Перфторалкансульфонат калия и способ его получения

Иллюстрации

Показать все

Заявлен способ получения перфторалкансульфоната калия, включающий стадию электрохимического фторирования, в которой алкансульфонилгалогенидное соединение подвергают электрохимическому фторированию в безводном фтористом водороде, таким образом получая газ, содержащий перфторалкансульфонилфторид в качестве основного компонента; стадию абсорбции газа, в которой осуществляют взаимодействие полученного газа с водным раствором гидроксида калия, чтобы таким образом получить абсорбировавший газ раствор, содержащий перфторалкансульфонат калия; стадию очистки, в которой удаляют примеси, такие как фторид калия, гидроксид калия и сульфат калия, и стадию концентрирования и сбора, в которой водный раствор, из которого удалены примеси, концентрируют и сушат. Концентрация протонов в реакционном растворе предпочтительно поддерживается в диапазоне от 150 до 1500 ч./млн для подавления образования побочных продуктов. 2 н. и 13 з.п. ф-лы, 2 ил.

Реферат

ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к перфторалкансульфонату калия, представленному общей формулой: CnF2n+1SO3K, в которой n представляет собой целое число от 1 до 3, и к способу его получения, который подходит в качестве исходного вещества при получении перфторалкансульфоновой кислоты, представленной общей формулой CnF2n+1SO3H, в которой n представляет собой целое число от 1 до 3, которая применима, например, в качестве синтетического катализатора при изготовлении фармацевтических препаратов.

Данная заявка на изобретение заявляет приоритет заявки на патент

Японии № 2005-288008, поданной 30 сентября 2005 года, содержание которой включено в данное описание ссылкой.

УРОВЕНЬ ТЕХНИКИ

В качестве способа получения перфторалкансульфоновой кислоты, представленной общей формулой CnF2n+1SO3H, в которой n представляет собой целое число от 1 до 3, известен способ, описанный в патенте США № 2732398 (патентный документ 1). Вкратце, перфторалкансульфоновую кислоту получают способом, в котором алкансульфонилгалогенид, содержащий от 1 до 3 атомов углерода, используют в качестве исходного вещества и подвергают реакции электрохимического фторирования во фтористом водороде, таким образом замещая атомы водорода алкильной части молекулы алкиленсульфонилгалогенида фтором (электрохимическое фторирование), получая перфторалкансульфонилфторид, и затем осуществляют взаимодействие перфторалкансульфонилфторида с щелочным раствором, чтобы превратить перфторалкансульфонилфторид в его соль со щелочным металлом, и далее соль щелочного металла подвергают реакции кислотного расщепления, используя серную кислоту.

Однако в вышеуказанном способе необходимо собирать при низких температурах газообразный перфторалкансульфонилфторид, полученный в стадии электрохимического фторирования. Более того, необходимо осуществить взаимодействие полученного в результате перфторалкансульфонилфторида со щелочью при высоких температурах и при высоких давлениях. По указанным причинам данный способ имеет трудности, например, при непрерывном производстве и является проблематичным при промышленном осуществлении.

В качестве улучшенного способа получения описанного выше процесса, нерассмотренная заявка на патент Японии № S64-61452 (патентный документ 2) описывает способ, в котором газ, полученный в результате электрохимического фторирования, абсорбируют, в то же время превращая в соль калия, посредством увеличения контакта между полученным газом и водным раствором гидроксида калия для взаимодействия полученного газа с водным раствором при обычном давлении. Данный способ отличается тем, что перфторалкансульфонат калия кристаллизуют из абсорбировавшего газ раствора посредством концентрирования абсорбировавшего газ раствора или добавления щелочи к абсорбировавшему газ раствору и затем подвергают фильтрованию и фильтрат направляют на повторную переработку в стадию абсорбции газа.

Однако в данном способе кристаллизацию перфторалкансульфоната калия осуществляют при условиях, когда гидроксид калия и фторид калия, который получается в виде побочного продукта в реакции, присутствуют в своем растворенном состоянии в абсорбировавшем газ растворе. В результате кристаллы перфторалкансульфоната калия имеют тенденцию быть загрязненными гидроксидом калия и фторидом калия, которые трудно удалить промывкой водой после фильтрования, поскольку они заключены внутри кристаллов. Следовательно, не просто снизить содержание данных примесей до достаточной степени.

Например, в случае когда перфторалкансульфонат калия содержит фторид калия в высоких количествах, в качестве побочного продукта получают фтористый водород, когда перфторалкансульфоновую кислоту получают, подвергая перфторалкансульфонат калия реакции кислотного расщепления, и он приводит к коррозии материалов реактора, таких как облицовка стеклом, приводя к серьезным промышленным проблемам.

Кроме того, в случае когда перфторалкансульфонат калия содержит гидроксид калия в высоких количествах, в качестве побочного продукта получают воду, когда перфторалкансульфоновую кислоту получают, подвергая перфторалкансульфонат калия реакции кислотного расщепления посредством добавления к нему концентрированной серной кислоты или аналогичного, и это приводит к образованию из воды и перфторалкансульфоновой кислоты гидрата или гидратов, имеющих высокую температуру плавления, приводя к проблеме закупоривания трубопроводов в течение перегонки перфторалкансульфоновой кислоты при пониженном давлении.

Более того, технологические стадии становятся сложными, поскольку фильтрат после фильтрования перфторалкансульфоната калия в данном способе содержит значительные количества перфторалкансульфоната калия, который является целевым продуктом, и остающегося в нем непрореагировавшего гидроксида калия, и требуется направить его на рециркуляцию и повторное использование в стадию абсорбции газа.

Кроме вышеописанных способов существует альтернативный способ, патент Японии № 3294323 (патентный документ 3), который описывает способ, по которому в качестве исходного вещества используют метансульфонилгалогенид и его подвергают электрохимическому фторированию в безводном фтористом водороде с тем, чтобы получить трифторметансульфонилфторид, и затем трифторметансульфонилфторид промывают водой для удаления кислотных газов и осуществляют его взаимодействие с водным раствором или суспензией гидроксида лития для удаления фторида лития, образующегося в качестве побочного продукта, чтобы таким образом получить трифторметансульфонат лития. Трифторметансульфонат лития можно подвергнуть реакции кислотного расщепления с тем, чтобы получить перфторалкансульфоновую кислоту. Однако в данном способе в качестве щелочного абсорбирующего раствора используют водный раствор гидроксида лития, и в качестве побочного продукта образуется фторид лития, который плохо растворим в воде, в результате приводя к проблеме осаждения внутри аппаратуры и закупориванию трубопроводов.

Кроме того, в любом описанном выше способе до настоящего времени в стадии электрохимического фторирования было трудно избежать получения в качестве побочных продуктов фторалканов и сульфонилдифторида вследствие разложения в реакции электрохимического фторирования. Глобальное потепление недавно поставило проблемы, и фторалканы, получаемые реакцией разложения, которая является побочной реакцией в электрохимическом фторировании, являются классом тепличных газов, которые представляют собой ключевые компоненты глобального потепления и группой соединений, которые имеют наиболее высокие потенциалы среди известных в настоящее время тепличных газов, причем их потенциалы глобального потепления в несколько тысяч раз выше значения для диоксида углерода. Данные фторалканы не абсорбируются в кислотном или щелочном водном растворе, делая трудной их последующую обработку, и, следовательно, требуется снижение их доли. Предшествующие описанные выше технологии получения не принимают во внимание подавление образования фторалканов в качестве побочных продуктов.

Кроме того, сульфонилдифторид, получаемый в качестве побочного продукта в реакции разложения, образует сульфат калия при поглощении в водном растворе гидроксида калия, который имеет относительно низкую растворимость в воде и, таким образом, имеет тенденцию выпадать в осадок внутри аппарата в стадии абсорбции газа, приводя к проблеме закупоривания трубопроводов.

Более того, поскольку реакция разложения усиливается, содержание сульфата калия в получающемся в результате кристаллическом перфторалкансульфонате калия увеличивается. В случае когда такой перфторалкансульфонат калия используют в качестве исходного вещества для осуществления реакции кислотного расщепления для синтеза перфторалкансульфоновой кислоты, реакционный остаток после отгонки перфторалкансульфоновой кислоты при пониженном давлении затвердевает и делает обработку затруднительной.

Патентный документ 1 - Патент США № 2732398.

Патентный документ 2 - Нерассмотренная заявка на патент Японии, первая публикация №S64-61452.

Патентный документ 3 - Патент Японии № 3294323.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

ЗАДАЧИ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ

Настоящее изобретение решило вышеуказанные проблемы предшествующих способов и предлагает перфторалкансульфонат калия и способ его получения, который подходит в качестве исходного вещества для промышленного производства перфторалкансульфоновой кислоты.

Конкретно, настоящее изобретение предлагает перфторалкансульфонат калия, который используют в качестве исходного вещества при промышленном производстве перфторалкансульфоновой кислоты, и содержит пониженные количества примесей, таких как хлорид-ионы, фторид-ионы, сульфат-ионы и гидроксид калия, и способы получения такого перфторалкансульфоната калия, которые уменьшают образование парниковых газов, образующихся в результате реакции разложения в стадии электрохимического фторирования, не повышают вероятность закупоривания трубопроводов в стадии абсорбции газа и обеспечивают намного более простые технологические стадии.

Процентное содержание в следующем ниже описании представляет собой массовые проценты, если не указано иным образом.

СРЕДСТВА РЕШЕНИЯ ЗАДАЧ

Первый аспект способа получения перфторалкансульфоната калия по настоящему изобретению включает: электрохимическое фторирование в безводном фтористом водороде алкансульфонилгалогенидного соединения, представленного общей формулой: CnH2n+1SO2X, в которой n представляет собой целое число от 1 до 3 и X представляет собой Cl или F, чтобы таким образом получить газ, содержащий в качестве основного компонента перфторалкансульфонилфторид, представленный общей формулой: CnF2n+1SO2F, в которой n представляет собой целое число от 1 до 3 (стадия электрохимического фторирования); взаимодействие полученного газа с водным раствором гидроксида калия, чтобы таким образом получить абсорбировавший газ раствор, содержащий перфторалкансульфонат калия, представленный общей формулой: CnF2n+1SO3K, в которой n представляет собой целое число от 1 до 3 (стадия абсорбции газа); удаление фторида калия, гидроксида калия и сульфата калия, которые представляют собой примеси, содержащиеся в абсорбировавшем газ растворе (стадия очистки); и концентрирование и сушку водного раствора, из которого удалены примеси, чтобы таким образом получить перфторалкансульфонат калия, представленный общей формулой: CnF2n+1SO3K, в которой n представляет собой целое число от 1 до 3 (стадия концентрирования и сбора).

В описанном выше первом аспекте в качестве исходного вещества для электрохимического фторирования можно использовать алкансульфонилфторидное соединение, представленное общей формулой: CnH2n+1SO2F, в которой n представляет собой целое число от 1 до 3.

В стадии электрохимического фторирования скорость разложения продукта, перфторалкансульфонилфторида, можно контролировать до менее чем 3%, поддерживая концентрацию протонов в реакционном растворе для электрохимического фторирования в диапазоне от 150 до 1500 ч./млн.

В стадии электрохимического фторирования скорость разложения в реакции электрохимического фторирования можно контролировать до менее чем 3%, удерживая температуру реакции от 0°C до 18°C и плотность тока от 1 до 3 А/дм2 и поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн.

В стадии абсорбции газа может быть получен содержащий перфторалкансульфонат калия абсорбировавший газ раствор, который имеет концентрацию гидроксида калия менее чем 1%.

В стадии абсорбции газа абсорбировавший газ раствор, содержащий перфторалкансульфонат калия, можно получить контактом водного раствора гидроксида калия при отношении жидкости к газу, равном 10 или более относительно количества вводимого полученного газа.

В стадии абсорбции газа можно использовать водный раствор гидроксида калия, имеющий начальную концентрацию гидроксида калия 10% или более, и абсорбцию газа осуществляют, пока концентрация гидроксида калия не достигнет менее 1%.

В стадии очистки к абсорбировавшему газ раствору можно добавить гидроксид щелочного металла или гидроксид щелочноземельного металла, чтобы позволить ему взаимодействовать с фторидом калия, содержащимся в абсорбировавшем газ растворе, с тем, чтобы образовать осадок фторида и гидроксид калия, и далее можно добавить серную кислоту, чтобы осадить гидроксид калия из раствора в виде сульфата калия, данные осадки можно удалить фильтрованием и фильтрат можно подвергнуть концентрированию и сушке, получая перфторалкансульфонат калия.

В стадии очистки к абсорбировавшему газ раствору можно добавить гидроксид щелочного металла или гидроксид щелочноземельного металла, чтобы позволить ему взаимодействовать с фторидом калия, содержащимся в абсорбировавшем газ растворе, с тем, чтобы образовать осадок фторида и гидроксид калия, и далее можно добавить перфторалкансульфоновую кислоту, чтобы превратить гидроксид калия в растворе в перфторалкансульфонат калия, осадок можно удалить фильтрованием, и в стадии концентрирования и сбора фильтрат можно подвергнуть концентрированию и сушке, получая перфторалкансульфонат калия.

В стадии очистки к абсорбировавшему газ раствору можно добавить гидроксид щелочного металла или гидроксид щелочноземельного металла, чтобы позволить ему взаимодействовать с фторидом калия, содержащимся в абсорбировавшем газ растворе, с тем, чтобы образовать осадок фторида и гидроксид калия, и остаток реакционного раствора, образовавшийся при получении перфторалкансульфоновой кислоты реакцией кислотного расщепления, можно далее добавить для нейтрализации гидроксида калия в растворе, и затем осадок можно удалить фильтрованием, и в стадии концентрирования и сбора фильтрат можно подвергнуть концентрированию и сушке, получая перфторалкансульфонат калия.

В стадии очистки к абсорбировавшему газ раствору можно добавить сульфат алюминия, чтобы позволить ему взаимодействовать с фторидом калия и гидроксидом калия, содержащимися в абсорбировавшем газ растворе, с тем, чтобы образовать осадок фторида, сульфата калия или их двойной соли, осадок можно отфильтровать и в стадии концентрирования и сбора фильтрат можно подвергнуть концентрированию и сушке, получая перфторалкансульфонат калия.

Второй аспект способа получения перфторалкансульфоната калия по настоящему изобретению включает: электрохимическое фторирование в безводном фтористом водороде алкансульфонилгалогенидного соединения, представленного общей формулой: CnH2n+1SO2X, в которой n представляет собой целое число от 1 до 3 и X представляет собой Cl или F, чтобы таким образом получить газ, содержащий в качестве основного компонента перфторалкансульфонилфторид, представленный общей формулой: CnF2n+1SO2F, в которой n представляет собой целое число от 1 до 3, и использование полученного газа для получения перфторалкансульфоната калия, где в электрохимическом фторировании концентрацию протонов в реакционном растворе поддерживают в диапазоне от 150 до 1500 ч./млн, чтобы подавить образование побочных продуктов.

В описанном выше втором аспекте алкансульфонилфторидное соединение, представленное общей формулой: CnH2n+1SO2F, в которой n представляет собой целое число от 1 до 3, можно использовать в качестве исходного вещества для электрохимического фторирования.

В стадии электрохимического фторирования скорость разложения в реакции электрохимического фторирования можно контролировать до менее чем 3%, поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн.

В стадии электрохимического фторирования скорость разложения в реакции электрохимического фторирования можно контролировать до менее чем 3%, удерживая температуру реакции в диапазоне от 0°C до 18°C и плотность тока от 1 до 3 А/дм2 и поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн.

Первый аспект перфторалкансульфоната калия по настоящему изобретению представляет собой перфторалкансульфонат калия, полученный вышеуказанными способами получения и имеющий содержание хлорид-ионов менее чем 50 ч./млн.

Второй аспект перфторалкансульфоната калия по настоящему изобретению представляет собой перфторалкансульфонат калия, полученный вышеуказанными способами получения и имеющий содержание фторид-ионов менее чем 300 ч./млн.

Третий аспект перфторалкансульфоната калия по настоящему изобретению представляет собой перфторалкансульфонат калия, полученный вышеуказанными способами получения и имеющий содержание сульфат-ионов менее чем 3%.

Четвертый аспект перфторалкансульфоната калия по настоящему изобретению представляет собой перфторалкансульфонат калия, полученный вышеуказанными способами получения и имеющий содержание гидроксида калия менее чем 1%.

Пятый аспект перфторалкансульфоната калия по настоящему изобретению представляет собой перфторалкансульфонат калия, полученный вышеуказанными способами получения и имеющий чистоту 95% или более.

ЭФФЕКТЫ ИЗОБРЕТЕНИЯ

В способах получения по настоящему изобретению, поскольку газу, получающемуся в электрохимическом фторировании, дают возможность абсорбироваться в водном растворе гидроксида калия, пока концентрация гидроксида калия в абсорбирующем газ растворе не достигнет менее чем 1%, когда газ абсорбируется в водном растворе гидроксида калия, концентрация щелочи в абсорбирующем газ растворе значительно снижается. Соответственно, рециркуляция и повторная переработка абсорбирующего газ раствора не требуются, и технологические стадии упрощаются, делая способы получения по настоящему изобретению промышленно удобными.

В настоящем изобретении, поскольку электрохимическое фторирование проводят, в то же время контролируя скорость разложения до менее чем 3%, образование фторалканов и сульфонилдифторида является крайне низким, возможность загрязнения окружающей среды и глобального потепления снижается, и никакого закупоривания трубопроводов не происходит в стадии абсорбции газа.

Согласно способам получения по настоящему изобретению можно получить высокочистый перфторалкансульфонат калия, который имеет чистоту 95% или более и содержание хлорид-ионов менее 50 ч./млн, фторид-ионов менее чем 300 ч./млн и сульфат-ионов менее чем 3%.

В случае когда перфторалкансульфонат калия по настоящему изобретению применяют в качестве исходного вещества для получения перфторалкансульфоновой кислоты, поскольку содержание фторид-ионов достаточно снижено, фтористый водород образуется в качестве побочного продукта в меньших количествах, и никакой коррозии материалов аппаратуры, таких как облицовка стеклом, не происходит. Кроме того, из-за низкого содержания гидроксида калия не увеличивается возможность того, что перфторалкансульфоновая кислота образует гидрат или гидраты и произойдет закупоривание трубопровода. Помимо этого из-за низкого содержания сульфата калия реакционный раствор после отгонки продукта не затвердевает, позволяя с легкостью осуществить переработку.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 представляет собой технологическую схему стадий электрохимического фторирования и абсорбции газа.

Фиг.2 представляет собой технологическую схему стадий очистки и концентрирования и сбора.

КРАТКОЕ ОПИСАНИЕ НОМЕРОВ ПОЗИЦИЙ

10 Ячейка электрохимического фторирования
11 Холодильник
12 Колонна абсорбции HF
13 Колонна абсорбции газа
20 Резервуар с механическим перемешиванием
21 Фильтр
22 Концентратор/сушильное устройство
23 Холодильник
24 Емкость сбора воды

ЛУЧШИЙ РЕЖИМ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Организация настоящего изобретения теперь объясняется со ссылкой на чертежи.

Исходное вещество

В способах получения по вариантам осуществления настоящего изобретения алкансульфонилгалогенидные соединения, представленные общей формулой CnH2n+1SO2X, в которой n представляет собой целое число от 1 до 3 и X представляет собой Cl или F, можно использовать в качестве исходного вещества для электрохимического фторирования. В особенности при использовании алкансульфонилфторида содержание хлорид-ионов в конечном получаемом перфторалкансульфонате калия можно снизить до менее чем 50 ч./млн, что делает способы получения по настоящему изобретению более предпочтительными. С другой стороны, в случае когда в качестве исходного вещества для электрохимического фторирования используют алкансульфонилхлорид, содержание хлорид-ионов в конечном получаемом перфторалкансульфонате калия возрастает и ведет к тенденции примешивания хлорид-ионов к конечному желаемому продукту, и возможность снижения качества возрастает, когда такой перфторалкансульфонат калия подвергают кислотному расщеплению для получения перфторалкансульфоновой кислоты. Алкансульфонилфторид можно легко получить, подвергая алкансульфонилхлорид замещению на фтор, при использовании фторида калия или аналогичное, как показано в следующей ниже формуле:

CnH2n+1SO2Cl + KF → CnH2n+1SO2F + KCl

Стадия электрохимического фторирования

Рекомендуется использовать в качестве исходного вещества алкансульфонилгалогенид, предпочтительно алкансульфонилфторид, и загружать его в ячейку электрохимического фторирования с фтористым водородом для осуществления электрохимического фторирования при атмосфере газообразного азота при обычном давлении. В стадии электрохимического фторирования алкильную часть молекулы алкансульфонилгалогенида, представленного

общей формулой CnH2n+1SO2X, в которой n представляет собой целое число от 1 до 3 и X представляет собой Cl или F, замещают фтором, получая перфторалкансульфонилфторид, представленный общей формулой CnF2n+1SO2F, в которой n представляет собой целое число от 1 до 3, как показано в формуле, описанной ниже. В качестве побочной реакции разложение исходного вещества, промежуточных продуктов и

получаемого CnF2n+1SO2F вызывает образование фторалканов, таких как тетрафторметан (CF4), и сульфонилдифторида (SO2F2).

Основная реакция: CnH2n+1SO2F + (2n+1)HF → CnF2n+1SO2F↑ + (2n+1)H2

Побочная реакция: CnH2n+1SO2F + HF → CnHxF2n+2-xSO2F2 и аналогичная, в которой n представляет собой целое число от 1 до 3 и x представляет собой целое число от 0 до 2n+2.

Каждый перфторалкансульфонилфторид, полученный таким образом, имеет низкую температуру кипения, составляющую, например, -21°C (n=1), 0°C (n=2) и 40°C (n=3), и таким образом выбрасывается в виде газа из ячейки электрохимического фторирования наружу вместе с водородом, получающимся в качестве побочного продукта, продуктами разложения, такими как фторалканы и сульфонилдифторид, замещающим газом, представляющим собой азот, и растворителем электрохимического фторирования, представляющим собой фтористый водород.

В вышеуказанном электрохимическом фторировании предпочтительно проводить электрохимическое фторирование, в то же время поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн. Поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн, можно контролировать скорость разложения в реакции электрохимического фторирования до менее чем 3% и снизить образование побочных продуктов.

Концентрация протонов в реакционном растворе представляет собой величину, показывающую массовую концентрацию протонов (водородов), которыми обладает исходное вещество и промежуточные продукты (соединения, в которых остаются один или несколько водородов их алкильной части молекулы) в реакционном растворе, и ее можно определить, проведя анализ ядерным магнитным резонансом (1Н-ЯМР) реакционного раствора, применяя внешний стандарт.

Скорость разложения относится к сфере реакции или реакций разложения, которая(ые) является(ются) побочной реакцией при электрохимическом фторировании. Конкретно, скорость разложения выражается отношением образовавшегося количества побочного продукта, сульфонилдифторида (SO2F2), к сумме образовавшихся количеств основного продукта, перфторалкансульфонилфторида, и побочного продукта, сульфонилдифторида. Данные количества могут быть установлены, например, по площади пика каждого из данных компонентов на хроматограмме в газохроматографическом анализе полученного газа электрохимического фторирования.

Скорость разложения (%) = [образовавшееся количество SO2F2]/([образовавшееся количество CnF2n+1SO2F] + [образовавшееся количество SO2F2]) × 100

В приведенном уравнении каждое из данных количеств дается по площади пика в газохроматографическом анализе.

Авторы настоящей заявки обнаружили, что существует корреляция между концентрацией протонов и скоростью разложения и что можно контролировать скорость разложения до менее чем 3%, поддерживая концентрацию протонов в реакционном растворе в диапазоне от 150 до 1500 ч./млн в диапазоне температур реакции от 0°C до 18°C и плотность тока в диапазоне от 1 до 3 А/дм2.

Контролируя скорость разложения до менее чем 3%, можно снизить образование фторалканов и можно внести вклад в предотвращение глобального потепления. Кроме того, в то же время, поскольку образование сульфонилдифторида снижают, можно подавить образование сульфата калия в качестве побочного продукта, который получают в результате реакции сульфонилдифторида с гидроксидом калия в стадии абсорбции газа.

Стадия абсорбции газа

Полученный газ, выгружаемый из ячейки электрохимического фторирования в стадии электрохимического фторирования, проходит через холодильник при температуре от 0 до -40°C; таким образом, ожижают сопутствующий фтористый водород и его возвращают в ячейку электрохимического фторирования. Поскольку полученный газ, выгружаемый на выходе холодильника, содержит фтористый водород, который не был ожижен в холодильнике, полученный газ, предпочтительно, промывают посредством контакта газ-жидкость с орошением водой или низкоконцентрированным водным щелочным раствором, чтобы удалить фтористый водород, и затем направляют в колонну абсорбции газа, где полученный газ контактирует с щелочным раствором. В качестве щелочного раствора используют водный раствор гидроксида калия и осуществляют контакт газ-жидкость между описанным выше полученным газом и водным раствором гидроксида калия, так что перфторалкансульфонилфторид, содержащийся в полученном газе, абсорбируется в водном растворе гидроксида калия.

В стадии абсорбции газа, как показано в описанной ниже формуле, перфторалкансульфонилфторид, который является основным компонентом, содержащимся в полученном газе электрохимического фторирования, взаимодействует с гидроксидом калия и образует перфторалкансульфонат калия, который растворяется и абсорбируется в растворе. С другой стороны, фторалканы, которые являются побочными продуктами, содержащимися в полученном газе электрохимического фторирования, не абсорбируются в водном растворе гидроксида калия и, таким образом, сбрасываются наружу. Кроме того, сульфонилдифторид

(SO2F2), который является побочным продуктом, также содержащимся в полученном газе электрохимического фторирования, абсорбируется в водном растворе гидроксида калия и дает сульфат калия и фторид калия:

Основная реакция: CnF2n+1SO2F + 2KOH → CnF2n+1SO3K + KF + H2O

Побочная реакция: SO2F2 + 4KOH → K2SO4↓ + 2KF + 2H2O

В случае высоких скоростей разложения в стадии электрохимического фторирования в качестве побочного продукта образуются значительные количества сульфонилдифторида, и сульфонилдифторид взаимодействует с гидроксидом калия в абсорбировавшем газ растворе, и это приводит к образованию значительных количеств сульфата калия. Это ведет к расходованию больших количеств гидроксида калия, а также к увеличению содержания сульфата калия в кристаллах перфторалкансульфоната калия. Более того, сульфат калия имеет относительно низкую растворимость в воде (7,35 г/100 г (0°C) и 24,1 г/100 г (100°C)), а также обладает дополнительно сниженной растворимостью и имеет тенденцию осаждаться вследствие эффекта высаливания, когда перфторалкансульфонат калия также присутствует в растворе. Следовательно, данная проблема является причиной того, что при увеличении количества сульфата калия в абсорбировавшем газ растворе, осаждением сульфата калия вызывается закупоривание трубопроводов, через которые идет циркуляция раствора в стадии абсорбции газа.

В стадии абсорбции газа рекомендуется использовать водный раствор гидроксида калия, имеющий концентрацию 10% или более, и полученному газу дают возможность абсорбироваться данным раствором, пока концентрация гидроксида калия не достигнет величины менее 1%. В данном случае рекомендуется поддерживать температуру водного раствора гидроксида калия (абсорбирующий раствор) в диапазоне от 40 до 90°C, предпочтительно от 50 до 80°C, регулировать скорость потока циркуляции и сделать контакт газ-жидкость таким, чтобы отношение жидкости к газу количеств водного раствора гидроксида калия и вводимого полученного газа составляло 10 или более. Регулируя отношение жидкости к газу до 10 или более в описанном выше температурном диапазоне, можно продолжать абсорбцию газа, в то же время поддерживая скорость абсорбции газа от 95 до 100%, пока концентрация гидроксида калия не достигнет величины менее 1%.

В случае когда стадию абсорбции начинают при концентрации гидроксида калия 10% или более и продолжают, пока концентрация гидроксида калия не достигнет менее чем 1%, концентрация перфторалкансульфоната калия в абсорбировавшем газ растворе увеличивается, и содержание сульфата калия можно снизить эффектом его высаливания, что делает способы получения по настоящему изобретению выгодными. Даже в случае использования водного раствора гидроксида калия с такой высокой концентрацией можно предотвратить закупоривание трубопроводов из-за осаждения сульфата калия, если скорость разложения в реакции электрохимического фторирования контролируют до менее 3%. Однако когда концентрация гидроксида калия составляет 40% или более, вязкость водного раствора увеличивается, приводя к трудностям при обращении. Поэтому подходящим является, чтобы концентрация водного раствора гидроксида калия составляла от 10 до 40%.

Скорость абсорбции газа дается описанной ниже формулой, в которой количества перфторалкансульфонилфторида (CnF2n+1SO2F) и N2 даны по их площадям пиков на хроматограмме газохроматографического анализа газов с входа и выхода колонны абсорбции газа:

Скорость абсорбции газа (%) = [1 - (массовое соотношение CnF2n+1SO2F)×(массовое соотношение N2)]×100, в которой массовое соотношение CnF2n+1SO2F = количество CnF2n+1SO2F на выходе/количество CnF2n+1SO2F на входе и

массовое соотношение N2 = количество N2 на входе/количество N2 на выходе.

Стадия очистки

Стадия очистки представляет собой стадию, в которой удаляют фторид калия, который получается в качестве побочного продукта в основной реакции в указанной выше стадии абсорбции газа, сульфат калия и фторид калия, которые образуются в побочных реакциях, и гидроксида калия, который не израсходовался в стадии абсорбции газа. В качестве таких методов можно указать: (A) метод, по которому абсорбировавший газ раствор обрабатывают гидроксидом щелочного металла или гидроксидом щелочноземельного металла и затем нейтрализуют кислотой, и метод (B), по которому абсорбировавший газ раствор обрабатывают сульфатом алюминия.

(A) Метод, в котором используют гидроксид щелочного металла или гидроксид щелочноземельного металла, имеет первую стадию добавления любого из данных гидроксидов к описанному выше абсорбировавшему газ раствору с образованием умеренно нерастворимого фторидного осадка и гидроксида калия по реакции с фторидом калия, растворенным в абсорбировавшем газ растворе (1 стадия), и вторую стадию последовательного добавления серной кислоты либо после фильтрования осадка сразу, либо без фильтрования для взаимодействия с растворенным гидроксидом калия с получением осадка сульфата калия (2 стадия), и затем осадок(ки) отфильтровывают.

В качестве примера гидроксидов щелочного металла или гидроксидов щелочноземельного металла подходит гидроксид кальция. Гидроксид кальция добавляют к абсорбировавшему газ раствору, получая осадок фторида кальция (1 стадия), и далее добавляют серную кислоту, получая осадок сульфата калия (2 стадия), и затем данные осадки отфильтровывают. Фильтрование можно провести раздельно в каждой из 1 и 2 стадиях.

1 стадия: 2KF + Ca(OH)2 → CaF2↓ + 2KOH

2 стадия: 2KOH + H2SO4 → K2SO4↓ + 2H2O

В 1 стадии вместо гидроксида кальция можно использовать гидроксид лития. В данном случае образуется осадок фторида лития, как показано в описанной ниже формуле, и он имеет лучшую фильтруемость по сравнению с вышеописанным осадком фторида кальция, приводя к более легкому фильтрованию. С другой стороны, поскольку фторид кальция имеет более низкую растворимость в воде, чем фторид лития, фторид кальция имеет преимущество, состоящее в том, что количество фторид-ионов можно уменьшить до более низкого уровня.

1 стадия: KF + LiOH → LiF↓ + KOH

Гидроксид щелочного металла или гидроксид щелочноземельного металла добавляют при молярном отношении от 0,5 до 2,5, предпочтительно от 0,5 до 1,0, относительно фторида калия, растворенного в абсорбировавшем газ растворе, и смесь нагревают до температуры от 50 до 90°C и перемешивают от 1 до 4 часов, давая возможность осаждения фторида калия в растворе. В данном случае количество растворенных фторид-ионов в абсорбировавшем газ растворе, которые присутствуют в количестве более 10000 ч./млн, можно уменьшить в большей степени, так что содержание фторид-ионов в виде содержания фторид-иона в кристаллическом перфторалкансульфонате калия можно уменьшить до менее чем 300 ч./млн.

Рекомендуется, чтобы во 2 стадии серную кислоту, имеющую концентрацию от 50 до 100%, медленно добавляли к раствору, который был обработан в первой стадии, при нагревании от 20 до 90°C и перемешивании и добавление серной кислоты прекращали, когда значение рН становится нейтральным, и затем перемешивание продолжали в течение дополнительного времени от 1 до 4 часов.

Во 2 стадии вместо серной кислоты можно использовать перфторалкансульфоновую кислоту. В данном случае, как показано в описанной ниже формуле, гидроксид калия в растворе взаимодействует с перфторалкансульфоновой кислотой и образует перфторалкансульфонат калия. Поэтому содержание сульфата калия снижается до крайне низкой степени по сравнению с нейтрализацией серной кислотой, и концентрированием и сушкой можно получить высокочистый перфторалкансульфонат калия, имеющий содержание сульфат-ионов менее чем 1%.

2 стадия: KOH + CnF2n+1SO3H → CnF2n+1SO3K + H2O

Кроме того, в качестве кислоты, которую можно использовать для нейтрализации во 2 стадии, можно использовать реакционный остаток, который получили после добавления серной кислоты к перфторалкансульфонату калия для осуществления кислотного расщепления для получения перфторалкансульфоновой кислоты и удаления перфторалкансульфоновой кислоты перегонкой. Данный остаток содержит перфторалкансульфоновую кислоту, которая не была удалена перегонкой, и сульфат калия, который является побочным продуктом