора согласно изобретению является подложкой из цеолита Y, определяемого постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, на основе алюмосиликата (то есть содержащей оксид алюминия и оксид кремния) с массовой долей оксида кремния (SiO2) больше 5% вес. и меньше или равной 95% вес., предпочтительно составляющей от 10 до 80% вес., предпочтительно доля оксида кремния выше 20% вес. и ниже 80% вес., еще более предпочтительно выше 25% вес. и ниже 75% вес. Доля оксида кремния в подложке благоприятно составляет от 10 до 50% вес.
Матрица
Нецеолитная матрица на основе алюмосиликата, использующаяся в подложке катализатора согласно изобретению, предпочтительно является алюмосиликатом, однородным в микронном масштабе, в которой доля катионных примесей (например, Na+) ниже 0,1% вес., предпочтительно ниже 0,05% вес. и еще более предпочтительно ниже 0,025% вес., а доля анионных примесей (например, SO4 2-, Cl-) ниже 1% вес., предпочтительно ниже 0,5% вес. и еще более предпочтительно ниже 0,1% вес.
Таким образом, для получения подложек-объектов изобретения подходят все способы синтеза алюмосиликата, известные специалисту, которые приводят к алюмосиликату, однородному на микронном масштабе, в котором катионные примеси (например, Na+) могут быть доведены до уровня менее 0,1%, предпочтительно до уровня ниже 0,05% вес., еще более предпочтительно ниже 0,025% вес., и в котором анионные примеси (например, SO4 2-, Cl-) могут быть доведены до уровня ниже 1% и более предпочтительно до уровня ниже 0,05% вес.
Окружение кремния в алюмосиликатах исследуется с помощью 29Si-ЯМР. Алюмосиликаты по изобретению содержат соединения кремния типа Q2, Q3, Q3-4 и Q4. Многие центры будут иметь тип Q2, приблизительно порядка 10-80%, предпочтительно от 20 до 60% и предпочтительнее от 20 до 40%. Доля центров Q3 и Q3-4 тоже велика, примерно порядка 5-50%, предпочтительно от 10 до 40% для обоих видов.
Окружение кремния было исследовано методом ЯМР КП/ВМУ 1H→29Si (300 МГц, скорость вращения: 4000 Гц). В этом случае должен откликаться только кремний, соединенный со связями OH. Таблица используемых химических сдвигов является таблицей Kodakari и др., Langmuir, 14, 4623-4629, 1998. Соотнесения следующие: -108 м.д. (Q4), -99 м.д. (Q3/Q4(1Al)), -91 м.д. (Q3/Q3(1Al)), -84 м.д. (Q2/Q3(2Al), -78 м.д. (Q2/Q3(3Al) и -73 м.д. Q1/Q2 (3Al).
Алюмосиликаты по изобретению представлены в виде суперпозиции нескольких массивов. Основной пик этих массивов обычно расположен около -110 м.д.
Спектры твердотельной 27Al ЯМР МВУ у матрицы согласно изобретению показывают два разных массива пиков. Первый тип алюминия, максимум которого находится вблизи 10 м.д., дает сигнал в диапазоне от -100 до 20 м.д. Положение максимума предполагает, что эти центры относятся в основном к типу AlVI (октаэдрический). Второй неосновной тип алюминия, максимум которого находится вблизи 60 м.д., дает сигнал в диапазоне от 20 до 110 м.д. Этот массив может быть разложен по меньшей мере на два компонента. Преобладающий компонент этого массива соответствует атомам AlIV (тетраэдрическим). Для подложек и катализаторов по настоящему изобретению благоприятно, чтобы доля октаэдрического AlVI была выше 50%, предпочтительно выше 60%, и еще более предпочтительно выше 70%.
В одном варианте реализации изобретения катализатор включает матрицу, содержащую по меньшей мере две алюмосиликатные зоны, причем указанные зоны имеют отношения Si/Al меньше или больше полного отношения Si/Al, определяемого рентгеновской флуоресценцией. Так, например, матрица, имеющая отношение Si/Al, равное 0,5, содержит две алюмосиликатные зоны, причем одна из зон имеет отношение Si/Al, определенное по ПЭМ, меньше 0,5, а другая зона имеет отношение Si/Al, определенное по ПЭМ, составляющее от 0,5 до 2,5.
В другом варианте реализации изобретения катализатор включает матрицу, содержащую только одну алюмосиликатную зону, причем указанная зона имеет отношение Si/Al, равное полному отношению Si/Al, определяемому рентгеновской флуоресценцией, и ниже 2,3.
Цеолит
Цеолит Y согласно изобретению характеризуется постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, предпочтительно от 24,38·10-10 м до 24,24·10-10 м.
Полная весовая доля цеолита в катализаторе обычно составляет от 0,1% до 30%, благоприятно от 0,2% до 25%, предпочтительно от 0,3% до 20%, очень предпочтительно от 0,5% до 20%, еще более предпочтительно от 1% до 10%.
В зависимости от введенной доли цеолита рентгенограмма подложки или катализатора обычно содержит также основные характерные линии выбранного цеолита или цеолитов.
Цеолит Y согласно изобретению может также быть цеолитом Y, подвергнутым вторичной обработке, таким, например, как USY, VUSY, SDUSY.
Цеолит Y, использующийся в подложках катализатора согласно изобретению, по меньшей мере частично находится в водородной или кислотной (H+) форме или в аммонийной (NH4 +) или в катионной форме, причем указанный катион выбран из группы, образованной группами IA, IB, IIA, IIB, IIIA, IIIB (в том числе редкими землями), Sn, Pb и Si, предпочтительно он по меньшей мере частью находится в форме H+, или он может также использоваться по меньшей мере в части в катионной форме (такой, как определено выше).
Кислотность подложки (матрица + цеолит) согласно изобретению может быть благоприятным образом (без того, чтобы это ограничивало объем изобретения) измерена ИК-контролем термодесорбции пиридина. Обычно отношение B/L, такое как описано выше, для подложки согласно изобретению составляет более 0,07, предпочтительно более 0,125 и очень предпочтительно более 0,25.
Характеристики катализатора согласно изобретению
Таким образом, катализатор согласно изобретению содержит:
- подложку на основе цеолита Y, определяемого постоянной a элементарной ячейки кристаллической решетки, составляющей от 24,40·10-10 м до 24,15·10-10 м, и на основе алюмосиликата (то есть содержащую оксид алюминия и оксид кремния) с массовой долей оксида кремния (SiO2) выше 5% вес. и меньше или равной 95% вес., предпочтительно составляющей от 10 до 80% вес., предпочтительно доля оксида кремния выше 20% вес. и ниже 80% вес. и еще более предпочтительно выше 25% вес. и ниже 75% вес., причем доля оксида кремния благоприятно составляет от 10 до 50% вес.,
- катионные примеси в содержании предпочтительно менее 0,1% вес., предпочтительно менее 0,05% вес. и еще более предпочтительно менее 0,025% вес. Под долей катионных примесей понимается полная доля щелочей,
- анионные примеси предпочтительно в содержании ниже 1% вес., предпочтительно ниже 0,5% вес. и еще более предпочтительно ниже 0,1% вес.,
- по меньшей мере один гидрирующий-дегидрирующий элемент, выбранный из группы, образованной элементами группы VIB и группы VIII периодической системы,
- предпочтительно массовая доля металла(ов) группы VIB в форме металлов или в форме оксида составляет от 1 до 50% вес., предпочтительно от 1,5 до 35% и еще более предпочтительно от 1,5 до 30%,
- предпочтительно массовая доля металлов группы VIII в форме металлов или в форме оксида составляет от 0,1 до 30% вес., предпочтительно от 0,2 до 25% и еще более предпочтительно от 0,2 до 20%,
- по меньшей мере один промотирующий элемент, осажденный на катализатор (под промотирующим элементом понимается элемент, введенный после получения алюмосиликатной подложки, описанной ранее) и выбранный из группы, образованной фосфором, бором и кремнием, предпочтительно фосфор и/или бор, еще более предпочтительно фосфор. Массовые доли фосфора, бора, кремния, рассчитанные в их оксидной форме, составляют от 0,01 до 5,5%, предпочтительно от 0,5 до 2,5% и еще более предпочтительно от 4 до 5%,
- при необходимости, по меньшей мере один элемент группы VIIB (например и предпочтительно, магний), в весовой доле, составляющей от 0 до 20%, предпочтительно от 0 до 10% соединения в форме оксида или металла,
- при необходимости, по меньшей мере один элемент группы VB (например и предпочтительно, ниобий), весовая доля которого составляет от 0 до 40%, предпочтительно от 0 до 20% соединения в форме оксида или металла,
- средний диаметр пор, измеренный ртутной порозиметрией, составляет от 20 до 140 Å, предпочтительно от 40 до 120 Å, еще более предпочтительно от 50 до 100 Å,
- предпочтительно отношение объема V2, измеренного ртутной порозиметрией, соответствующего диаметрам от Dсредний-30 Å до Dсредний+30 Å, к общему объему пор, также измеренному ртутной порозиметрии, составляет более 0,6, предпочтительно более 0,7 и еще более предпочтительно выше 0,8,
- предпочтительно объем V3, составляемый порами диаметром выше Dсредний+30 Å, измеренный ртутной порозиметрией, меньше 0,1 мл/г, предпочтительно меньше 0,06 мл/г и еще более предпочтительно меньше 0,04 мл/г,
- предпочтительно отношение объема V5, соответствующего диаметрам от Dсредний-15 Å до Dсредний+15 Å, измеренный ртутной порозиметрией, к объему V2, соответствующего диаметрам от Dсредний-30 Å до Dсредний+30 Å, измеренному ртутной порозиметрией, выше 0,6, предпочтительно выше 0,7 и еще более предпочтительно выше 0,8,
- предпочтительно объем V6, составляемый порами диаметром выше Dсредний+15 Å, измеренный ртутной порозиметрией, меньше 0,2 мл/г, предпочтительно меньше 0,1 мл/г и еще более предпочтительно меньше 0,05 мл/г,
- общий объем пор, измеренный ртутной порозиметрией, составляет от 0,1 мл/г до 0,5 мл/г, предпочтительно меньше 0,45 мл/г и более предпочтительно меньше 0,4 мл/г,
- общий объем пор, измеренный азотной порозиметрией, составляет от 0,1 мл/г до 0,5 мл/г, предпочтительно меньше 0,45 мл/г и более предпочтительно меньше 0,4 мл/г,
- удельная поверхность по БЭТ составляет от 100 до 600 м2/г, предп