Способ и устройство для уменьшения запаздывания и служебных данных прохождения сигнала в прямом и обратном направлениях в системе связи

Иллюстрации

Показать все

Заявленное изобретение относится к системам связи. Технический результат состоит в уменьшении запаздывания и служебных данных прохождения сигнала в прямом и обратном направлениях в системе связи. Для этого во время работы кадры радиосвязи разделяют на множество подкадров. Данные передают в кадрах радиосвязи в множестве подкадров, имеющих длительность кадра, выбранную из двух или более возможных длительностей кадра. 6 з.п. ф-лы, 24 ил., 5 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение, в целом, относится к системам связи и, в частности, к способу и устройству уменьшения запаздывания и служебных данных прохождения сигнала в прямом и обратном направлениях в системе связи.

УРОВЕНЬ ТЕХНИКИ

Одним из ключевых требований для развития беспроводных широкополосных систем, таких как в Долгосрочном развитии (LTE) Проекта партнерства 3его поколения, является уменьшение запаздывания, для того чтобы улучшить впечатление пользователя. С ракурса канального уровня, ключевым фактором внесения вклада в запаздывание является задержка прохождения сигнала в прямом и обратном направлениях между передачей пакета и подтверждением приема пакета. Задержка прохождения сигнала в прямом и обратном направлениях типично определяется в качестве некоторого количества кадров, причем кадром является временная длительность, по которой выполняется планирование. Сама задержка прохождения сигнала в прямом и обратном направлениях определяет полную конструкцию автоматического запроса на повторную передачу (ARQ), в том числе параметры конструкции, такие как задержка между первой и последующей передачей пакетов, или количество каналов (экземпляров) гибридного ARQ. Поэтому уменьшение запаздывания с сосредоточением на определении оптимальной длительности кадра является ключевым в создании улучшенного впечатления пользователя в будущих системах связи. Такие системы включают в себя усовершенствованные развитой наземный радиодоступ (UTRA) и развитую сеть наземного радиодоступа (UTRAN) (также известные как EUTRA и EUTRAN) в пределах 3GPP и развития систем связи в рамках других организациях формирования технических спецификаций (таких как 'Фаза 2' в 3GPP2, и развития стандартов 802.11, 802.16, 802.20 и 802.22 IEEE (Института инженеров по электротехнике и радиоэлектронике)).

К сожалению, никакая взятая в отдельности длительность кадра не является наилучшей для разных типов трафика, требующих разных характеристик качества обслуживания (QoS) или предлагающих отличающиеся размеры пакета. Это особенно справедливо, когда принимаются во внимание служебные данные канала управления и пилот-сигнала в кадре. Например, если абсолютные служебные данные канала управления являются постоянными по пользователю для назначения ресурса, и одиночный пользователь назначается на кадр, длительность кадра в 0,5 мс была бы приблизительно в четыре раза менее эффективной, чем длительность кадра в 2 мс. В дополнение, разные длительности кадра могли бы предпочитаться разными производителями или операторами, делая затруднительной разработку отраслевого стандарта или совместимого оборудования. Поэтому есть потребность в усовершенствованном способе уменьшения как запаздывания, так и служебных данных прохождения сигнала в прямом и обратном направлениях в системе связи.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 - структурная схема системы связи.

Фиг.2 - блок-схема, используемая для выполнения передачи восходящей линии связи и нисходящей линии связи.

Фиг.3 - структурная схема кадра радиосвязи.

Фиг.4 показывает последовательность следующих друг за другом коротких кадров.

Фиг.5 показывает последовательность следующих друг за другом длинных кадров.

Фиг.6 показывает таблицу для 10 мс кадра радиосвязи и подкадров приблизительно в 0,5 мс, 0,55556 мс, 0,625 мс и 0,67 мс.

Фиг.7 показывает примеры для третьего столбца данных таблицы 1 с подкадрами в 0,5 мс и 6 подкадрами на длинный кадр (3 мс).

Фиг.8 показывает два примера кадров радиосвязи, основанных на сочетании длинных кадров в 2 мс и коротких кадров в 0,5 мс.

Фиг.9 показывает подкадр, составленный из j=10 символов OFDM, каждый с циклическим префиксом 901 в 5,56 мкс, который может использоваться для одноадресной передачи.

Фиг.10 показывает 'широковещательный' подкадр, составленный из j=9 символов, каждый с циклическим префиксом 1001 в 11,11 мкс, который может использоваться для широковещательной передачи.

Фиг.11 показывает таблицу, содержащую примеры трех типов подкадра.

Фиг.12 показывает длинный кадр, состоящий полностью из широковещательных подкадров или состоящий полностью из нормальных (одноадресных) подкадров.

Фиг.13 показывает короткий кадр, состоящий из нормальных подкадров, либо широковещательных подкадров, и одного или более коротких кадров широковещательного типа.

Фиг.14 показывает пример служебных данных кадра радиосвязи.

Фиг.15 показывает альтернативную структуру кадра радиосвязи произвольного размера, где область синхронизации и управления (S+C) является не частью кадра радиосвязи, а частью большей иерархической структуры кадров, состоящей из кадров радиосвязи, где область (S+C) отправляется с каждыми j кадрами радиосвязи.

Фиг.16 и фиг.17 иллюстрируют иерархическую структуру кадров, где суперкадр определен состоящим из n+1 кадров радиосвязи.

Фиг.18 показывает подкадры восходящей линии связи, имеющими такую же конфигурацию, как подкадры нисходящей линии связи.

Фиг.19 - фиг.21 показывают длинные кадры в 2 мс, состоящие из подкадров в 0,5 мс, которые имеют тип кадра длинного RACH, данных или составной.

Фиг.22 - фиг.24 показывают избирательные по частоте (FS) и разнесенные по частоте (FD) назначения ресурсов короткого кадра, соответственно, для нескольких пользователей.

ПОДРОБНОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Для того чтобы принять меры в ответ на вышеупомянутую потребность, в материалах настоящей заявки предложены способ и устройство уменьшения запаздывания прохождения сигнала в прямом и обратном направлениях. Во время работы кадры радиосвязи разделяют на множество подкадров. Данные передают в кадрах радиосвязи в пределах множества подкадров, имеющих длительность кадра, выбранную из двух или более возможных длительностей кадра.

Настоящее изобретение охватывает способ уменьшения запаздывания прохождения сигнала в прямом и обратном направлениях в системе связи. Способ содержит этапы приема данных, которые должны передаваться в кадре радиосвязи, причем кадр радиосвязи составлен из множества подкадров. Длительность кадра выбирают из двух или более возможных длительностей кадра, причем кадр по существу равен кратному количеству подкадров. Данные размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, и кадры передают содержащими многочисленные подкадры данных в кадре радиосвязи.

Настоящее изобретение дополнительно содержит способ, содержащий этапы приема данных, которые должны передаваться первому пользователю в кадре радиосвязи, причем кадр радиосвязи составлен из множества подкадров. Длительность кадра выбирают для первого пользователя из двух или более возможных длительностей кадра, причем кадр по существу равен кратному количеству подкадров. Данные для первого пользователя размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, а затем передают первому пользователю содержащими многочисленные подкадры данных в кадре радиосвязи. Принимают вторые данные, которые должны передаваться второму пользователю, в кадре радиосвязи. Вторую длительность кадра выбирают для второго пользователя из двух или более возможных длительностей кадра, причем второй кадр по существу равен кратному количеству подкадров. Вторые данные для второго пользователя размещают в пределах многочисленных подкадров для создания вторых многочисленных подкадров данных, и второй кадр передают второму пользователю содержащим вторые многочисленные подкадры данных в кадре радиосвязи.

Настоящее изобретение охватывает способ передачи данных в системе связи. Способ содержит этапы приема данных, которые должны передаваться в кадре радиосвязи, причем кадр радиосвязи составлен из множества подкадров. Длину кадра выбирают как содержащую многочисленные подкадры, а тип подкадра выбирают по одному из двух или более типов подкадров для кратного количества подкадров. Данные размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, и кадр передают содержащим многочисленные подкадры данных и тип подкадра в кадре радиосвязи.

Настоящее изобретение охватывает способ передачи данных в системе связи. Способ содержит этапы приема данных, которые должны передаваться в кадре радиосвязи, причем кадр радиосвязи составлен из множества подкадров. Кадр выбирают, при этом, кадр по существу равен кратному количеству подкадров. Данные размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, и общий пилот-сигнал размещают в каждом подкадре из многочисленных подкадров. Кадр, содержащий многочисленные подкадры данных, передают в кадре радиосвязи.

Настоящее изобретение охватывает способ передачи данных в системе связи. Способ содержит этапы определения полосы частот (полосы пропускания) системы из двух или более полос частот (полос пропускания) системы и приема данных, которые должны передаваться, в кадре радиосвязи и полосе пропускания системы. Кадр радиосвязи составлен из множества подкадров, а длительность кадра радиосвязи и длительность подкадра основана на ширине полосы пропускания системы. Кадр выбирают, причем кадр по существу равен кратному количеству подкадров. Данные размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, и кадр передают содержащим многочисленные подкадры данных и тип подкадра в кадре радиосвязи.

Способ передачи данных в системе беспроводной связи.

Способ содержит этапы определения полосы пропускания несущей и приема данных, которые должны передаваться в кадре радиосвязи, причем кадр радиосвязи составлен из множества подкадров. Кадр выбирают, причем кадр по существу равен кратному количеству подкадров, а каждый подкадр составлен из элементов ресурса, причем элемент ресурса содержит кратные количества поднесущих из условия, чтобы полоса пропускания несущей делилась на некоторое количество элементов ресурса. Данные размещают в пределах многочисленных подкадров для создания многочисленных подкадров данных, и кадр передают содержащим многочисленные подкадры данных и тип подкадра в кадре радиосвязи.

Далее, обращаясь к чертежам, на которых одинаковые номера обозначают идентичные компоненты, фиг.1 является структурной схемой системы 100 связи. Система 100 связи содержит множество сот 105 (показана только одна), каждая из которых содержит базовую приемопередающую станцию 104 (BTS, или базовую станцию) на связи с множеством удаленных, или мобильных, узлов 101-103. В предпочтительном варианте осуществления настоящего изобретения, система 100 связи использует мультиплексированную с ортогональным частотным разделением каналов (OFDM) или основанную на многих несущих архитектуру следующего поколения, такую как OFDM с или без циклического префикса или защитного интервала (например, традиционную OFDM с циклическим префиксом или защитным интервалом, OFDM с формированием импульсов и без циклического префикса или защитного интервала (OFDM/OQAM с фильтром прототипа IOTA (алгоритма изотропного ортогонального преобразования)), либо одиночную несущую с или без циклического префикса или защитного интервала (например, IFDMA, OFDM с ДПФ-кодированием с расширением спектра)), или иную. Передача данных может быть передачей нисходящей линии связи или передачей восходящей линии связи. Схема передачи может включать в себя адаптивные модуляцию и кодирование (AMC). Архитектура также может включать в себя использование технологий кодирования с расширением спектра, таких как CDMA (множественный доступ с кодовым разделением каналов) с множеством несущих (MC-CDMA), CDMA с множеством несущих и прямым расширением спектра (MC-DS-CDMA), мультиплексирование с ортогональным частотным и кодовым разделением каналов (OFCDM) с одно- или двухмерным кодированием с расширением спектра, или может быть основана на более простых технологиях мультиплексирования/множественного доступа с временным и/или частотным разделением каналов, или комбинации этих различных технологий. Однако, в альтернативных вариантах осуществления, система 100 связи может использовать другие протоколы широкополосных систем сотовой связи, такие как, но не в качестве ограничения, TDMA или CDMA с прямым расширением спектра.

В дополнение к OFDM, система 100 связи использует адаптивные модуляцию и кодирование (AMC). С AMC формат модуляции и кодирования передаваемого потока данных для конкретного приемника изменяется, чтобы преимущественно соответствовать текущему качеству принимаемого сигнала (на приемнике) для конкретного передаваемого кадра. Схема модуляции и кодирования может изменяться на покадровой основе, для того чтобы отслеживать изменения качества канала, которые происходят в системах мобильной связи. Таким образом, потокам с высоким качеством типично задаются коэффициенты модуляции более высокого порядка и/или более высокие скорости канального кодирования, причем, порядок модуляции и/или кодовая скорость снижаются по мере того, как снижается качество. Для таких приемников, испытывающих высокое качество, используются схемы модуляции, такие как 16-позиционная QAM (квадратурная амплитудная модуляция), 64-позиционная QAM или 256-позиционная QAM, в то время как для других, испытывающих низкое качество, используются схемы модуляции, такие как BPSK (двухпозиционная фазовая манипуляция) или QPSK (квадратурная фазовая манипуляция).

Многочисленнее скорости кодирования могут иметься в наличии для каждой схемы модуляции, чтобы обеспечивать более мелкую степень разбиения AMC для предоставления возможности более точного соответствия между качеством и характеристиками передаваемого сигнала (например, R=1/4, 1/2 и 3/4 для QPSK; R=1/2 и R=2/3 для 16-позиционной QAM, и т. п.) Отметим, что AMC может выполняться во временном измерении (например, с обновлением модуляции/кодирования каждые Nt периодов символов OFDM), или в частотном измерении (например, с обновлением модуляции/кодирования каждые Nsc поднесущих), или комбинации обоих.

Выбранные модуляция и кодирование предпочтительно могут соответствовать только качеству принимаемого сигнала по таким причинам, как задержка или погрешности измерения качества канала, либо задержка сообщения о качестве канала. Такое запаздывание типично вызвано задержкой прохождения сигнала в прямом и обратном направлениях между передачей пакета и подтверждением приема пакета.

Для того чтобы уменьшить запаздывание, кадр радиосвязи (RAF) и подкадр определены из условия, чтобы RAF делился на некоторое количество (целое количество, в предпочтительном варианте осуществления) подкадров. В пределах кадра радиосвязи, кадры построены из целого количества подкадров для передачи данных, с двумя или более длительностями кадра, имеющегося в распоряжении (например, первой длительностью кадра у одного подкадра и второй длительностью кадра у трех подкадров).

Например, может быть определена базовая структура кадра радиосвязи в 10 мс по UTRA с Nrf подкадрами на кадр радиосвязи (например, Nrf=20 подкадрами в Tsf=0,5 мс, где Tsf = длительность одного подкадра). Для передачи OFDM подкадры содержат целое количество P интервалов символов OFDM (например, P=10 для символов с Tsn=50 мкс, где Tsn = длительность одного символа OFDM), и один или более типов подкадра могут быть определены на основании защитного интервала или циклического префикса (например, нормальных или широковещательных).

Как будет понятно рядовому специалисту в данной области техники, кадр связан с планируемой передачей данных. Кадр может быть определен в качестве ресурса, который является 'планируемым', или планируемой единицы, по той причине, что он имеет связанную управляющую структуру, возможно, уникально связанную, которая управляет использованием ресурса (то есть назначением пользователям и т. п.). Например, когда пользователь должен быть запланирован на кадр, сообщение назначения ресурса, соответствующее кадру, будет предоставлять ресурсы (например, для системы OFDM, некоторое количество символов модуляции, каждый из одной поднесущей в одном символе OFDM) в кадре для передачи. Будут возвращаться подтверждения передач данных в кадре, а новые данные или повторная передача данных могут планироваться в будущем кадре. Так как не все ресурсы в кадре могут назначаться при назначении ресурса (таком как в системе OFDM), назначение ресурса может не охватывать полные имеющиеся в распоряжении ресурсы полосы пропускания и/или времени в кадре.

Разные длительности кадра могут использоваться для уменьшения запаздывания и служебных данных на основании типа обслуживаемого трафика. Например, если первая передача и повторная передача требуются для надежного приема пакета данных передачи голоса по протоколу сети Интернет (VoIP), а повторная передача может происходить только после задержки на один кадр, назначение ресурсов в пределах кадра в 0,5 мс вместо кадра в 2 мс снижает запаздывание для надежного приема с 6 мс (передачи, кадра паузной комбинации, повторной передачи) до 1,5 мс. В еще одном примере, обеспечение назначения ресурса, которое будет умещать пользовательский пакет без фрагментации, например кадра в 1 мс вместо кадра в 0,5 мс, может уменьшать служебные данные, такие как сигнализация управления и подтверждения для многочисленных фрагментов пакета.

Другие наименования, отражающие агрегирование ресурсов, таких как следующие друг за другом символы OFDM, могут использоваться взамен подкадра, кадра и кадра радиосвязи. Например, термин 'временной интервал' может использоваться вместо 'подкадра', или 'интервал времени передачи (TTI)' использоваться вместо 'кадра' или 'длительности кадра'. В дополнение, кадр может рассматриваться специфичным пользовательской передаче количеством (таким как TTI, связанный с пользователем и потоком данных), и, поэтому, кадру не требуется синхронизироваться или выстраиваться в ряд между пользователями или даже передачами от одного и того же пользователя (например, один подкадр мог бы содержать в себе части двух передач данных от пользователя, первую, передаваемую в одном кадре подкадра, и вторую, передаваемую в четырех кадрах подкадра. Конечно, может быть полезным ограничивать передачи с пользователем, либо передачи с многочисленными пользователями, для получения синхронизированных или выстроенных в ряд кадров, таких как когда время поделено на последовательность кадров в 0,5 мс или 2 мс, а все назначения ресурсов должны быть в пределах этих кадров. Как указано выше, кадр радиосвязи может представлять агрегацию подкадров или кадров разного размера или агрегацию ресурсов, таких как следующие друг за другом символы OFDM или DFT-SOFDM, превышающую количество таких символов в подкадре, где каждый символ является состоящим из некоторого количества поднесущих в зависимости от полосы пропускания несущей.

Структура кадра радиосвязи дополнительно может до некоторой степени использоваться для определения общих каналов управления для передач нисходящей линии связи (DL) (таких как широковещательные каналы, каналы поискового вызова, каналы синхронизации и/или каналы индикации), которые мультиплексируются с временным разделением в последовательность подкадров, которая может упрощать обработку или увеличивать время работы от батарей в пользовательском оборудовании (удаленном узле). Подобным образом, для передач восходящей линии связи (UL), структура кадра радиосвязи дополнительно может использоваться для определения состязательных каналов (например, канала с произвольным доступом (RACH)), каналов управления, включающих в себя пилот-сигнал, мультиплексированный с временным разделением с совместно используемым каналом данных.

Фиг.2 - структурная схема схемы 200 для базовой станции 104 или мобильной станции 101-103 для выполнения передачи восходящей линии связи и нисходящей линии связи. Как показано, схема 200 содержит логическую схему 201, схему 202 передачи и схему 203 приема. Логическая схема 200 предпочтительно содержит микропроцессорный контроллер, такой как, но не в качестве ограничения, микропроцессор PowerPC от фирмы Freescale. Схемы 202-203 передачи и приема являются обыкновенными схемами, известными в данной области техники, для связи с использованием широко известных сетевых протоколов, и служат в качестве средства для передачи и приема сообщений. Например, передатчик 202 и приемник 203 предпочтительно являются широко известными передатчиками и приемниками, которые используют сетевой протокол 3GPP. Другие возможные передатчики и приемники включают в себя, но не в качестве ограничения, приемопередатчики, использующие протоколы Bluetooth, IEЕЕ 802.16 или HyperLAN.

Во время работы, передатчик 203 и приемник 204 передают и принимают кадры данных и управляющей информации, как обсуждено выше. Более точно, передача данных происходит посредством приема данных, которые должны передаваться в кадре радиосвязи. Кадр радиосвязи (показанный на фиг.3) составлен из множества подкадров 300 (только один помечен), при этом, длительность подкадра 301 по существу является постоянной и является постоянной длительность кадра 300 радиосвязи. Только для примера, кадр радиосвязи содержит m=20 подкадров 300 длительностью в 0,5 мс, состоящих из j=10 символов. Во время передачи, логическая схема 201 выбирает длительность кадра из двух или более длительностей кадра, где длительность кадра, по существу, является длительностью подкадра, умноженной на некоторое количество. На основании длительности кадра, это количество подкадров группируется в кадр, и данные размещаются внутри подкадров. Передача происходит посредством передатчика 202, передающего кадр 300, содержащий это количество подкадров, в кадре радиосвязи.

Как отмечено ранее, передача данных может быть передачей нисходящей линии связи или передачей восходящей линии связи. Схемой передачи может быть OFDM с или без циклического префикса или защитного интервала (например, традиционная OFDM с циклическим префиксом или защитным интервалом, OFDM с формированием импульсов и без циклического префикса или защитного интервала (OFDM/OQAM с фильтром прототипа IOTA (алгоритма изотропного ортогонального преобразования)) или одиночная несущая с или без циклического префикса или защитного интервала (например, IFDMA, OFDM с ДПФ-кодированием с расширением спектра)), CDM или иная.

Длительности кадра

Есть две или более длительностей кадра. Если определены две длительности кадра, они могут быть обозначены коротким и длинным, где длительность короткого кадра суммирует меньшее количество подкадров, чем длительность длинного кадра. Фиг. 4 показывает последовательность следующих друг за другом коротких кадров 401 (мультиплексную передачу коротких кадров), а фиг. 5 показывает последовательность следующих друг за другом длинных кадров 501 (мультиплексную передачу длинных кадров). Время может быть поделено на последовательность подкадров, подкадры группируются в кадры двух или более длительностей, и длительность кадра может быть разной между следующими друг за другом кадрами. Подкадры кадра имеют тип подкадра, типично, с двумя или более типами подкадров. Каждый короткий и длинный кадр является планируемой единицей, состоящей из ns (n) подкадров. В примере по фиг.4 и фиг.5, подкадр имеет длительность 0,5 мс и 10 символов, ns=l для короткого кадра 401, тогда как n=6 (3 мс) для длинного кадра 501, хотя могут использоваться другие значения. Кадру радиосвязи не требуется определяться, или, если определен, кадр (например, короткий или длинный кадр) может охватывать более чем один кадр радиосвязи. В качестве примера, общий пилот-сигнал или общий опорный символ, либо общий опорный сигнал подвергаются мультиплексированию с временным разделением (TDM) в первый символ каждого подкадра, а управляющие символы подвергаются TDM в первые символы каждого кадра (также могут использоваться другие формы мультиплексирования, такие как FDM, CDM и комбинации). Символы пилот-сигнала и конфигурации управления назначением ресурсов будут обсуждены в последующих разделах - здесь намерение состоит в том, чтобы показать, что управляющие служебные данные для длинного кадра могут быть меньшими, чем для короткого кадра.

Кадр радиосвязи (кадр радиосвязи) может включать в себя короткие кадры 401, длинные кадры 501 или некоторые комбинации коротких и длинных кадров. Одиночный пользователь может иметь в распоряжении как короткие кадры, так и длинные кадры в кадре радиосвязи, или может быть ограничен длительностью одного кадра. Многочисленные пользовательские кадры могут быть синхронными или выстроенными в ряд или могут быть асинхронными или не выстроенными в ряд. Вообще, кадр (например, короткий или длинный кадр) могут охватывать более чем один кадр радиосвязи. Несколько разных конфигураций длинного кадра показаны в таблице 1 на фиг. 6, приведенной ниже, для кадра радиосвязи в 10 мс и подкадров приблизительно в 0,5 мс, 0,55556 мс, 0,625 мс и 0,67 мс. В этом примере, длительность короткого кадра составляет один подкадр, а длительность длинного кадра изменяется. Максимальное количество длинных кадров на кадр радиосвязи показано для каждой конфигурации, а также минимальное количество коротких кадров на кадр радиосвязи. Допускаются необязательные служебные данные (в подкадрах) кадра радиосвязи (например, для общих каналов управления, упомянутых ранее), как будет обсуждено в разделе Мультиплексирование служебных данных кадра радиосвязи. Однако кадр радиосвязи и другие служебные данные также могут мультиплексироваться в пределах кадров (подкадров данных). Для простоты и гибкости является предпочтительным, но не обязательным, чтобы служебные данные кадра радиосвязи были целым числом подкадров.

Фиг.7 показывает примеры для третьего столбца данных таблицы 1 с подкадрами в 0,5 мс и 6 подкадрами на длинный кадр (3 мс). В примере по фиг.7, кадр радиосвязи начинается с двух подкадров 701 синхронизации и управления (служебных данных кадра радиосвязи), сопровождаемых либо 18 короткими кадрами 702 (помечен только один) или 3 длинными кадрами 703 (помечен только один), где каждый длинный кадр является состоящим из 6 подкадров. Дополнительным (необязательным) параметром в этом примере является минимальное количество коротких кадров на кадр радиосвязи (последняя строка в таблице). Этот параметр определяет, должен ли кадр радиосвязи содержать в себе несколько коротких кадров. Установкой минимального количества коротких кадров на кадр радиосвязи в ноль кадру радиосвязи предоставляется возможность полностью заполняться длинными кадрами, а не короткими кадрами. Так как минимальным количеством коротких кадров на кадр радиосвязи является ноль, сочетание коротких и длинных кадров (вообще допустимое) может быть запрещено в кадре радиосвязи.

В качестве альтернативы, таблица 1 также показывает элемент таблицы с подкадрами в 0,5 мс и 4 подкадрами на длинный кадр (2 мс). Фиг.8 показывает два примера кадров радиосвязи на основании сочетания длинных кадров в 2 мс и коротких кадров в 0,5 мс. Возможные начальные местоположения для длинных кадров могут ограничиваться известными позициями в пределах кадра радиосвязи.

Причины для выбора конкретных длительностей кадра

В качестве примера, длительность кадра может выбираться, отчасти, на основании:

- Конкретных аппаратных средств, которые благоприятствуют длительности кадра, с учетом возможности пользовательского оборудования.

- Предпочтений оператора или производителя, которые могут учитывать (среди прочих факторов) предпочтение ввода в действие или имеющийся в распоряжении спектр и соседство с другими введенными в действие беспроводными системами.

- Полосы пропускания канала (такой как 1,25 МГц или 10 МГц),

- Состояния пользователя по одному или более пользователям, где состояние пользователя может быть скоростью (доплеровским смещением), состоянием радиоканала, местоположением пользователя в соте (например, границе соты), или другое состояние пользователя.

- Характеристик пользовательского трафика для одного или более пользователей, таких как требования запаздывания, размер пакета, частота появления ошибок, приемлемое количество повторных передач и т. п.

- Длительности кадра, которая может выбираться отчасти на основании минимизации служебных данных для одного или более пользователей. Служебными данными могут быть управляющие служебные данные, служебные данные фрагментации (например, CRC (контроль циклическим избыточным кодом)) или другие служебные данные.

- Количества пользователей, которые должны планироваться в кадре.

- Состояния радиосети, в том числе 'загрузки' системы и количества пользователей в каждой соте.

- Обратной совместимости с унаследованными системами.

- Частотного и модуляционного разбиения несущей и заданных типов трафика: Полная несущая может быть разделена на две или более полосы разных размеров с разными типами модуляции, используемыми в каждой полосе (например, полоса пропускания несущей разделена на полосу CDMA или одиночной несущей, либо OFDM с кодированием с расширением спектра, и полосу OFDM с множеством несущих), из условия чтобы разные размеры кадра были лучшими или (почти) оптимальными для заданного или планируемого типа трафика в каждой полосе (например, VoIP в полосе CDMA и просмотр веб-страниц в другой полосе OFDM).

В качестве примера, рассмотрим выбор длительности кадра для одиночного пользователя между коротким кадром (например, кадром длительности, меньшей чем максимальное количество подкадров) и длинным кадром (например, кадром длительности, большей чем минимальное количество подкадров). Короткий кадр может выбираться для наиболее низкого запаздывания, наименьших пакетов, среднего доплеровского смещения, большой полосы пропускания или других соображений. Длинный кадр может выбираться для меньших служебных данных, низкого запаздывания, больших пакетов, низкого или высокого доплеровского смещения, границы соты, небольшой полосы пропускания, многопользовательского планирования, избирательного по частоте планирования или других соображений. Вообще, однако, не требуется применяться никаким непреложным правилам, значит, любое запаздывание, размер пакета, полоса пропускания, доплеровское смещение, местоположение, способ планирования и т. п. могут использоваться при любой длительности кадра (короткой или длинной). Например, длительность подкадра может соответствовать минимальному кадру или TTI нисходящей линии связи. Сцепление многочисленных подкадров в более длинный кадр или TTI, например, может обеспечивать улучшенную поддержку для более низких скоростей передачи данных или оптимизации QoS.

Длительность кадра может выбираться в любой из некоторого количества степеней разбиения. Длительность или TTI кадра может быть полустатическим или динамическим атрибутом транспортного канала. По существу, длительность или TTI кадра могут определяться на покадровой (а потому, динамической) основе, или на полустатической основе. В случае динамической основы, сеть (узел B) могла бы сигнализировать длительность кадра явным образом (например, с помощью битов L1) или неявным образом (например, посредством указания модуляции, а также скорости кодирования и размера транспортного блока). В случае полустатических длительности или TTI кадра, длительность или TTI кадра может устанавливаться посредством более высокоуровневой (например, L3) сигнализации. Степени разбиения включают в себя, но не в качестве ограничения, покадровую основу, внутри кадра радиосвязи, между кадрами радиосвязи, каждое кратное количество кадров радиосвязи (10-й, 20-й, 100-й и т. п.), каждое количество мс или с (например, 115 мс, 1 с и т. п.), при эстафетной передаче обслуживания, регистрации системы, вводе в действие системы, по приему сообщения L3 и т. п. Степени разбиения могут выражаться статическими, полустатическими, полудинамическими, динамическими или другими выражениями. Длительность или TTI кадра также могут управляться по изменению в любой из вышеупомянутых характеристик 'выбора' или по любой другой причине.

Тип подкадра

В нисходящей линии связи и восходящей линии связи есть по меньшей мере один тип подкадра и, типично, для нисходящей линии связи (а иногда, для восходящей линии связи) обычно есть два или более типов подкадров (каждый с, по существу, одинаковой длительностью). Например, типами могут быть 'нормальный' и 'широковещательный' (для передачи нисходящей линии связи) или типы A, B и С и т. п. В этом случае, процедура передачи данных расширена, чтобы включать в себя:

- прием данных, которые должны передаваться в кадре радиосвязи, при этом, кадр радиосвязи составлен из множества подкадров, при этом, длительность подкадра по существу постоянна, и постоянна длительность кадра радиосвязи;

- выбор длительности кадра из двух или более длительностей кадра, при этом, длительность кадра, по существу, является длительностью подкадра, умноженной на некоторое количество;

- на основании длительности кадра, группирование в кадр этого количества подкадров;

- выбор типа подкадра, в котором выбираемый тип подкадра предписывает объем данных, которые могут умещаться в подкадре;

- размещение данных в подкадрах с этим типом подкадра;

- передачу кадра, содержащего это количество подкадров в кадре радиосвязи.

Как указано, все подкадры в кадре имеют одинаковый тип, хотя, вообще, типы подкадра могут смешиваться в кадре.

Тип подкадра может характеризоваться параметром передачи. Для передачи OFDM, это может включать в себя длительность защитного интервала, разнесение поднесущих, количество поднесущих или размер БПФ (FFT, быстрого преобразования Фурье). В предпочтительном варианте осуществления, тип подкадра может характеризоваться защитным интервалом (или циклическим префиксом) передачи. В примерах такая передача указывается ссылкой как передача OFDM, хотя, как известно в данной области техники, защитный интервал также может применяться к одиночной несущей (например, IFDMA) или кодированному с расширением спектра (например, CDMA) сигналу. Более длинный защитный интервал мог бы использоваться для ввода в действие с большими сотами, широковещательной или многоадресной передачей, чтобы ослаблять требования синхронизации, или для передач восходящей линии связи.

В качестве примера, рассмотрим систему OFDM с разнесением поднесущих в 22,5 кГц и длительностью (нерасширенного) символа в 44,44 мкс. Фиг.9 показывает подкадр 900, составленный из j=10 символов OFDM, каждый с циклическим префиксом 901 в 5,56 мкс, который может использоваться для одноадресной передачи. Фиг.10 показывает 'широковещательный' подкадр 1000, составленный из j=9 символов, каждый с циклическим префиксом 1001 в 11,11 мкс, который может использоваться для широковещательной передачи. На фигурах, использование символов в подкадре не показано (например, данные, пилот-сигнал, управление или другие функции). Как очевидно, циклический префикс 1001 для широковещательных подкадров является большим (по времени), чем циклический префикс 901 для одноадресных (не многоадресных и не широковещательных) подкадров. Кадры, таким образом, могут идентифицироваться, в качестве короткого или длинного, по длине своего циклического префикса. Конечно, подкадры с более длинным CP могут использоваться для одноадресной передачи, а подкадры с более коротким CP могут использоваться для широковещательной передачи, поэтому обозначения, такие как тип А или В подкадра, являются подходящими.

Примеры трех типов подкадра предусмотрены в таблице 2, показанной на фиг.11, приведенной ниже, для разнесения поднесущих в 22,5 кГц и подкадров приблизительно в 0,5, 0,5556, 0,625 и 0,6667 мс. Три длительности циклического префикса (для типов А, В и С подкадра) показаны для каждой длительности подкадра. Также могут быть определены другие разнесения поднесущих, такие как, но не в качестве ограничения 7-8 кГц, 12-13 кГц, 15 кГц, 17-18 кГц. К тому же, в подкадре все символы могут не иметь одинаковую длительность символа вследствие разных защитных длительностей (циклических префиксов) или разных разнесений поднесущих, либо размера ДПФ.

Используемая нумерология OFDM является только примерной, и возможны многие другие. Например, таблица 3, показанная на фиг.11, использует разнесение поднесущих в 25 кГц. Как показано в этом примере (напр