Архитектура приемника с прямым преобразованием

Иллюстрации

Показать все

Изобретение относится к области радиотехники и может быть использовано в радиоприемных устройствах. Технический результат - обеспечение коррекции смещения постоянного тока. Приемник с прямым понижающим преобразованием содержит цепь постоянного тока для удаления смещения постоянного тока из составляющих сигнала, цифровой усилитель с регулируемым усилением (ЦУРУ) для обеспечения диапазона коэффициентов усиления, цепь автоматической регулировки усиления (АРУ) для обеспечения регулировки усиления для ЦУРУ и радиочастотных(РЧ)/аналоговых схем и блок интерфейса последовательной шины (ИПШ) для подачи управляющих сигналов на РЧ/аналоговые схемы через последовательную шину. Режим работы цепи АРУ можно выбирать на основании режима работы цепи постоянного тока, поскольку эти две цепи взаимодействуют друг с другом. Промежуток времени, в течение которого цепь постоянного тока работает в режиме обнаружения, можно выбрать обратно пропорциональным ширине полосы цепи постоянного тока в режиме обнаружения. Управляющие сигналы для всех РЧ/аналоговых схем можно подавать через последовательную шину. 18 н. и 12 з.п. ф-лы, 4 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится, в целом, к электронным схемам и, в частности, к архитектуре приемника с прямым понижающим преобразованием, используемого в системе беспроводной связи (например, множественного доступа с кодовым разделением каналов (МДКР)).

Уровень техники

В системе МДКР данные, подлежащие передаче, первоначально обрабатывают для генерации радиочастотного (РЧ) модулированного сигнала, который более пригоден для передачи по беспроводному каналу связи. Затем РЧ модулированный сигнал передают по каналу связи на один или несколько назначенных приемников, в качестве которых могут выступать терминалы системы МДКР. Передаваемый сигнал испытывает влияние различных явлений передачи, например замирания и многолучевого распространения. Эти явления приводят к тому, что терминалы принимают РЧ модулированный сигнал в широком диапазоне уровней мощности сигнала, который может составлять 100 дБ или более.

На данном терминале входной блок приемника принимает передаваемый сигнал, подвергает его предварительному преобразованию и осуществляет понижающее преобразование к частоте немодулированного сигнала. Традиционно, понижающее преобразование частоты от РЧ к частоте немодулированного сигнала осуществляется посредством гетеродинного приемника, который содержит несколько (например, два) каскада понижающего преобразования частоты. Первый каскад осуществляет понижающее преобразование принятого сигнала от РЧ до промежуточной частоты (ПЧ), при этом обычно производится фильтрация и усиление. Второй каскад осуществляет понижающее преобразование сигнала ПЧ частоты в немодулированный сигнал, который обычно подвергается дополнительной обработке для восстановления передаваемых данных.

Архитектура гетеродинного приемника обеспечивает несколько преимуществ. Во-первых, частоту РЧ можно выбирать так, чтобы облегчить фильтрацию нежелательных продуктов интермодуляции (ИМ), обусловленных нелинейностью РЧ и аналоговых схем, используемых для предварительного преобразования и понижающего преобразования принятого сигнала. Во-вторых, на РЧ и ПЧ можно предусмотреть несколько фильтров и различные каскады усилителя с регулируемым усилением (УРУ), чтобы обеспечить необходимые фильтрацию и усиление принятого сигнала. Например, можно обеспечить усилитель РЧ, обеспечивающий диапазон усиления 40 дБ, и усилитель ПЧ, обеспечивающий диапазон усиления 60 дБ, которые в совокупности будут покрывать динамический диапазон 100 дБ принимаемого сигнала.

Для некоторых областей применения, например сотовой телефонии, весьма желательно упростить конструкцию приемника для уменьшения размера и стоимости. Кроме того, применительно к мобильной связи, например сотовому телефону, весьма желательно снизить потребление мощности для увеличения времени работы батареи между подзарядками. В этих областях применения эти желательные преимущества может обеспечивать приемник с прямым преобразованием (который также называют гомодинным приемником или приемником нулевой ПЧ), поскольку в нем используется только один каскад непосредственного понижающего преобразования принятого сигнала от РЧ к частоте немодулированного сигнала.

При разработке приемника с прямым преобразованием возникают некоторые проблемы. Например, поскольку в приемнике с прямым понижающим преобразованием отсутствует сигнал ПЧ, диапазон усиления (например, 60 дБ), который в гетеродинном приемнике обычно обеспечивает усилитель ПЧ, в приемнике с прямым понижающим преобразованием необходимо обеспечить либо на РЧ, либо на частоте немодулированного сигнала. Во избежание предъявления дополнительных требований к РЧ схемам и для снижения стоимости и сложности схемы этот диапазон усиления ПЧ можно обеспечивать на частоте немодулированного сигнала. Однако если диапазон усиления немодулированного сигнала обеспечивается цифровыми средствами после аналого-цифрового преобразования, то немодулированный сигнал, подаваемый на аналого-цифровой преобразователь (АЦП), имеет меньшую амплитуду, поскольку усиление обеспечивается цифровыми средствами на выходе АЦП. При этом в приемнике с прямым понижающим преобразованием смещение постоянного тока на немодулированном сигнале становится более критическим фактором, поскольку амплитуда немодулированного сигнала меньше, и смещение постоянного тока может составлять значительно большую долю амплитуды сигнала.

Поэтому требуется архитектура приемника с прямым понижающим преобразованием, способная обеспечивать необходимый коэффициент усиления и коррекцию смещения постоянного тока.

Сущность изобретения

Аспекты изобретения предусматривают архитектуру приемника с прямым понижающим преобразованием, содержащую цепь постоянного тока для удаления смещения постоянного тока из компонентов сигнала до и после аналого-цифрового преобразования, цифровой усилитель с регулируемым усилением (ЦУРУ) для обеспечения диапазона усиления, цепь автоматической регулировки усиления (АРУ) для обеспечения регулировки усиления для РЧ/аналоговых схем и ЦУРУ и блок интерфейса последовательной шины (ИПШ) для подачи управляющих сигналов на РЧ/аналоговые схемы с использованием компактного последовательного интерфейса.

Согласно одному аспекту в приемнике с прямым понижающим преобразованием предусмотрено использование ЦУРУ. ЦУРУ может обеспечивать требуемый диапазон усиления, необходимый для охвата всего или части полного динамического диапазона принятого сигнала (т.е. части, не отработанной РЧ/аналоговой схемой). Ниже описана преимущественная реализация конструкции ЦУРУ и размещения ЦУРУ в архитектуре приемника с прямым понижающим преобразованием.

Согласно другому аспекту режим работы цепи АРУ выбирают, отчасти, на основании режима работы цепи постоянного тока. Поскольку эти две цепи работают (прямо или косвенно) на одних и тех же составляющих сигнала, они взаимодействуют друг с другом. Здесь предусмотрены способы, позволяющие цепи сигнализировать о событии, которое может повлиять на работу другой цепи, что позволяет другой цепи надлежащим образом обрабатывать событие, чтобы минимизировать ухудшение своей работы. Например, если цепь постоянного тока работает в режиме обнаружения, позволяющем быстро удалять большие смещения постоянного тока, могут возникать большие всплески постоянного тока, которые могут оказывать то или иное негативное влияние на цепь АРУ, то это событие фиксируется, и цепь АРУ может работать в режиме низкого усиления или вообще блокироваться, чтобы минимизировать воздействие всплесков постоянного тока на работу цепи АРУ.

Согласно еще одному аспекту промежуток времени, в течение которого цепь постоянного тока работает в режиме обнаружения, обратно пропорционален ширине полосы цепи постоянного тока в режиме обнаружения. Желательно, чтобы в режиме обнаружения ширина полосы цепи постоянного тока была больше, чтобы цепь постоянного тока могла быстрее реагировать на смещение постоянного тока в составляющих сигнала и устранять его. Однако при более широкой полосе цепи цепь постоянного тока генерирует больший шум цепи. Чтобы ограничить величину полного шума (который включает в себя всплески постоянного тока, подлежащие коррекции, и шум цепи) и в то же время обеспечить работу цепи постоянного тока в широкой полосе, промежуток времени, в течение которого цепь постоянного тока работает в режиме обнаружения, можно задавать обратно пропорциональным ширине полосы цепи. Поскольку более широкая полоса частот позволяет быстрее корректировать смещение постоянного тока, меньшее время, проведенное в режиме обнаружения, улучшает рабочие характеристики.

Согласно еще одному аспекту изобретения управляющие сигналы для некоторых или всех РЧ/аналоговых схем поступают по последовательной шине. Использование стандартной последовательной шины для управления РЧ/аналоговыми функциями, обеспечивает многочисленные преимущества, например, уменьшение количества ножек микросхемы, упрощение разводки печатной платы, снижение стоимости и т.п. Для более эффективной передачи управляющих сигналов можно разработать последовательную шину с различными особенностями. Например, можно поддерживать несколько каналов аппаратного запроса (например, по одному каналу на каждую схему для индивидуального управления каждой из них), можно назначать каждому каналу соответствующий приоритет и передавать сообщения по каждому каналу с использованием нескольких возможных режимов передачи данных.

Ниже более подробно описаны различные аспекты и варианты осуществления. Изобретение также предусматривает способы, процессоры цифровых сигналов, приемные блоки и другие устройства и элементы, которые реализуют различные аспекты, варианты осуществления и признаки изобретения, более подробно описанные ниже.

Краткое описание чертежей

Признаки, характер и преимущества настоящего изобретения станут более понятными из следующего подробного описания, приведенного совместно с прилагаемыми чертежами, снабженными сквозной системой обозначений, на которых:

фиг.1 - блок-схема варианта осуществления приемного блока, выполненного с возможностью реализации различных аспектов и вариантов осуществления изобретения;

фиг.2А - блок-схема варианта осуществления прямого понижающего преобразователя;

фиг.2В - блок-схема варианта осуществления подавителя смещения постоянного тока;

фиг.3 - блок-схема варианта осуществления цифрового усилителя с регулируемым усилением (ЦУРУ);

фиг.4А - блок-схема блока цепи АРУ;

фиг.4В - блок-схема блока управления АРУ;

фиг.4С - пример графика функции перехода коэффициента усиления для РЧ/аналоговых схем.

Подробное описание

На фиг.1 изображена блок-схема варианта осуществления приемного блока 100, выполненного с возможностью реализации различных аспектов и вариантов осуществления изобретения. Приемный блок 100 можно реализовать в терминале или базовой станции системы беспроводной связи (МДКР). Для ясности, различные аспекты и варианты осуществления изобретения описаны для реализации приемника в терминале. Кроме того, для ясности, здесь приведены конкретные расчетные значения, но в пределах объема изобретения можно использовать и другие расчетные значения.

Согласно фиг.1 один или несколько РЧ модулированных сигналов, передаваемых с одного или нескольких передатчиков (например, базовых станций, спутников глобальной системы позиционирования (ГСП), широковещательных станций и т.д.), принимаются в антенне 112 и поступают на усилитель (Усил.) 114. Усилитель 114 усиливает принятый сигнал с определенным коэффициентом усиления, выдавая усиленный РЧ сигнал. Усилитель 114 может содержать один или несколько каскадов малошумящего усилителя (МШУ), предназначенных для обеспечения определенного диапазона усиления и/или ослабления (например, 40 дБ от максимального усиления до максимального ослабления). Конкретный коэффициент усиления усилителя 114 можно определять с помощью сообщения регулировки усиления, поступающего от блока 150 интерфейса последовательной шины (ИПШ) по последовательной шине 152. Приемный фильтр 116 фильтрует усиленный РЧ сигнал для удаления шума и паразитных сигналов, и фильтрованный РЧ сигнал поступает на прямой понижающий преобразователь 120.

Прямой понижающий преобразователь 120 осуществляет прямое квадратурное понижающее преобразование фильтрованного РЧ сигнала от РЧ до частоты немодулированного сигнала. Для этого фильтрованный РЧ сигнал можно перемножать (или смешивать) с комплексным сигналом гетеродина (ГД), получая комплексный немодулированный сигнал. В частности, для получения синфазной составляющей (I) немодулированного сигнала фильтрованный РЧ сигнал можно смешивать с синфазным сигналом ГД, а для получения квадратурной (Q) составляющей немодулированного сигнала его можно смешивать с квадратурным сигналом ГД. Смеситель, используемый для осуществления прямого понижающего преобразования, можно реализовать посредством нескольких каскадов, которыми можно управлять для обеспечения разных коэффициентов усиления, что описано ниже. В этом случае конкретный коэффициент усиления, обеспечиваемый смесителем, можно также определять с помощью другого сообщения регулировки усиления, выдаваемого блоком 150 ИПШ по последовательной шине 152, как показано на фиг.1. Составляющие I и Q немодулированного сигнала поступают на один или несколько аналого-цифровых преобразователей (АЦП) 122.

АЦП 122 цифрует I и Q составляющие немодулированного сигнала, выдавая I и Q выборки соответственно. В качестве конкретной реализации АЦП 122 можно использовать различные конструкции АЦП, например, сигма-дельта-модуляторы, выполненные с возможностью фильтрации, а затем передискретизации (избыточной дискретизации) I и Q составляющих немодулированного сигнала на многократной (например, 16-кратной) чиповой скорости составляющих немодулированного сигнала (которая для IS-95 равна 1,2288 Мчип/с). Передискретизация позволяет АЦП обеспечивать более широкий динамический диапазон и также позволяет обеспечивать I и Q выборки с меньшим количеством битов для данной точности. В конкретном варианте осуществления АЦП 122 выдают 2-битовые I и Q выборки на 16-кратной чиповой скорости (т.е. чип×16). В рамках объема изобретения можно использовать и другие типы АЦП. I и Q выборки поступают с АЦП 122 на цифровой фильтр 124.

Цифровой фильтр 124 фильтрует I и Q выборки, обеспечивая фильтрованные I и Q выборки соответственно. Цифровой фильтр 124 может осуществлять разнообразные функции, например режекторную фильтрацию изображения, фильтрацию согласования импульсов немодулированного сигнала, прореживание, преобразование частоты дискретизации и т.д. Согласно конкретному варианту осуществления цифровой фильтр 124 выдает 18-битовые фильтрованные I и Q выборки на чип×8 на подавитель 130 смещения постоянного тока.

Подавитель 130 смещения постоянного тока устраняет смещение постоянного тока в фильтрованных I и Q выборках, выдавая I и Q выборки с коррекцией смещения постоянного тока соответственно. Согласно конкретному варианту осуществления подавитель 130 смещения постоянного тока реализует две цепи коррекции смещения постоянного тока, которые пытаются удалить смещения постоянного тока в двух разных местах на тракте принятого сигнала: одно - на немодулированном сигнале после понижающего преобразования, осуществляемого прямым понижающим преобразователем 120, а другое - после цифровой фильтрации, осуществляемой фильтром 124. Коррекция смещения постоянного тока более подробно описана ниже.

Цифровой усилитель 140 с регулируемым усилением (ЦУРУ) осуществляет цифровое усиление I и Q выборок с коррекцией смещения постоянного тока, выдавая I и Q данные для последующего преобразования на цифровой демодулятор 144. Согласно конкретному варианту осуществления ЦУРУ 140 выдает 4-битовые I и Q данные на чип×8.

Цифровой демодулятор 144 демодулирует I и Q данные, выдавая демодулированные данные, которые затем можно подавать на последующий декодер (не показанный на фиг.1). Демодулятор 144 можно реализовать как многоотводный приемник (рейк приемник), который может одновременно обрабатывать несколько вариантов принятого сигнала. Для МДКР можно сделать так, чтобы на каждом отводе многоотводного приемника осуществлялись следующие операции: (1) сдвиг фазы I и Q данных с помощью комплексного синусоидального сигнала для удаления частотного сдвига в I и Q данных, (2) сжатие по спектру сдвинутых по фазе I и Q данных с помощью комплексной псевдослучайной шумовой (ПШ) последовательности, используемой в передатчике, (3) снятие покрытия сжатых I и Q данных с помощью каналообразующего кода (например, кода Уолша), используемого в передатчике, и (4) демодуляция I и Q данных со снятым покрытием с помощью пилот-сигнала, восстановленного из принятого сигнала. Цифровой фильтр 124, подавитель 130 смещения постоянного тока, ЦУРУ 140 и цифровой демодулятор 144 можно реализовать в одной или нескольких интегральных схемах (ИС), например в едином процессоре цифровых сигналов.

Блок 142 цепи автоматической регулировки усиления (АРУ) получает I и Q данные от ЦУРУ 140 и сигнал режим_цепи_ПТ от подавителя 130 смещения постоянного тока и выдает коэффициенты усиления для различных элементов регулируемого усиления в приемном блоке 100. Согласно варианту осуществления коэффициенты усиления для усилителя 114 и прямого понижающего преобразователя 120 поступают на блок 150 ИПШ, который выдает соответствующие сообщения регулировки усиления на эти элементы по последовательной шине 152. Коэффициент усиления для ЦУРУ 140 поступает на ЦУРУ напрямую с учетом задержки от входа РЧ сигнала до входа ЦУРУ. Блок 142 цепи АРУ обеспечивает соответствующие коэффициенты усиления для усилителя 114, прямого понижающего преобразователя 120 и ЦУРУ 140, чтобы добиться требуемой амплитуды для I и Q данных. Цепь АРУ более подробно описана ниже.

Контроллер 160 управляет различными операциями приемного блока 100. Например, контроллер 160 может управлять работой подавителя смещения постоянного тока, цепи АРУ, ЦУРУ, ИПШ и т.д. Память 162 обеспечивает хранение данных и программных кодов для контроллера 160.

В типичной конструкции приемника предварительная обработка принятого сигнала осуществляется на одном или нескольких каскадах усилителя, фильтра, смесителя и т.д. Например, принятый сигнал можно усиливать на одном или нескольких каскадах МШУ. Кроме того, фильтрацию можно обеспечить до и/или после каскадов МШУ, и она также обычно осуществляется после преобразования с понижением частоты. Для простоты эти различные каскады предварительной обработки сигнала объединены в блоках, показанных на фиг.1. В рамках объема изобретения можно использовать и другие конструкции РЧ приемника. Усилитель 114, прямой понижающий преобразователь 120 и АЦП 122 образуют РЧ входной блок приемника с прямым понижающим преобразованием.

Разрешение I и Q выборок на различных блоках обработки сигнала на фиг.1 приведены в иллюстративных целях. В рамках объема изобретения можно использовать другое количество битов разрешения и другие частоты дискретизации для I и Q выборок.

Коррекция смещения постоянного тока

На фиг.2А изображена блок-схема прямого понижающего преобразователя 120а, который является конкретным вариантом осуществления прямого понижающего преобразователя 120, показанного на фиг.1. В прямом понижающем преобразователе 120а фильтрованный РЧ сигнал от приемного фильтра 116 поступает на смеситель 212, который также принимает (комплексный) сигнал ГД от гетеродина 218. Частоту сигнала ГД можно регулировать с помощью управляющего сигнала частоты (который можно подавать по последовательной шине 152 или некоторым другим сигнальным линиям), и ее устанавливают равной центральной частоте восстанавливаемого РЧ модулированного сигнала. Смеситель 212 осуществляет квадратурное понижающее преобразование фильтрованного РЧ сигнала с помощью комплексного сигнала ГД, выдавая синфазную и квадратурную составляющие, которые поступают на сумматор 214.

Преобразователь 220 принимает цифровой управляющий сигнал смещения постоянного тока, который может поступать от подавителя 130 смещения постоянного тока по последовательной шине 152 и который обозначен на фиг.2А как “управляющий сигнал ПТ ИПШ”. Преобразователь 220 осуществляет цифроаналоговое преобразование цифрового управляющего сигнала для генерирования значения регулировки смещения постоянного тока DC1I и DC1Q, для синфазной и квадратурной составляющих соответственно. Согласно варианту осуществления эти значения используются для регулировки тока смещения смесителя 212, что позволяет косвенно регулировать смещение постоянного тока в составляющих сигнала.

Аналоговая схема 222 принимает аналоговый управляющий сигнал смещения постоянного тока, который может поступать от подавителя 130 смещения постоянного тока по выделенной сигнальной линии и который обозначен на фиг.2А как “грубое смещение ПТ”. Аналоговая схема 222 осуществляет фильтрацию и, возможно, сдвиг и масштабирование уровня для генерирования значения регулировки смещения постоянного тока DC2I и DC2Q для синфазной и квадратурной составляющих соответственно. Сумматор 214 вычитает значения смещения постоянного тока DC2I и DC2Q из синфазной и квадратурной составляющих соответственно. Фильтр нижних частот/усилитель 216 фильтрует и усиливает составляющие выходного сигнала сумматора 214, выдавая I и Q составляющие немодулированного сигнала.

На фиг.2В изображена блок-схема подавителя 130а смещения постоянного тока, показанного на фиг.1. Подавитель 130а смещения постоянного тока содержит сумматоры 232а и 232b, блоки 234а и 234b управления цепью постоянного тока, контроллер 240 смещения постоянного тока ИПШ и контроллер 242 цепи постоянного тока. Согласно варианту осуществления коррекция смещения постоянного тока осуществляется раздельно для I и Q выборок. Таким образом, сумматоры 232а и 232b и каждый из блоков 234а и 234b управления цепью постоянного тока содержат два элемента: один для обработки I выборок, а другой для обработки Q выборок.

Фильтрованные I и Q выборки поступают с цифрового фильтра 124 на сумматор 232а, который удаляет фиксированные значения смещения постоянного тока DC3I и DC3Q из I и Q выборок соответственно. Сумматор 232а можно использовать для удаления смещения постоянного тока, которое является статическим (например, обусловленное рассогласованием цепей и т.п.). I и Q составляющие выходного сигнала сумматора 232а поступают на сумматор 232b, который дополнительно удаляет значения смещения постоянного тока DC4I и DC4Q (поступающие от блока 234b управления цепью постоянного тока) из этих I и Q выходных сигналов для обеспечения I и Q выборок с коррекцией смещения постоянного тока.

Блок 234а управления цепью постоянного тока принимает I и Q выходные сигналы сумматора 232а, определяет смещения постоянного тока в этих выходных сигналах и выдает сигнал грубой регулировки постоянного тока на аналоговую схему 222 в прямом понижающем преобразователе 120а. Блок 234b управления цепью постоянного тока аналогично принимает I и Q выходные сигналы сумматора 232b, определяет смещения постоянного тока в этих выходных сигналах и выдает значения смещения постоянного тока DC4I и DC4Q на сумматор 234b. Каждый блок 234 управления цепью постоянного тока реализуется в виде усилительного элемента 236, подключенного к накопителю 238. Усилительный элемент 236 умножает входную I или Q выборку на конкретный коэффициент усиления (1 коэффициент усиления ПТ для блока 234а и 2 коэффициент усиления ПТ для блока 234b), выбранный для этой цепи. Накопитель 238 накапливает масштабированную I или Q выборку, выдавая управляющий сигнал смещения постоянного тока для этой цепи.

Сумматор 214 в прямом понижающем преобразователе 120а и блок 234а управления цепью постоянного тока реализуют цепь грубой регулировки постоянного тока, которая удаляет смещение постоянного тока в составляющих немодулированного сигнала после прямого понижающего преобразования на смесителе 212. Сумматор 232b и блок 234b управления цепью постоянного тока реализуют цепь точной регулировки постоянного тока, которая удаляет смещение постоянного тока, которое осталось на выходе цепи грубой регулировки постоянного тока. Как следует из их названий, цепь точной регулировки постоянного тока имеет более высокое разрешение, чем цепь грубой регулировки постоянного тока.

Контроллер 240 смещения ПТ ИПШ периодически определяет регулировку смещения постоянного тока ИПШ на основании различных факторов, например температуры, коэффициентов усиления усилителя 114 и смесителя 212, времени, дрейфа и т.д. Управляющий сигнал смещения ПТ ИПШ поступает по последовательной шине 152 на преобразователь 220, который генерирует соответствующие значения регулировки смещения постоянного тока DC1I и DC1Q для смесителя 212.

Реализация коррекции смещения постоянного тока для приемника с прямым понижающим преобразованием, например, показанного на фиг.1, описана более подробно в заявке на патент США, озаглавленной “Подавление смещения постоянного тока для модемов мобильных станций, использующих прямое понижающее преобразование”, которая включена в настоящее описание посредством ссылки.

Четыре набора значений смещения постоянного тока (DC1I и DC1Q, DC2I и DC2Q, DC3I и DC3Q, DC4I и DC4Q) представляют четыре разных механизма, которые можно использовать по отдельности или совместно для обеспечения требуемой коррекции смещения постоянного тока в приемнике с прямым понижающим преобразованием. Цепь грубой регулировки постоянного тока (которая выдает значения DC2I и DC2Q) и цепь точной регулировки постоянного тока (которая выдает значения DC4I и DC4Q) можно использовать для динамического удаления смещения постоянного тока в I и Q составляющих сигнала. Сумматор 232а (который вычитает значения DC3I и DC3Q) можно использовать для удаления статического смещения постоянного тока. Наконец, контроллер 240 смещения ПТ ИПШ (который выдает значения DC1I и DC1Q) можно использовать для удаления динамического и/или статического смещения постоянного тока в составляющих сигнала.

Согласно варианту осуществления цепи грубой и точной регулировки постоянного тока поддерживают два рабочих режима: режим обнаружения и режим слежения. Режим обнаружения используется для более быстрого удаления большого смещения постоянного тока в составляющих сигнала, обусловленного (1) ступенчатым изменением коэффициентов усиления РЧ/аналоговых схем, например, усилителя 114 и/или смесителя 212, или (2) цепью постоянного тока в целом, осуществляющей периодическое обновление постоянного тока, из-за чего в смеситель 212 и/или сумматор 232а могут поступать новые значения DC1 или DC3, или (3) любыми другими причинами, соответственно. Режим слежения используется для осуществления нормальной коррекции смещения постоянного тока и обеспечивает более медленную реакцию, чем режим обнаружения. В рамках объема изобретения можно поддерживать и другие или дополнительные режимы работы. Режимы обнаружения и слежения могут соответствовать двум различным значениям коэффициента усиления цепи постоянного тока для 1 коэффициента усиления ПТ и двум разным значениям коэффициента усиления цепи постоянного тока для 2 коэффициента усиления ПТ.

Для простоты цепи грубой и точной регулировки постоянного тока совместно называют просто “цепь постоянного тока”. Управляющий сигнал режим_цепи_ПТ указывает текущий режим работы цепи постоянного тока. Например, управляющий сигнал режим_цепи_ПТ можно задать равным логическому высокому значению для указания, что цепь постоянного тока работает в режиме обнаружения, и равным логическому низкому значению для указания, что она работает в режиме слежения.

Цифровая АРУ

Аспект изобретения предусматривает использование ЦУРУ в приемнике с прямым понижающим преобразованием. ЦУРУ может обеспечивать требуемый диапазон коэффициента усиления, необходимый для охвата всего или части полного динамического диапазона принимаемого сигнала (т.е. части, не охваченной РЧ/аналоговыми схемами). Таким образом, диапазон коэффициента усиления ЦУРУ можно использовать для обеспечения коэффициента усиления, который гетеродинный приемник обеспечивает на промежуточной частоте (ПЧ). Ниже описана преимущественная реализация конструкции ЦУРУ и размещения ЦУРУ в архитектуре приемника с прямым понижающим преобразованием.

На фиг.3 изображена блок-схема ЦУРУ 140а, способного обеспечивать цифровое усиление на частоте немодулированного сигнала для I и Q выборок. ЦУРУ 140а является конкретным вариантом осуществления ЦУРУ 140, показанного на фиг.1.

В ЦУРУ 140а I и Q выборки с коррекцией смещения постоянного тока от предварительного подавителя 130 смещения постоянного тока поступают на мультиплексор 312 и блок 320 отсечки. Для минимизации оборудования только один цифровой умножитель 316 используется для осуществления умножения на коэффициент усиления обеих, I и Q, выборок в режиме мультиплексирования с временным разделением (МВР, TDM). Таким образом, мультиплексор 312 попеременно выдает то I выборку, то Q выборку (что определяется управляющим сигналом выб_IQ) на умножитель 316 через логический элемент “И” 314. Управляющий сигнал выб_IQ является просто прямоугольной волной с частотой I и Q выборок (например, чип×8) и соответствующей фазой (например, I выборкам соответствует логический низкий уровень). Логический элемент “И” 314 осуществляет операцию “И” над I или Q выборкой с управляющим сигналом вкл_ЦУРУ, который устанавливают равным высокому логическому значению для включения ЦУРУ, и устанавливают равным низкому логическому значению для обхода ЦУРУ. ЦУРУ можно обходить, например, если диапазон коэффициента усиления ЦУРУ не нужен или если диапазон коэффициента усиления обеспечивается аналоговой схемой (например, усилителем с регулируемым коэффициентом усиления). Таким образом, логический элемент “И” пропускает выборку на умножитель 316, если ЦУРУ включен, а в противном случае выдает нуль. Нуль снижает потребление мощности последующей схемой за счет устранения переходов, которые приводят к потреблению мощности в схемах КМОП (CMOS).

Умножитель 316 умножает I или Q выборку на выходе логического элемента “И” 314 на коэффициент усиления из регистра 344 и выдает масштабированную (или усиленную) выборку на блок 318 отсечки. Согласно конкретному варианту осуществления умножитель 316 работает на удвоенной частоте дискретизации, которая равна чип×16 для частоты дискретизации I/Q чип×8. Согласно конкретному варианту осуществления для МДКР и ГСП входные I и Q выборки имеют разрешение 18 бит, в том числе разрешение 10 бит справа от двоичной точки (т.е. 18Q10), коэффициент усиления имеет разрешение 19 бит, в том числе разрешение 12 бит справа от двоичной точки (т.е. 19Q12), и масштабированные выборки имеют разрешение 37 бит, в том числе разрешение 22 бит справа от двоичной точки (т.е. 37Q22). Согласно конкретному варианту осуществления для цифровой ЧМ или ЦЧМ (DFM) входные I и Q выборки имеют разрешение 18Q6, коэффициент усиления имеет разрешение 19Q12, и масштабированные выборки имеют разрешение 37Q18. Блок 318 отсечки отсекает (например, 18) младшие биты (МБ) каждой масштабированной выборки и выдает усеченную выборку (с разрешением 18Q4 для МДКР/ГСП и 18Q0 для ЦЧМ) на один вход мультиплексора 322.

В некоторых режимах работы приемника цифровое масштабирование с помощью ЦУРУ 140а не требуется, и входные I и Q выборки можно подавать на выход ЦУРУ без какого-либо масштабирования (после соответствующей обработки для получения требуемого формата выходных данных). Блок 320 отсечки отсекает (например, 6) МБ каждой входной выборки и выдает усеченную выборку на другой вход мультиплексора 322. Блок 320 отсечки гарантирует, что выходные I и Q данные имеют одно и то же разрешение независимо от того, включен ли ЦУРУ или обойден.

Мультиплексор 322 выдает усеченную выборку с одного из блоков 318 и 320 отсечки в зависимости от того, включен ли ЦУРУ или обойден, соответственно, что определяется управляющим сигналом вкл_ЦУРУ. Выбранная выборка поступает на блок 324 насыщения, который насыщает выборку до требуемого формата выходных данных, например, обеспечивает разрешение 8Q4 для МДКР/ГСП и 8Q0 для ЦЧМ. Насыщенная выборка поступает на элемент 326 задержки и на один вход регистра 328. Элемент 326 задержки обеспечивает задержку длительностью, равной полупериоду выборки, для выравнивания I и Q данных (которые были расфазированы на полупериод выборки для реализации мультиплексирования с временным разделением на мультиплексоре 316) и выдает I выборку с задержкой на другой вход регистра 328. Регистр 328 выдает I и Q данные, синхронизированные с управляющим сигналом выб_IQ. Для МДКР/ГСП четыре старших бита (СБ) I и Q данных (т.е. с разрешением 4Q0) поступают на следующий блок обработки. Для ЦЧМ I и Q данные (т.е. с разрешением 8Q0) поступают сразу на блок обработки ЧМ.

Приемный блок 100 можно использовать в различных областях применения, например, для приема данных от системы МДКР, системы ГСП, системы цифровой ЧМ (ЦЧМ) и т.д. Каждая такая область применения может быть связана с соответствующим принятым сигналом, имеющим некоторые конкретные характеристики и требующим некоторого конкретного коэффициента усиления. Согласно фиг.3 на мультиплексор 322 поступают три разных коэффициента усиления, используемых для МДКР, ГСП и ЦЧМ. В соответствии с управляющим сигналом выб_реж выбирают один из коэффициентов усиления. Выбранный коэффициент усиления поступает на блок 334 масштабирования и смещения коэффициента усиления, который также принимает смещение коэффициента усиления.

Блок 334 масштабирования и смещения коэффициента усиления масштабирует выбранный коэффициент усиления (МДКР, ГСП или ЦЧМ) с соответствующим масштабным коэффициентом, что позволяет добиться требуемого разрешения коэффициента усиления. Например, можно обеспечить коэффициент усиления МДКР с фиксированным количеством битов (например, 10 битов), которые покрывают один из нескольких возможных диапазонов коэффициента усиления (например, диапазона коэффициента усиления 102,4 дБ или 85,3 дБ для 10-битового коэффициента усиления МДКР), в зависимости от конкретного режима, используемого для МДКР. Масштабный коэффициент выбирают так, чтобы масштабированный коэффициент усиления МДКР имел одинаковое разрешение (например, 0,13 дБ) независимо от конкретного режима, используемого для МДКР. Блок 334 масштабирования и смещения коэффициента усиления дополнительно вычитает смещение коэффициента усиления из масштабированного коэффициента усиления. Смещение коэффициента усиления определяют на основании установки, выбранной для АЦП 122, что, в свою очередь, определяет среднюю мощность I и Q составляющих немодулированного сигнала, поступающего на АЦП. Смещение коэффициента усиления может быть программируемым значением, имеющим такое же разрешение, что и масштабированный коэффициент усиления, и может поступать от контроллера 160.

Мультиплексор 336 принимает масштабированный и смещенный коэффициент усиления от блока 334 и подменный коэффициент усиления и выдает один из коэффициентов усиления (на основании управляющего сигнала “замена_коэффициента_усиления”) на блок 338 насыщения. Замененный коэффициент усиления можно использовать вместо коэффициента усиления от цепи АРУ, если требуется обойти цепь АРУ. Блок 338 насыщения насыщает полученный коэффициент усиления (например, до 9 бит) для ограничения диапазона насыщенного коэффициента усиления (например, до 68,13 дБ от полного диапазона коэффициента усиления для 9 битов при разрешении 0,133 дБ для каждого бита). Логический элемент “И” 340 осуществляет операцию “И” над насыщенным коэффициентом усиления и управляющим сигналом вкл_ЦУРУ и передает поисковой таблице (ПОТ) 342 логарифмо-линейного преобразования насыщенный коэффициент усиления, если ЦУРУ включен, и нуль в противном случае (опять же для снижения потребления мощности на последующих схемах).

Согласно варианту осуществления цепь АРУ выдает значение коэффициента усиления (например, коэффициент усиления МДКР) в логарифмическом формате (дБ). Логарифмическое значение коэффициента усиления можно использовать для имитации характеристик РЧ/аналоговых схем с регулируемым усилением, которые обычно имеют логарифмические (или логарифмоподобные) функции перехода для коэффициента усиления от управляющего значения. Во-вторых, приемный коэффициент усиления используется в качестве оценки требуемой мощности передачи в телефонном вызове МДКР и для доставки отчета о мощности приема на базовую станцию по запросу. Эти оценки традиционно выполняются в дБ ввиду широкого динамического диапазона принятого сигнала. Однако, поскольку для умножения немодулированного сигнала на коэффициент усиления используется линейный цифровой умножитель 316, значение коэффициента усиления в дБ преобразуется в линейное значение коэффициента усиления. Поисковая таблица 342 осуществляет логарифмо-линейное преобразование в соответствии со следующей формулой:

Y(линейная)=10Х/20, Ур(1),

где Y - линейное значение коэффициента усиления из поисковой таблицы и Х - значение ослабления, которое можно определить как

X=-(Z(дБ)+смещен