Устройство формирования изображения, система формирования изображения, способ ее управления и носитель информации, содержащий ее программу
Иллюстрации
Показать всеИзобретение относится к медицинской технике, а именно к системам формирования изображения в рентгенографии. Устройство формирования изображения содержит блок детектирования, блок памяти для хранения характеристики темнового тока блока детектирования, первый блок измерения периода времени для измерения первого периода времени от приложения напряжения смещения к преобразовательному элементу до начала накопления преобразовательного элемента для получения изображения, второй блок измерения периода времени для измерения второго периода времени от начала накопления до завершения накопления, арифметический блок количества заряда накопления и блок обработки изображения для выполнения компенсирующей коррекции изображения, полученного на основании количества заряда накопления темнового тока. Система формирования изображения содержит устройство формирования изображения и устройство генерации излучения для генерации излучения. Способ управления устройством формирования изображения заключается в том, что измеряют первый период времени от приложения напряжения смещения к преобразовательному элементу до начала накопления преобразовательного элемента для получения изображения, измеряют второй период времени от начала накопления до завершения накопления, вычисляют количество заряда накопления темнового тока, входящего в накопление, на основании характеристики темнового тока и первого, и второго периодов времени и выполняют компенсирующую коррекцию изображения, полученного на основе вычисленного количества заряда накопления темнового тока. Изобретение включает также носитель информации, хранящий программу для управления способом устройства формирования изображения. Использование изобретения позволяет получать качественную рентгенографию без увеличения стоимости и размера устройства. 4 н. и 5 з.п. ф-лы, 11 ил.
Реферат
Уровень техники
Область техники
Настоящее изобретение относится к устройству формирования изображения, системе формирования изображения, ее способу управления и ее программе и, в частности, к способу компенсирующей коррекции сфотографированного изображения.
Описание предшествующего уровня техники
До настоящего времени большинство фотографий представляли собой пленочные фотографии (фотографии на основе соли серебра), полученные посредством оптической камеры и пленки на основе соли серебра. С прогрессом полупроводниковых технологий было разработано устройство формирования изображения, такое как видеокамера, которая могла фотографировать движущееся изображение путем использования твердотельного устройства формирования изображения, используя монокристаллический кремниевый (Si) сенсор типа сенсора на Приборе с Зарядовой Связью (ПЗС-сенсор) или сенсора на приборе с переходом Металл - Оксид - Полупроводник (МОП-сенсор). Однако изображение, полученное с помощью такого устройства формирования изображения, в котором используется твердотельный прибор формирования изображения, уступает пленочной фотографии в показателях количества пикселей и отношения сигнал/шум. Пленочная фотография обычно используется для фотографирования неподвижного изображения.
С другой стороны, в последние годы увеличивается потребность в обработке изображения посредством компьютера, сохранении изображения в форме электронного файла, передаче изображения посредством электронной почты и т.п. Требуется электронное устройство формирования изображения для вывода фотоизображения в виде цифрового сигнала, которое не хуже пленочной фотографии. Эта необходимо не только для обычных фотографий и для области медицины и исследований.
Например, в области медицины используется рентгенограмма как фотография, полученная с использованием способа фотографирования. Рентгеновское излучение, генерируемое из рентгеновского источника, излучается на пораженную часть тела человека как объекта, и рентгенограмма используется для определения присутствия или отсутствия перелома кости или опухоли и т.п. на основании информации передачи рентгеновского излучения. В течение длительного времени рентгенограмма широко используется для медицинского диагностирования. Обычно, рентгеновское излучение, пропущенное через пораженную часть, входит в фосфор, преобразуется в видимый свет и, далее, облучает пленку на основе соли серебра.
Тем не менее, несмотря на то, что пленка на основе соли серебра имеет такие преимущества как высокая чувствительность и разрешающая способность, она имеет также ряд недостатков, таких как сложность проявления, большое время, необходимое для сохранения и управления, невозможность оперативной передачи пленки в удаленную поверхность и т.п. Как упомянуто выше, требуется электронное рентгеновское устройство формирования изображения для вывода фотографического изображения в форме цифрового сигнала, которое не уступает пленочной фотографии. Это утверждение верно не только для медицинской области, но также для области неразрушающего исследования пробы, такой как структура и т.п.
Для этой цели было разработано устройство формирования изображения (Плоско Панельный Детектор, ППД), в котором используется большой сенсор, получаемый посредством двумерного расположения формирователей изображения, имеющих фотоэлектрические преобразовательные элементы, которые изготовлены из аморфного гидрида кремния. ППД реализован на основе принципа, что когда к фотоэлектрическому преобразовательному элементу прилагается электрическое поле обратного направления, в полупроводниковом слое протекает фотоэлектрический ток, зависящий от количества падающего света.
Согласно технологии ППД, например, посредством напылительной установки, установки химического осаждения из газовой фазы или т.п. на изолирующую подложку со стороной примерно 30~50 см наносится металлический слой, слой аморфного кремния или т.п., и формируются фотоэлектрические преобразовательные элементы (фотодиоды) и тонкопленочные транзисторы (ТПТ). Таким образом, например, формируется примерно 2000×2000 фотоэлектрических преобразовательных элементов, к ним прилагается электрическое поле обратного смещения, и в тоже время заряды, протекающие в обратном направлении каждого фотоэлектрического преобразовательного элемента, могут быть по отдельности детектированы посредством сформированных ТПТ.
Тем не менее, согласно технологии ППД, ток, называемый темновым током, протекает даже в состоянии, когда на фотоэлектрические преобразовательные элементы свет не излучается, что приводит к возникновению искажений в изображении. Сверх того, темновой ток влияет на изображение как дробовой шум, и он становится одним из факторов, вследствие которых деградирует детектирующая способность, то есть чувствительность (отношение сигнал/шум) всего устройства. Подобная деградация имеет отрицательное воздействие на медицинское диагностирование и оценку исследования. Само собой разумеется, что возникает проблема, когда, например, упускают фокус и дефектную деталь из-за дробового шума. Соответственно, важно уменьшить темновой ток, насколько это возможно.
Сущность изобретения
Темновой ток в ППД имеет временную характеристику, которая проиллюстрирована на Фиг.11. Как проиллюстрировано на Фиг.11, темновой ток имеет наибольшее значение непосредственно после приложения смещающего напряжения, и позже он постепенно уменьшается (стабилизируется). Рассматриваются две причины этого явления.
Одна из них заключается в том, что обычно при формировании фотоэлектрического преобразовательного элемента с применением аморфного кремниевого полупроводника в качестве основного компонента образуются дефектные слои из ненасыщенных связей в аморфной полупроводниковой пленке и из примесей, смешиваемых в процессе формирования. Эти дефектные уровни действуют как уровни захвата. Даже непосредственно после или до приложения напряжения смещения некоторые электроны и дырки захватываются, и по истечении периода от нескольких миллисекунд до нескольких десятых секунды они переходят в зону проводимости или валентную зону, и протекает ток проводимости (темновой ток).
В случае использования фотоэлектрического преобразовательного элемента типа Металл-Диэлектрик-Полупроводник (МДП) известно, что присутствует множество уровней захвата, в частности, на граничной части между полупроводниковым слоем (I-слоем) и обедненным слоем (например, N-слоем). В случае использования фотоэлектрического преобразовательного элемента МДП кристаллического типа без применения пленки аморфного полупроводника известно, что количество уровней захвата меньше, чем в случае использования пленки аморфного полупроводника, хотя это зависит от условий и устройства обработки, используемых при формировании элемента. Тем не менее, в граничной части между полупроводниковым слоем (I-слоем) и обедненным слоем (например, N-слоем) присутствует множество несовмещенных кристаллических решеток, уровень захвата не равен нулю, и есть тенденция вывода фотоэлектрического преобразовательного элемента, проиллюстрированная на Фиг.11.
Еще одной из рассматриваемых причин является характеристика обедненного слоя. Например, если обедненный слой изготовлен из аморфного кремния типа N, то в идеальном случае в полупроводниковый слой не проникает ни одной дырки. Тем не менее, в действительности в случае аморфного кремния N-слой полностью не блокирует дырки. Дырки, которые проходят через N-слой и проникают в полупроводниковый слой (I-слой), представляют темновой ток. Дырки накапливаются на границе между полупроводниковым слоем (I-слоем) и изолирующим слоем. Вместе с накоплением дырок внутреннее электрическое поле в I-слое ослабляется. Поскольку количество дырок, проникающих в I-слой из N-слоя, уменьшается вместе с ослаблением электрического поля, то темновой ток уменьшается.
Аналогично случаю использования фотоэлектрического преобразователя типа МДП, в случае использования фотоэлектрического преобразовательного элемента типа PIN (положительный-собственный-отрицательный), в котором в качестве компонента используется аморфный кремний, требуется определенное время для стабилизации темнового тока после приложения напряжения смещения. Предполагается, что это происходит из-за дефектных уровней в пленке. Аналогично, в случае использования аморфного селена, арсенида галлия, йодида ртути, йодида свинца или теллурида кадмия, которые поглощают излучение и напрямую преобразует его в электрический сигнал, также требуется предварительно определенное время для стабилизации темнового тока.
В качестве способа устранения характеристики темнового тока, которая, как упомянуто выше, зависит от времени, используется способ, согласно которому к фотоэлектрическому преобразовательному элементу непрерывно прилагается смещающее напряжение. Однако, если напряжение смещения непрерывно прилагается к фотоэлектрическому преобразовательному элементу, то количество дефектов в полупроводнике увеличивается из-за протекающего тока, характеристика постепенно деградирует, и возникают такие явления как увеличение темнового тока, уменьшение фотоэлектрического тока и т.п. Если в силу применения напряжения смещения непрерывно прилагается электрическое поле, то увеличивается не только количество дефектов, но из-за движения ионов и электролиза это также становится причиной сдвига порогового значения ТПТ и коррозии металла, который используется для электрических цепей, что приводит к ухудшению надежности всего устройства. Ухудшение надежности нежелательно при изготовлении таких продуктов как медицинское и исследовательское устройства. Например, крайне нежелательны отказы устройства при диагностировании, лечении или обследовании, которые требуются во время экстренной ситуации. Следовательно, необходимо так спроектировать ППД, чтобы фотоэлектрический преобразовательный элемент переходил в неработоспособное состояние, когда ППД не используется.
В отличие от фотографирования с использованием пленки, согласно технологии ППД, поскольку фотоизображение может быть отображено на монитор и диагноз может быть определен непосредственно после фотографирования, предполагается, что ППД будут использоваться в области, где фотографирование и диагностирование выполняется в течение короткого времени, как в случае оказания срочной медицинской помощи. Однако, поскольку темновой ток фотоэлектрического преобразовательного элемента, как упомянуто выше, имеет характеристику, которая зависит от времени, непосредственно после приложения напряжения смещения к фотоэлектрическому преобразовательному элементу темновой ток имеет большое значение, и возникают искажения и шум, и, соответственно, качество картинки деградирует.
Следовательно, согласно официальному бюллетеню в патенте США №6127684 рентгенография осуществляется после стабилизации характеристики темнового тока. Компенсирующее изображение, на которое не излучается рентгеновское излучение, снимается до или после рентгенографии, и вычисляется разница между компенсирующим изображением и рентгеновским изображением, полученным в результате рентгенографии, посредством чего удаляется компонент темнового тока рентгеновского изображения (ниже на этот процесс ссылаются как на компенсирующую коррекцию). Согласно первому способу, поскольку оператор должен выждать предварительно определенное время после приложения напряжения смещения к фотоэлектрическому преобразовательному элементу, существует проблема, заключающаяся в том, что устройство не может использоваться в случае необходимости экстренной помощи и оперативность применения низкая. Согласно второму способу, поскольку темновой ток имеет большое значение непосредственно после приложения напряжения смещения к фотоэлектрическому преобразовательному элементу, существует проблема, заключающая в том, что даже если вычисляется разница, компонент темнового тока не может быть полностью удален.
Согласно официальному бюллетеню в патенте США №5818898 темновой ток (данные количества шума) на единицу времени сохраняется в памяти. Данные количества накопленного шума вычисляются на основании периода накопления при рентгенографии, который измеряется схемой измерения периода накопления, и данных количества шума на единицу времени, и данные количества накопленного шума вычитаются из рентгеновского изображения, таким образом, проводя компенсирующую коррекцию. Тем не менее, поскольку темновой ток имеет характеристику, которая зависит от времени, прошедшего после приложения напряжения смещения к фотоэлектрическому преобразовательному элементу, существует проблема, заключающаяся в том, что компонент темнового тока не может быть полностью вычтен из рентгеновского изображения.
Согласно официальному бюллетеню в патенте США №6965111 темновой ток стабилизируется путем излучения света на фотоэлектрический преобразовательный элемент с помощью источника света, такого как светоизлучающий диод, электролюминесцентное устройство или т.п. Тем не менее, в этом случае должен быть предусмотрен источник света, что приводит к увеличению стоимости и размеров ППД.
Целью настоящего изобретения является предоставление устройства формирования изображения, в котором даже непосредственно после приложения напряжения смещения к фотоэлектрическому преобразовательному устройству может быть выполнена качественная рентгенография без увеличения стоимости и размера устройства.
Согласно настоящему изобретению предоставлено устройство формирования изображения, содержащее:
блок детектирования, включающий в себя множество преобразовательных элементов, которые расположены в виде матрицы на подложке, для преобразования падающего излучения или падающего света в электрический сигнал, для получения изображения на основе электрического сигнала;
блок памяти для хранения характеристики темнового тока блока детектирования после приложения напряжения смещения к преобразовательному элементу;
первый блок измерения периода времени для измерения первого периода времени от приложения напряжения смещения к преобразовательному элементу до начала накопления преобразовательного элемента для получения изображения;
второй блок измерения периода времени для измерения второго периода времени от начала накопления до завершения накопления;
арифметический блок количества заряда накопления для вычисления количества заряда накопления темнового тока, входящего в накопление, на основе характеристики темнового тока и первого, и второго периодов времени; и
блок обработки изображения для выполнения компенсирующей коррекции изображения, полученного на основании количества заряда накопления темнового тока.
Согласно настоящему изобретению предоставлена система формирования изображения, содержащая устройство формирования изображения и устройство генерации излучения для генерации излучения.
Согласно настоящему изобретению предоставлен способ управления устройством формирования изображения, содержащим:
блок детектирования, включающий в себя множество преобразовательных элементов, которые расположены в виде матрицы на подложке, для преобразования падающего излучения или падающего света в электрический сигнал, для получения изображения на основе электрического сигнала, и
блок памяти для хранения характеристики темнового тока блока детектирования после приложения напряжения смещения к преобразовательному элементу, причем способ содержит этапы, на которых:
измеряют первый период времени от приложения напряжения смещения к преобразовательному элементу до начала накопления преобразовательного элемента для получения изображения;
измеряют второй период времени от начала накопления до завершения накопления;
вычисляют количество заряда накопления темнового тока, входящего в накопление, на основании характеристики темнового тока и первого, и второго периодов времени; и
выполняют компенсирующую коррекцию изображения, полученного на основе вычисленного количества заряда накопления темнового тока.
Согласно настоящему изобретению предоставлен носитель информации для хранения программы для управления способом устройства формирования изображения, содержащего:
блок детектирования, включающий в себя множество преобразовательных элементов, которые расположены в виде матрицы на подложке, для преобразования падающего излучения или падающего света в электрический сигнал, для получения изображения на основе электрического сигнала, и
блок памяти для хранения характеристики темнового тока блока детектирования после приложения напряжения смещения к преобразовательному элементу, причем программа управляет компьютером, чтобы выполнять этапы:
измерения первого периода времени от приложения напряжения смещения к преобразовательному элементу до начала накопления преобразовательного элемента для получения изображения;
измерения второго периода времени от начала накопления до завершения накопления;
вычисления количества заряда накопления темнового тока, входящего в накопление, на основании характеристики темнового тока и первого, и второго периодов времени; и
выполнения компенсирующей коррекции изображения, полученного на основе вычисленного количества заряда накопления темнового тока.
Согласно настоящему изобретению количество заряда накопления темнового тока вычисляется на основе периода холостого хода от приложения напряжения смещения к преобразовательному элементу до начала выполнения рентгенографии для получения изображения, периода накопления при выполнении рентгенографии и характеристики темнового тока. Поскольку компенсирующая коррекция изображения выполняется путем использования вычисленного количества заряда накопления темнового тока, даже непосредственно после приложения напряжения смещения компенсирующая коррекция выполняется должным образом, без увеличения стоимости и размера устройства, и может быть выполнена качественная рентгенография.
Дополнительные отличительные признаки настоящего изобретения будут очевидны из следующего описания примеров осуществления со ссылкой на прилагаемые чертежи.
Краткое описание чертежей
Фиг.1 - схематическая конструкция системы формирования изображения в первом варианте осуществления;
Фиг.2 - схема последовательности операций, иллюстрирующая работу системы формирования изображения в первом варианте осуществления;
Фиг.3 - временная диаграмма, иллюстрирующая временное распределение возбуждения системы формирования изображения в первом варианте осуществления;
Фиг.4 - схема, иллюстрирующая пример, в котором наборы, каждый из которых образуется из фотоэлектрического преобразовательного элемента и переключающего элемента, размещены в виде двумерной матрицы;
Фиг.5 - временная диаграмма, иллюстрирующая временное распределение возбуждения в конструкции, проиллюстрированной на Фиг.4;
Фиг.6 - схематическая конструкция системы формирования изображения во втором варианте осуществления;
Фиг.7 - временная диаграмма, иллюстрирующая временное распределение возбуждения системы формирования изображения во втором варианте осуществления;
Фиг.8 - схема последовательности операций, иллюстрирующая работу системы формирования изображения во втором варианте осуществления;
Фиг.9 - временная диаграмма, иллюстрирующая временное распределение возбуждения системы формирования изображения в третьем варианте осуществления;
Фиг.10 - схема последовательности операций, иллюстрирующая работу системы формирования изображения в третьем варианте осуществления;
Фиг.11 - схема, иллюстрирующая характеристику темнового тока фотоэлектрического преобразовательного элемента.
Описание вариантов осуществления изобретения
Ниже со ссылкой на прилагаемые чертежи подробно описаны примеры осуществления настоящего изобретения.
(Первый вариант осуществления)
Фиг.1 представляет собой структурную схему, иллюстрирующую систему формирования изображения в первом варианте осуществления настоящего изобретения. На Фиг.1 конструкция за исключением рентгеновского источника 101, служащего как устройство генерации излучения, и его системы управления соответствует устройству формирования изображения. Система формирования изображения в первом варианте осуществления формируется из рентгеновского источника 101, его системы управления и устройства формирования изображения. В устройстве формирования изображения в первом варианте осуществления можно с легкостью селективно устанавливать режим фотографирования движущегося изображения для выполнения флуороскопии или т.п. или режим фотографирования неподвижного изображения для выполнения рентгенографии.
Работа системы формирования изображения в этом варианте осуществления управляется посредством блока 114А управления. Консольный блок 112 содержит расположенную на дисплее 121 сенсорную панель, мышь, клавиатуру, джойстик, ножной переключатель и т.п. В системе формирования изображения в этом варианте осуществления оператор 113 может выполнять различные настройки с консольного блока 112, такие как условия рентгенографии (неподвижное изображение, движущееся изображение, напряжение трубки, ток трубки, временной период излучения и т.п.), время рентгенографии, условия обработки изображения, идентификатор объекта, способ обработки полученного изображения и т.п.
Условия рентгенографии, основанные на одной из инструкции оператора 113, которая вводится через консольный блок 112, и инструкции информационной системы излучения передаются блоком 114А управления в блок 115А управления рентгенографии для управления последовательностью рентгенографии, и получают данные. На основании этих инструкций блок 115А управления рентгенографии приводит в действие рентгеновский источник 101, как источник излучения, стенд для рентгенографии (не показан) и блок 103 детектирования излучения, получает данные изображения и передает их в блок 110А обработки изображения. Блок 110А обработки изображения выполняет назначенную оператором 113 обработку переданных данных изображения, отображает на дисплее 121 и одновременно сохраняет в памяти 111 необработанные данные, полученные путем выполнения базовой обработки изображения, такой как компенсирующая коррекция, коррекция белого цвета, коррекция дефектов и т.п.
Далее, на основании инструкции оператора 113 блок 114А управления выполняет повторную обработку изображения и отображение воспроизведения данных изображения, сохраненных в памяти 111, передачу и сохранение данных изображения в устройстве в сети, отображение на дисплее, печать на пленке и т.п.
Ниже работа проиллюстрированной на Фиг.1 системы формирования изображения поэтапно описана согласно потоку сигнала. Рентгеновский источник 101 включает в себя рентгеновскую трубку и рентгеновскую диафрагму. Рентгеновская трубка приводится в действие посредством источника питания высокого напряжения, управляемого блоком 115А управления рентгенографии, и она излучает рентгеновский луч 122. Рентгеновская диафрагма приводится в действие блоком 115А управления рентгенографии, и она придает форму рентгеновскому лучу 122 в зависимости от изменения в области рентгенографии, так чтобы предотвратить излишнее рентгеновское излучение.
Рентгеновский луч 122, излученный из рентгеновского источника 101, направляется на объект 102, лежащий на стенде, который прозрачен для рентгеновского излучения. Рентгенографический стенд приводится в действие на основании инструкции блока 115А управления рентгенографии. Рентгеновский луч 122, излученный на объект 102, проникает в объект 102 и рентгенографический стенд и, далее, входит в блок 103 детектирования излучения.
Блок 103 детектирования излучения содержит решетку (не показана), фосфор 106, фотоэлектрический преобразовательный элемент 104, переключающий элемент 105, схему 107 считывания, аналого-цифровой преобразователь (АЦП) 108, схему 109 возбуждения и измеритель количества рентгеновского облучения (не показан). Упомянутая решетка снижает воздействие рассеяния рентгеновского излучения, которое возникает после проникновения рентгеновского луча 122 в объект 102. Эта решетка сформирована из материала с высоким поглощением рентгеновского излучения и материала с малым поглощением рентгеновского излучения, и она имеет полосатую структуру из, например, алюминия (Al) и свинца (Pb). Во время рентгеновского излучения решетка вибрирует на основании инструкции блока 115А управления рентгенографии, так чтобы не вызвать искажения из-за отношения между коэффициентами решетки блока 103 детектирования радиации (в частности, фотоэлектрического преобразовательного элемента 104, расположенного на подложке) и упомянутой решетки.
Фосфор 106, как преобразователь длины волны, поглощает рентгеновский луч, который проникает в объект 102, возбуждает центр излучения света в фосфоре 106 и излучает видимый свет. То есть фосфор 106 преобразует длину волны падающего рентгеновского излучения. Видимый свет, излученный из фосфора 106, направляется на фоточувствительную поверхность фотоэлектрического преобразовательного элемента 104, расположенного на изолирующей подложке, и преобразуется фотоэлектрическим образом. Далее, заряды преобразованного фотоэлектрическим образом сигнала предоставляются в схему 107 считывания через переключающий элемент 105, также расположенный на изолирующей подложке, и преобразуются в сигнал напряжения посредством интегрирующего усилителя схемы 107 считывания. Сигнал напряжения, преобразованный посредством интегрирующего усилителя схемы 107 считывания, преобразуется из аналогового сигнала в цифровой сигнал посредством АЦП 108 и передается наружу из блока 103 детектирования излучения. Схема 109 возбуждения приводит в действие фотоэлектрический преобразовательный элемент 104, переключающий элемент 105 и схему 107 считывания на основании инструкций от блока 115А управления рентгенографии, и таким образом выполняется операция считывания сигнала.
В качестве фотоэлектрического преобразовательного элемента 104 может использоваться, например, тонкопленочный фотоэлектрический преобразовательный элемент типа МДП или PIN, в котором в качестве основного материала используется аморфный гидрат кремния, PN-фотодиод на основе монокремния (монокристаллического кремния) или т.п. В качестве переключающего элемента 105 может использоваться тонкопленочный транзистор, в котором используется аморфный кремний, поликремний (поликристаллический кремний), монокремний и т.п. или широко известный МОП-транзистор.
В качестве материала изолирующей подложки в основном используется прозрачное стекло с малым содержанием щелочи. В качестве материала фосфора 106 используются Gd2O2S:Tb, CsI:T1 и т.п. Фосфор 106 не ограничен этими материалами, и он может быть изготовлен, например, из материала, в котором основным компонентом является вещество из следующей группы: Gd2O2S, Gd2O3, CaWO4, CdWO4, CsI и ZnS.
Фотоэлектрический преобразовательный элемент 104 также может быть сконструирован так, чтобы иметь функцию для поглощения рентгеновского излучения без необходимости прохождения через фосфор 106 и для его непосредственного преобразования в электрический сигнал. Например, фотоэлектрический преобразовательный элемент 104 может быть изготовлен из материала, в котором главным компонентом является вещество, выбранное из следующей группы: аморфный селен, арсенид галлия, йодид ртути, йодид свинца или теллурид кадмия.
Измеритель количества рентгеновского излучения измеряет количество переданного рентгеновского излучения. Измеритель количества рентгеновского излучения может напрямую детектировать рентгеновское излучение, используя фоточувствительный элемент, который изготовлен из кристаллического кремния или т.п., или он может детектировать видимый свет, который проник в фотоэлектрический преобразовательный элемент 104 и переключающий элемент 105. Информация, детектированная измерителем количества рентгеновского излучения, передается в блок 115А управления рентгенографии. Блок 115А управления рентгенографии отключает или регулирует рентгеновский источник 101 на основании информации, детектированной измерителем количества рентгеновского излучения. Несмотря на то, что в этом варианте осуществления блок 115А управления рентгенографии предоставлен вне блока 103 детектирования излучения, настоящее изобретение не ограничено такой конструкцией, и блок 115А управления рентгенографии может быть предоставлен в блоке 103 детектирования излучения.
Рентгеновский кабинет, где выполняется рентгенография, и комната управления, где оператор 113 выполняет различные операции, представляют собой отдельные помещения. Сигнал изображения от блока 103 детектирования излучения передается из рентгеновского кабинета в блок 110А обработки изображения, предоставленный в комнате управления, где оператор 113 выполняет операции. При передаче шумы, вызванные генерацией рентгеновского излучения, имеют большую величину в рентгеновском кабинете, и бывают случаи, когда данные изображения передаются с искажениями, возникающими из-за шумов. Следовательно, необходимо повысить шумовое сопротивление канала передачи. Например, желательно использовать систему передачи с функцией коррекции ошибок, систему передачи дифференциальных сигналов, представленную Дифференциальной Сигнализацией на Низком Напряжении (Low Voltage Differential Signaling, LVDS), или канал передачи через оптическое волокно.
Блок 110А обработки изображения переключает данные изображения на основании инструкции блока 115А управления рентгенографии. В качестве других функций блок 110А обработки изображения выполняет коррекцию данных изображения (компенсирующую коррекцию, коррекцию белого цвета, коррекцию дефектов), пространственную фильтрацию, рекурсивный процесс и т.п. в реальном масштабе времени и, позже, он может выполнить процесс градации, коррекцию линии рассеяния, различные типы процессов пространственной частоты и т.п. Изображение, обработанное в блоке 110А обработки изображения, отображается на дисплее 121. Одновременно с обработкой изображения в масштабе реального времени основное изображение, в котором была выполнена только коррекция данных, сохраняется в памяти 111. В качестве памяти 111 желательно использовать устройство хранения данных, которое удовлетворяет требованиям большой емкости, высокой скорости и высокой надежности, например, дисковый массив типа RAID или т.п.
Данные изображения, сохраненные в памяти 111, реконструируются так, чтобы соответствовать предварительно определенному стандарту (например, IS & C), и впоследствии эти данные сохраняются на внешнем устройстве хранения (не показано). Внешнее устройство хранения может представлять собой, например, магнитооптический диск, жесткий диск в файловом сервере в локальной сети и т.п.
Система формирования изображения в этом варианте осуществления изобретения может быть соединена с локальной сетью через сетевую карту, и она имеет структуру, которая имеет совместимость по данным со стандартом HIS (Human Interface Standard). Само собой разумеется, что множество систем формирования изображений могут быть соединены с локальной сетью, и к локальной сети могут быть присоединены монитор для отображения движущегося изображения/неподвижного изображения, файловый сервер для хранения данных и т.п. Также присоединены принтер для вывода изображения на пленку, терминал обработки изображения для выполнения сложной обработки изображения, который поддерживает диагностирование, и т.п. Система формирования изображения в этом варианте осуществления изобретения выводит данные изображения в соответствии с предварительно определенным протоколом (например, DICOM - Digital Imaging and Communications in Medicine). В добавление, посредством соединенного с локальной сетью монитора врачом может быть выполнено дистанционное диагностирование на основе рентгенографии.
Ниже описана компенсирующая коррекция в системе формирования изображения в первом варианте осуществления изобретения. Операция обработки с начала операции до отображения описана ниже по этапам схемы последовательности операций, проиллюстрированной на Фиг.2, со ссылкой на структурную схему, проиллюстрированную на Фиг.1, схему последовательности операций, проиллюстрированную на Фиг.2, и временную диаграмму, проиллюстрированную на Фиг.3. В следующем описании световой выход, который получается путем излучения и выполнения рентгенографии (изображение излучения, полученное путем ввода излучения), называется рентгеновским кадром, а темновой выход, который получается путем выполнения рентгенографии без излучения, называется компенсирующим кадром.
Во-первых, устанавливается положение объекта 102 и условия рентгенографии, такие как напряжение трубки, ток трубки, временной период излучения и т.п. (S101). После этого начинается рентгенография (S102). Когда начинается рентгенография, блок 115А управления рентгенографии подает команду в схему 109 возбуждения в блоке 103 детектирования излучения. Схема 109 возбуждения, которая приняла команду, прилагает напряжения к цепи Vs смещения, вентильной цепи Vg и цепи Vref эталонной мощности схемы 107 считывания, соответственно. Вследствие приложения напряжения к вентильной цепи Vg переключающий элемент 105 включается, напряжение (Vs-Vref) прилагается к фотоэлектрическому преобразовательному элементу 104, и достигается состояние, когда может быть выполнено фотоэлектрическое преобразование.
Холостой ход, проиллюстрированный на Фиг.2 и 3, обозначает состояние, где напряжение смещения было приложено к фотоэлектрическому преобразовательному элементу 104, как упомянуто выше. В этом варианте осуществления изобретения, когда оператор 113 нажимает переключатель рентгеновского излучения, режим работы может быть сразу же переведен в режим считывания. При холостом ходе для сброса накапливаемых зарядов из-за темнового тока, генерируемого вследствие приложения напряжения смещения к фотоэлектрическому преобразовательному элементу 104, к вентильной цепи Vg периодически применяются импульсы, посредством чего включается переключающий элемент 105.
Блок 115А управления рентгенографии предоставляет время tis, указывающее, когда напряжение смещения прилагается к фотоэлектрическому преобразовательному элементу 104 блока 103 детектирования излучения, в блок 117 измерения периода холостого хода рентгеновского кадра и блок 124 измерения периода холостого хода компенсирующего кадра в качестве времени начала холостого хода. Блок 117 измерения периода холостого хода рентгеновского кадра и блок 124 измерения периода холостого хода компенсирующего кадра сохраняют предоставленное время tis начала работы холостого хода (S103).
Далее, оператор 113 нажимает переключатель рентгеновского излучения в произвольное время. Так, блок 115А управления рентгенографии предоставляет время (время сброса темнового тока) txs, указывающее, когда переключающий элемент 105 переводится из положения ВКЛ в положение ВЫКЛ непосредственно перед включением переключателя рентгеновского излучения, в блок 117 измерения периода холостого хода рентгеновского кадра в качестве времени завершения холостого хода. Сверх того, блок 115А управления рентгенографии предоставляет время txs в блок 120 измерения периода накопления рентгеновского кадра в качестве времени начала накопления рентгеновского кадра. Блок 117 измерения периода холостого хода рентгеновского кадра сохраняет предоставленное время txs завершения холостого хода, а блок 120 измерения периода накопления рентгеновского кадра сохраняет предоставленное время txs начала накопления рентгеновского кадра (S104).
Блок 117 измерения периода холостого хода рентгеновского кадра вычисляет период Txi (= txs-tis) холостого хода рентгеновского кадра на основании времени tis начала и времени txs завершени